gp: [N,k,chi] = [2100,4,Mod(1849,2100)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2100.1849");
S:= CuspForms(chi, 4);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2100, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
N = Newforms(chi, 4, names="a")
Newform invariants
sage: traces = [2,0,0,0,0,0,0,0,-18,0,8,0,0,0,0,0,0,0,-184]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of i = − 1 i = \sqrt{-1} i = − 1 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 2100 Z ) × \left(\mathbb{Z}/2100\mathbb{Z}\right)^\times ( Z / 2 1 0 0 Z ) × .
n n n
701 701 7 0 1
1051 1051 1 0 5 1
1177 1177 1 1 7 7
1501 1501 1 5 0 1
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 2100 , [ χ ] ) S_{4}^{\mathrm{new}}(2100, [\chi]) S 4 n e w ( 2 1 0 0 , [ χ ] ) :
T 11 − 4 T_{11} - 4 T 1 1 − 4
T11 - 4
T 13 2 + 2916 T_{13}^{2} + 2916 T 1 3 2 + 2 9 1 6
T13^2 + 2916
T 17 2 + 196 T_{17}^{2} + 196 T 1 7 2 + 1 9 6
T17^2 + 196
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 + 9 T^{2} + 9 T 2 + 9
T^2 + 9
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
T 2 + 49 T^{2} + 49 T 2 + 4 9
T^2 + 49
11 11 1 1
( T − 4 ) 2 (T - 4)^{2} ( T − 4 ) 2
(T - 4)^2
13 13 1 3
T 2 + 2916 T^{2} + 2916 T 2 + 2 9 1 6
T^2 + 2916
17 17 1 7
T 2 + 196 T^{2} + 196 T 2 + 1 9 6
T^2 + 196
19 19 1 9
( T + 92 ) 2 (T + 92)^{2} ( T + 9 2 ) 2
(T + 92)^2
23 23 2 3
T 2 + 23104 T^{2} + 23104 T 2 + 2 3 1 0 4
T^2 + 23104
29 29 2 9
( T − 106 ) 2 (T - 106)^{2} ( T − 1 0 6 ) 2
(T - 106)^2
31 31 3 1
( T + 144 ) 2 (T + 144)^{2} ( T + 1 4 4 ) 2
(T + 144)^2
37 37 3 7
T 2 + 24964 T^{2} + 24964 T 2 + 2 4 9 6 4
T^2 + 24964
41 41 4 1
( T + 390 ) 2 (T + 390)^{2} ( T + 3 9 0 ) 2
(T + 390)^2
43 43 4 3
T 2 + 258064 T^{2} + 258064 T 2 + 2 5 8 0 6 4
T^2 + 258064
47 47 4 7
T 2 + 278784 T^{2} + 278784 T 2 + 2 7 8 7 8 4
T^2 + 278784
53 53 5 3
T 2 + 367236 T^{2} + 367236 T 2 + 3 6 7 2 3 6
T^2 + 367236
59 59 5 9
( T − 364 ) 2 (T - 364)^{2} ( T − 3 6 4 ) 2
(T - 364)^2
61 61 6 1
( T − 678 ) 2 (T - 678)^{2} ( T − 6 7 8 ) 2
(T - 678)^2
67 67 6 7
T 2 + 712336 T^{2} + 712336 T 2 + 7 1 2 3 3 6
T^2 + 712336
71 71 7 1
( T + 8 ) 2 (T + 8)^{2} ( T + 8 ) 2
(T + 8)^2
73 73 7 3
T 2 + 178084 T^{2} + 178084 T 2 + 1 7 8 0 8 4
T^2 + 178084
79 79 7 9
( T + 384 ) 2 (T + 384)^{2} ( T + 3 8 4 ) 2
(T + 384)^2
83 83 8 3
T 2 + 300304 T^{2} + 300304 T 2 + 3 0 0 3 0 4
T^2 + 300304
89 89 8 9
( T + 1194 ) 2 (T + 1194)^{2} ( T + 1 1 9 4 ) 2
(T + 1194)^2
97 97 9 7
T 2 + 2256004 T^{2} + 2256004 T 2 + 2 2 5 6 0 0 4
T^2 + 2256004
show more
show less