gp: [N,k,chi] = [2100,4,Mod(1,2100)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2100.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2100, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 4, names="a")
Level :
N N N
= = =
2100 = 2 2 ⋅ 3 ⋅ 5 2 ⋅ 7 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 2 1 0 0 = 2 2 ⋅ 3 ⋅ 5 2 ⋅ 7
Weight :
k k k
= = =
4 4 4
Character orbit :
[ χ ] [\chi] [ χ ]
= = =
2100.a (trivial)
Newform invariants
sage: traces = [1,0,-3,0,0,0,7,0,9,0,4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
3 3 3
+ 1 +1 + 1
5 5 5
+ 1 +1 + 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 2100 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(2100)) S 4 n e w ( Γ 0 ( 2 1 0 0 ) ) :
T 11 − 4 T_{11} - 4 T 1 1 − 4
T11 - 4
T 13 + 54 T_{13} + 54 T 1 3 + 5 4
T13 + 54
T 17 − 14 T_{17} - 14 T 1 7 − 1 4
T17 - 14
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T + 3 T + 3 T + 3
T + 3
5 5 5
T T T
T
7 7 7
T − 7 T - 7 T − 7
T - 7
11 11 1 1
T − 4 T - 4 T − 4
T - 4
13 13 1 3
T + 54 T + 54 T + 5 4
T + 54
17 17 1 7
T − 14 T - 14 T − 1 4
T - 14
19 19 1 9
T − 92 T - 92 T − 9 2
T - 92
23 23 2 3
T − 152 T - 152 T − 1 5 2
T - 152
29 29 2 9
T + 106 T + 106 T + 1 0 6
T + 106
31 31 3 1
T + 144 T + 144 T + 1 4 4
T + 144
37 37 3 7
T + 158 T + 158 T + 1 5 8
T + 158
41 41 4 1
T + 390 T + 390 T + 3 9 0
T + 390
43 43 4 3
T − 508 T - 508 T − 5 0 8
T - 508
47 47 4 7
T − 528 T - 528 T − 5 2 8
T - 528
53 53 5 3
T + 606 T + 606 T + 6 0 6
T + 606
59 59 5 9
T + 364 T + 364 T + 3 6 4
T + 364
61 61 6 1
T − 678 T - 678 T − 6 7 8
T - 678
67 67 6 7
T + 844 T + 844 T + 8 4 4
T + 844
71 71 7 1
T + 8 T + 8 T + 8
T + 8
73 73 7 3
T − 422 T - 422 T − 4 2 2
T - 422
79 79 7 9
T − 384 T - 384 T − 3 8 4
T - 384
83 83 8 3
T − 548 T - 548 T − 5 4 8
T - 548
89 89 8 9
T − 1194 T - 1194 T − 1 1 9 4
T - 1194
97 97 9 7
T − 1502 T - 1502 T − 1 5 0 2
T - 1502
show more
show less