Properties

Label 1764.4.k
Level $1764$
Weight $4$
Character orbit 1764.k
Rep. character $\chi_{1764}(361,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $100$
Newform subspaces $30$
Sturm bound $1344$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1764.k (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 30 \)
Sturm bound: \(1344\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(5\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1764, [\chi])\).

Total New Old
Modular forms 2112 100 2012
Cusp forms 1920 100 1820
Eisenstein series 192 0 192

Trace form

\( 100 q + 6 q^{5} + O(q^{10}) \) \( 100 q + 6 q^{5} + 20 q^{11} + 30 q^{17} - 40 q^{19} + 40 q^{23} - 1100 q^{25} - 224 q^{29} + 168 q^{31} + 50 q^{37} - 816 q^{41} - 488 q^{43} - 48 q^{47} + 86 q^{53} + 656 q^{55} + 1152 q^{59} - 918 q^{61} + 1764 q^{65} - 808 q^{67} + 2856 q^{71} - 1262 q^{73} - 1448 q^{79} - 2832 q^{83} - 244 q^{85} + 858 q^{89} - 3664 q^{95} + 976 q^{97} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(1764, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1764.4.k.a 1764.k 7.c $2$ $104.079$ \(\Q(\sqrt{-3}) \) None 196.4.a.a \(0\) \(0\) \(-20\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-20\zeta_{6}q^{5}+(44-44\zeta_{6})q^{11}-44q^{13}+\cdots\)
1764.4.k.b 1764.k 7.c $2$ $104.079$ \(\Q(\sqrt{-3}) \) None 12.4.a.a \(0\) \(0\) \(-18\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-18\zeta_{6}q^{5}+(6^{2}-6^{2}\zeta_{6})q^{11}-10q^{13}+\cdots\)
1764.4.k.c 1764.k 7.c $2$ $104.079$ \(\Q(\sqrt{-3}) \) None 84.4.a.b \(0\) \(0\) \(-14\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-14\zeta_{6}q^{5}+(4-4\zeta_{6})q^{11}-54q^{13}+\cdots\)
1764.4.k.d 1764.k 7.c $2$ $104.079$ \(\Q(\sqrt{-3}) \) None 28.4.a.a \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-8\zeta_{6}q^{5}+(-40+40\zeta_{6})q^{11}-12q^{13}+\cdots\)
1764.4.k.e 1764.k 7.c $2$ $104.079$ \(\Q(\sqrt{-3}) \) None 28.4.a.b \(0\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-6\zeta_{6}q^{5}+(-12+12\zeta_{6})q^{11}+82q^{13}+\cdots\)
1764.4.k.f 1764.k 7.c $2$ $104.079$ \(\Q(\sqrt{-3}) \) None 84.4.a.a \(0\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-6\zeta_{6}q^{5}+(6^{2}-6^{2}\zeta_{6})q^{11}-62q^{13}+\cdots\)
1764.4.k.g 1764.k 7.c $2$ $104.079$ \(\Q(\sqrt{-3}) \) None 588.4.a.b \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-4\zeta_{6}q^{5}+(-20+20\zeta_{6})q^{11}+4q^{13}+\cdots\)
1764.4.k.h 1764.k 7.c $2$ $104.079$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 252.4.k.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{3}]$ \(q-89q^{13}-163\zeta_{6}q^{19}+(5^{3}-5^{3}\zeta_{6})q^{25}+\cdots\)
1764.4.k.i 1764.k 7.c $2$ $104.079$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 252.4.k.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{3}]$ \(q+19q^{13}+107\zeta_{6}q^{19}+(5^{3}-5^{3}\zeta_{6})q^{25}+\cdots\)
1764.4.k.j 1764.k 7.c $2$ $104.079$ \(\Q(\sqrt{-3}) \) None 588.4.a.b \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+4\zeta_{6}q^{5}+(-20+20\zeta_{6})q^{11}-4q^{13}+\cdots\)
1764.4.k.k 1764.k 7.c $2$ $104.079$ \(\Q(\sqrt{-3}) \) None 28.4.a.b \(0\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+6\zeta_{6}q^{5}+(-12+12\zeta_{6})q^{11}-82q^{13}+\cdots\)
1764.4.k.l 1764.k 7.c $2$ $104.079$ \(\Q(\sqrt{-3}) \) None 84.4.a.a \(0\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+6\zeta_{6}q^{5}+(6^{2}-6^{2}\zeta_{6})q^{11}+62q^{13}+\cdots\)
1764.4.k.m 1764.k 7.c $2$ $104.079$ \(\Q(\sqrt{-3}) \) None 28.4.a.a \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+8\zeta_{6}q^{5}+(-40+40\zeta_{6})q^{11}+12q^{13}+\cdots\)
1764.4.k.n 1764.k 7.c $2$ $104.079$ \(\Q(\sqrt{-3}) \) None 84.4.a.b \(0\) \(0\) \(14\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+14\zeta_{6}q^{5}+(4-4\zeta_{6})q^{11}+54q^{13}+\cdots\)
1764.4.k.o 1764.k 7.c $2$ $104.079$ \(\Q(\sqrt{-3}) \) None 12.4.a.a \(0\) \(0\) \(18\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+18\zeta_{6}q^{5}+(6^{2}-6^{2}\zeta_{6})q^{11}+10q^{13}+\cdots\)
1764.4.k.p 1764.k 7.c $2$ $104.079$ \(\Q(\sqrt{-3}) \) None 196.4.a.a \(0\) \(0\) \(20\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+20\zeta_{6}q^{5}+(44-44\zeta_{6})q^{11}+44q^{13}+\cdots\)
1764.4.k.q 1764.k 7.c $4$ $104.079$ \(\Q(\sqrt{-3}, \sqrt{193})\) None 84.4.i.a \(0\) \(0\) \(-11\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}-6\beta _{2})q^{5}+(1-7\beta _{1}+6\beta _{2}-7\beta _{3})q^{11}+\cdots\)
1764.4.k.r 1764.k 7.c $4$ $104.079$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 1764.4.a.q \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+7\beta _{1}q^{5}+28\beta _{2}q^{11}+3\beta _{3}q^{13}+\cdots\)
1764.4.k.s 1764.k 7.c $4$ $104.079$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 196.4.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+2\beta _{1}q^{5}+26\beta _{2}q^{11}-24\beta _{3}q^{13}+\cdots\)
1764.4.k.t 1764.k 7.c $4$ $104.079$ \(\Q(\sqrt{-3}, \sqrt{7})\) None 252.4.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{5}+(13\beta _{1}+13\beta _{3})q^{11}-30q^{13}+\cdots\)
1764.4.k.u 1764.k 7.c $4$ $104.079$ \(\Q(\sqrt{-3}, \sqrt{7})\) None 252.4.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{5}+(\beta _{1}+\beta _{3})q^{11}-26q^{13}+\cdots\)
1764.4.k.v 1764.k 7.c $4$ $104.079$ \(\Q(\sqrt{-3}, \sqrt{7})\) None 252.4.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{5}+(-\beta _{1}-\beta _{3})q^{11}+26q^{13}+\cdots\)
1764.4.k.w 1764.k 7.c $4$ $104.079$ \(\Q(\sqrt{-3}, \sqrt{7})\) None 252.4.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{5}+(-13\beta _{1}-13\beta _{3})q^{11}+30q^{13}+\cdots\)
1764.4.k.x 1764.k 7.c $4$ $104.079$ \(\Q(\sqrt{-3}, \sqrt{385})\) None 252.4.k.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{5}+(\beta _{2}+\beta _{3})q^{11}+54q^{13}+\cdots\)
1764.4.k.y 1764.k 7.c $4$ $104.079$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 1764.4.a.q \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+7\beta _{1}q^{5}-28\beta _{2}q^{11}-3\beta _{3}q^{13}+\cdots\)
1764.4.k.z 1764.k 7.c $4$ $104.079$ \(\Q(\sqrt{-3}, \sqrt{-19})\) None 84.4.i.b \(0\) \(0\) \(3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{1}+\beta _{3})q^{5}+(-1+5^{2}\beta _{1}-\beta _{2}+\cdots)q^{11}+\cdots\)
1764.4.k.ba 1764.k 7.c $4$ $104.079$ \(\Q(\sqrt{-3}, \sqrt{37})\) None 28.4.e.a \(0\) \(0\) \(14\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(7\beta _{1}+2\beta _{2})q^{5}+(2^{4}-2^{4}\beta _{1}+7\beta _{2}+\cdots)q^{11}+\cdots\)
1764.4.k.bb 1764.k 7.c $8$ $104.079$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 588.4.a.j \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{6}q^{5}+(-3\beta _{2}-\beta _{4})q^{11}+(3\beta _{4}+\cdots)q^{13}+\cdots\)
1764.4.k.bc 1764.k 7.c $8$ $104.079$ 8.0.\(\cdots\).42 None 1764.4.a.bb \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{5}q^{5}+(\beta _{2}+\beta _{3})q^{11}+\beta _{6}q^{13}+\cdots\)
1764.4.k.bd 1764.k 7.c $8$ $104.079$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 588.4.a.j \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{6}q^{5}+(-3\beta _{2}-\beta _{4})q^{11}+(-3\beta _{4}+\cdots)q^{13}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(1764, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1764, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 18}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(294, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(588, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(882, [\chi])\)\(^{\oplus 2}\)