L(s) = 1 | − i·2-s − 4-s − 0.484i·5-s − 5.05i·7-s + i·8-s − 0.484·10-s + 3.21i·11-s + (3.42 + 1.14i)13-s − 5.05·14-s + 16-s + 4.20·17-s + 3.21i·19-s + 0.484i·20-s + 3.21·22-s + 6.27·23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s − 0.216i·5-s − 1.91i·7-s + 0.353i·8-s − 0.153·10-s + 0.968i·11-s + (0.948 + 0.316i)13-s − 1.35·14-s + 0.250·16-s + 1.01·17-s + 0.736i·19-s + 0.108i·20-s + 0.684·22-s + 1.30·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2106 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.316 + 0.948i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2106 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.316 + 0.948i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.831071507\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.831071507\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-3.42 - 1.14i)T \) |
good | 5 | \( 1 + 0.484iT - 5T^{2} \) |
| 7 | \( 1 + 5.05iT - 7T^{2} \) |
| 11 | \( 1 - 3.21iT - 11T^{2} \) |
| 17 | \( 1 - 4.20T + 17T^{2} \) |
| 19 | \( 1 - 3.21iT - 19T^{2} \) |
| 23 | \( 1 - 6.27T + 23T^{2} \) |
| 29 | \( 1 - 4.59T + 29T^{2} \) |
| 31 | \( 1 + 6.48iT - 31T^{2} \) |
| 37 | \( 1 + 2.08iT - 37T^{2} \) |
| 41 | \( 1 + 11.0iT - 41T^{2} \) |
| 43 | \( 1 + 9.46T + 43T^{2} \) |
| 47 | \( 1 - 5.28iT - 47T^{2} \) |
| 53 | \( 1 - 6.41T + 53T^{2} \) |
| 59 | \( 1 - 3.62iT - 59T^{2} \) |
| 61 | \( 1 + 1.00T + 61T^{2} \) |
| 67 | \( 1 - 1.08iT - 67T^{2} \) |
| 71 | \( 1 - 4.63iT - 71T^{2} \) |
| 73 | \( 1 + 0.325iT - 73T^{2} \) |
| 79 | \( 1 + 7.83T + 79T^{2} \) |
| 83 | \( 1 - 5.86iT - 83T^{2} \) |
| 89 | \( 1 + 8.42iT - 89T^{2} \) |
| 97 | \( 1 + 13.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.987872964583077640665090668771, −8.113920348105431063680857319242, −7.31280332165362520793642980416, −6.73567783533306374039538177332, −5.49417752491295549386840177820, −4.49570220829362880613138464039, −3.96044366146511209246563331698, −3.10894205498618576839974287452, −1.58031467269495285582942179155, −0.822653321893354989692276755470,
1.17674530576916794926980429009, 2.89501259007285069925821116668, 3.26425953136708848347629717289, 4.98251923665081197335647983128, 5.34035893658247277341595331547, 6.27679760885720840876861011397, 6.71693265527819204294962645441, 8.005551048956793530655034667427, 8.669795140289916146619880104285, 8.881523597815447015266046550546