Properties

Label 1764.4.k.c
Level 17641764
Weight 44
Character orbit 1764.k
Analytic conductor 104.079104.079
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,4,Mod(361,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 1764=223272 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1764.k (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-14,0,0,0,0,0,4,0,-108,0,0,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 104.079369250104.079369250
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a25]\Z[a_1, \ldots, a_{25}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q14ζ6q5+(4ζ6+4)q1154q13+(14ζ6+14)q17+92ζ6q19152ζ6q23+(71ζ671)q25+106q29+(144ζ6144)q31++1502q97+O(q100) q - 14 \zeta_{6} q^{5} + ( - 4 \zeta_{6} + 4) q^{11} - 54 q^{13} + ( - 14 \zeta_{6} + 14) q^{17} + 92 \zeta_{6} q^{19} - 152 \zeta_{6} q^{23} + (71 \zeta_{6} - 71) q^{25} + 106 q^{29} + (144 \zeta_{6} - 144) q^{31} + \cdots + 1502 q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q14q5+4q11108q13+14q17+92q19152q2371q25+212q29144q31158q37780q411016q43+528q47+606q53112q55+364q59++3004q97+O(q100) 2 q - 14 q^{5} + 4 q^{11} - 108 q^{13} + 14 q^{17} + 92 q^{19} - 152 q^{23} - 71 q^{25} + 212 q^{29} - 144 q^{31} - 158 q^{37} - 780 q^{41} - 1016 q^{43} + 528 q^{47} + 606 q^{53} - 112 q^{55} + 364 q^{59}+ \cdots + 3004 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1764Z)×\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times.

nn 785785 883883 10811081
χ(n)\chi(n) 11 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
361.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 −7.00000 12.1244i 0 0 0 0 0
1549.1 0 0 0 −7.00000 + 12.1244i 0 0 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1764.4.k.c 2
3.b odd 2 1 588.4.i.h 2
7.b odd 2 1 1764.4.k.n 2
7.c even 3 1 1764.4.a.l 1
7.c even 3 1 inner 1764.4.k.c 2
7.d odd 6 1 252.4.a.a 1
7.d odd 6 1 1764.4.k.n 2
21.c even 2 1 588.4.i.a 2
21.g even 6 1 84.4.a.b 1
21.g even 6 1 588.4.i.a 2
21.h odd 6 1 588.4.a.a 1
21.h odd 6 1 588.4.i.h 2
28.f even 6 1 1008.4.a.d 1
84.j odd 6 1 336.4.a.e 1
84.n even 6 1 2352.4.a.v 1
105.p even 6 1 2100.4.a.g 1
105.w odd 12 2 2100.4.k.g 2
168.ba even 6 1 1344.4.a.b 1
168.be odd 6 1 1344.4.a.p 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.4.a.b 1 21.g even 6 1
252.4.a.a 1 7.d odd 6 1
336.4.a.e 1 84.j odd 6 1
588.4.a.a 1 21.h odd 6 1
588.4.i.a 2 21.c even 2 1
588.4.i.a 2 21.g even 6 1
588.4.i.h 2 3.b odd 2 1
588.4.i.h 2 21.h odd 6 1
1008.4.a.d 1 28.f even 6 1
1344.4.a.b 1 168.ba even 6 1
1344.4.a.p 1 168.be odd 6 1
1764.4.a.l 1 7.c even 3 1
1764.4.k.c 2 1.a even 1 1 trivial
1764.4.k.c 2 7.c even 3 1 inner
1764.4.k.n 2 7.b odd 2 1
1764.4.k.n 2 7.d odd 6 1
2100.4.a.g 1 105.p even 6 1
2100.4.k.g 2 105.w odd 12 2
2352.4.a.v 1 84.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(1764,[χ])S_{4}^{\mathrm{new}}(1764, [\chi]):

T52+14T5+196 T_{5}^{2} + 14T_{5} + 196 Copy content Toggle raw display
T1124T11+16 T_{11}^{2} - 4T_{11} + 16 Copy content Toggle raw display
T13+54 T_{13} + 54 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+14T+196 T^{2} + 14T + 196 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
1313 (T+54)2 (T + 54)^{2} Copy content Toggle raw display
1717 T214T+196 T^{2} - 14T + 196 Copy content Toggle raw display
1919 T292T+8464 T^{2} - 92T + 8464 Copy content Toggle raw display
2323 T2+152T+23104 T^{2} + 152T + 23104 Copy content Toggle raw display
2929 (T106)2 (T - 106)^{2} Copy content Toggle raw display
3131 T2+144T+20736 T^{2} + 144T + 20736 Copy content Toggle raw display
3737 T2+158T+24964 T^{2} + 158T + 24964 Copy content Toggle raw display
4141 (T+390)2 (T + 390)^{2} Copy content Toggle raw display
4343 (T+508)2 (T + 508)^{2} Copy content Toggle raw display
4747 T2528T+278784 T^{2} - 528T + 278784 Copy content Toggle raw display
5353 T2606T+367236 T^{2} - 606T + 367236 Copy content Toggle raw display
5959 T2364T+132496 T^{2} - 364T + 132496 Copy content Toggle raw display
6161 T2678T+459684 T^{2} - 678T + 459684 Copy content Toggle raw display
6767 T2+844T+712336 T^{2} + 844T + 712336 Copy content Toggle raw display
7171 (T8)2 (T - 8)^{2} Copy content Toggle raw display
7373 T2+422T+178084 T^{2} + 422T + 178084 Copy content Toggle raw display
7979 T2+384T+147456 T^{2} + 384T + 147456 Copy content Toggle raw display
8383 (T+548)2 (T + 548)^{2} Copy content Toggle raw display
8989 T2+1194T+1425636 T^{2} + 1194 T + 1425636 Copy content Toggle raw display
9797 (T1502)2 (T - 1502)^{2} Copy content Toggle raw display
show more
show less