Properties

Label 2100.4.k.g
Level 21002100
Weight 44
Character orbit 2100.k
Analytic conductor 123.904123.904
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2100,4,Mod(1849,2100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2100.1849"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: N N == 2100=223527 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2100.k (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,-18,0,8,0,0,0,0,0,0,0,-184] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 123.904011012123.904011012
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3iq3+7iq79q9+4q11+54iq13+14iq1792q1921q21152iq2327iq27+106q29144q31+12iq33158iq37162q39390q41+36q99+O(q100) q + 3 i q^{3} + 7 i q^{7} - 9 q^{9} + 4 q^{11} + 54 i q^{13} + 14 i q^{17} - 92 q^{19} - 21 q^{21} - 152 i q^{23} - 27 i q^{27} + 106 q^{29} - 144 q^{31} + 12 i q^{33} - 158 i q^{37} - 162 q^{39} - 390 q^{41} + \cdots - 36 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q18q9+8q11184q1942q21+212q29288q31324q39780q4198q4984q51+728q59+1356q61+912q6916q71768q79+162q81+72q99+O(q100) 2 q - 18 q^{9} + 8 q^{11} - 184 q^{19} - 42 q^{21} + 212 q^{29} - 288 q^{31} - 324 q^{39} - 780 q^{41} - 98 q^{49} - 84 q^{51} + 728 q^{59} + 1356 q^{61} + 912 q^{69} - 16 q^{71} - 768 q^{79} + 162 q^{81}+ \cdots - 72 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2100Z)×\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times.

nn 701701 10511051 11771177 15011501
χ(n)\chi(n) 11 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1849.1
1.00000i
1.00000i
0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
1849.2 0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2100.4.k.g 2
5.b even 2 1 inner 2100.4.k.g 2
5.c odd 4 1 84.4.a.b 1
5.c odd 4 1 2100.4.a.g 1
15.e even 4 1 252.4.a.a 1
20.e even 4 1 336.4.a.e 1
35.f even 4 1 588.4.a.a 1
35.k even 12 2 588.4.i.h 2
35.l odd 12 2 588.4.i.a 2
40.i odd 4 1 1344.4.a.b 1
40.k even 4 1 1344.4.a.p 1
60.l odd 4 1 1008.4.a.d 1
105.k odd 4 1 1764.4.a.l 1
105.w odd 12 2 1764.4.k.c 2
105.x even 12 2 1764.4.k.n 2
140.j odd 4 1 2352.4.a.v 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.4.a.b 1 5.c odd 4 1
252.4.a.a 1 15.e even 4 1
336.4.a.e 1 20.e even 4 1
588.4.a.a 1 35.f even 4 1
588.4.i.a 2 35.l odd 12 2
588.4.i.h 2 35.k even 12 2
1008.4.a.d 1 60.l odd 4 1
1344.4.a.b 1 40.i odd 4 1
1344.4.a.p 1 40.k even 4 1
1764.4.a.l 1 105.k odd 4 1
1764.4.k.c 2 105.w odd 12 2
1764.4.k.n 2 105.x even 12 2
2100.4.a.g 1 5.c odd 4 1
2100.4.k.g 2 1.a even 1 1 trivial
2100.4.k.g 2 5.b even 2 1 inner
2352.4.a.v 1 140.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(2100,[χ])S_{4}^{\mathrm{new}}(2100, [\chi]):

T114 T_{11} - 4 Copy content Toggle raw display
T132+2916 T_{13}^{2} + 2916 Copy content Toggle raw display
T172+196 T_{17}^{2} + 196 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+9 T^{2} + 9 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+49 T^{2} + 49 Copy content Toggle raw display
1111 (T4)2 (T - 4)^{2} Copy content Toggle raw display
1313 T2+2916 T^{2} + 2916 Copy content Toggle raw display
1717 T2+196 T^{2} + 196 Copy content Toggle raw display
1919 (T+92)2 (T + 92)^{2} Copy content Toggle raw display
2323 T2+23104 T^{2} + 23104 Copy content Toggle raw display
2929 (T106)2 (T - 106)^{2} Copy content Toggle raw display
3131 (T+144)2 (T + 144)^{2} Copy content Toggle raw display
3737 T2+24964 T^{2} + 24964 Copy content Toggle raw display
4141 (T+390)2 (T + 390)^{2} Copy content Toggle raw display
4343 T2+258064 T^{2} + 258064 Copy content Toggle raw display
4747 T2+278784 T^{2} + 278784 Copy content Toggle raw display
5353 T2+367236 T^{2} + 367236 Copy content Toggle raw display
5959 (T364)2 (T - 364)^{2} Copy content Toggle raw display
6161 (T678)2 (T - 678)^{2} Copy content Toggle raw display
6767 T2+712336 T^{2} + 712336 Copy content Toggle raw display
7171 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
7373 T2+178084 T^{2} + 178084 Copy content Toggle raw display
7979 (T+384)2 (T + 384)^{2} Copy content Toggle raw display
8383 T2+300304 T^{2} + 300304 Copy content Toggle raw display
8989 (T+1194)2 (T + 1194)^{2} Copy content Toggle raw display
9797 T2+2256004 T^{2} + 2256004 Copy content Toggle raw display
show more
show less