gp: [N,k,chi] = [1344,4,Mod(1,1344)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1344, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1344.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1,0,-3,0,-14,0,-7,0,9,0,-4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
3 3 3
+ 1 +1 + 1
7 7 7
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 1344 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(1344)) S 4 n e w ( Γ 0 ( 1 3 4 4 ) ) :
T 5 + 14 T_{5} + 14 T 5 + 1 4
T5 + 14
T 11 + 4 T_{11} + 4 T 1 1 + 4
T11 + 4
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T + 3 T + 3 T + 3
T + 3
5 5 5
T + 14 T + 14 T + 1 4
T + 14
7 7 7
T + 7 T + 7 T + 7
T + 7
11 11 1 1
T + 4 T + 4 T + 4
T + 4
13 13 1 3
T + 54 T + 54 T + 5 4
T + 54
17 17 1 7
T + 14 T + 14 T + 1 4
T + 14
19 19 1 9
T + 92 T + 92 T + 9 2
T + 92
23 23 2 3
T + 152 T + 152 T + 1 5 2
T + 152
29 29 2 9
T − 106 T - 106 T − 1 0 6
T - 106
31 31 3 1
T + 144 T + 144 T + 1 4 4
T + 144
37 37 3 7
T + 158 T + 158 T + 1 5 8
T + 158
41 41 4 1
T + 390 T + 390 T + 3 9 0
T + 390
43 43 4 3
T − 508 T - 508 T − 5 0 8
T - 508
47 47 4 7
T + 528 T + 528 T + 5 2 8
T + 528
53 53 5 3
T + 606 T + 606 T + 6 0 6
T + 606
59 59 5 9
T − 364 T - 364 T − 3 6 4
T - 364
61 61 6 1
T + 678 T + 678 T + 6 7 8
T + 678
67 67 6 7
T + 844 T + 844 T + 8 4 4
T + 844
71 71 7 1
T + 8 T + 8 T + 8
T + 8
73 73 7 3
T + 422 T + 422 T + 4 2 2
T + 422
79 79 7 9
T − 384 T - 384 T − 3 8 4
T - 384
83 83 8 3
T − 548 T - 548 T − 5 4 8
T - 548
89 89 8 9
T − 1194 T - 1194 T − 1 1 9 4
T - 1194
97 97 9 7
T + 1502 T + 1502 T + 1 5 0 2
T + 1502
show more
show less