Properties

Label 1344.4
Level 1344
Weight 4
Dimension 59396
Nonzero newspaces 32
Sturm bound 393216
Trace bound 25

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 32 \)
Sturm bound: \(393216\)
Trace bound: \(25\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1344))\).

Total New Old
Modular forms 149184 59836 89348
Cusp forms 145728 59396 86332
Eisenstein series 3456 440 3016

Trace form

\( 59396q - 24q^{3} - 64q^{4} - 32q^{6} - 64q^{7} - 40q^{9} + O(q^{10}) \) \( 59396q - 24q^{3} - 64q^{4} - 32q^{6} - 64q^{7} - 40q^{9} - 64q^{10} - 80q^{11} - 32q^{12} + 224q^{13} + 184q^{15} - 64q^{16} + 416q^{17} - 32q^{18} + 48q^{19} - 52q^{21} + 1728q^{22} + 1968q^{24} + 124q^{25} - 160q^{26} - 288q^{27} - 1600q^{28} - 1600q^{29} - 4672q^{30} - 1496q^{31} - 4960q^{32} - 1772q^{33} - 4064q^{34} - 456q^{35} - 1840q^{36} - 128q^{37} + 1760q^{38} + 1172q^{39} + 6496q^{40} + 3776q^{41} + 3120q^{42} + 1496q^{43} + 4000q^{44} - 1000q^{45} - 64q^{46} - 32q^{48} - 140q^{49} - 11424q^{50} + 6124q^{51} - 13312q^{52} - 896q^{54} + 2848q^{55} + 784q^{56} + 496q^{57} + 9440q^{58} - 13760q^{59} + 9760q^{60} - 64q^{61} + 11712q^{62} - 2556q^{63} + 24032q^{64} - 8096q^{65} + 11040q^{66} - 24144q^{67} + 8256q^{68} - 1736q^{69} + 3952q^{70} - 1792q^{71} - 32q^{72} + 4016q^{73} - 10528q^{74} + 13928q^{75} - 23872q^{76} + 3504q^{77} - 24320q^{78} + 34600q^{79} - 20064q^{80} - 2488q^{81} - 64q^{82} + 5360q^{83} - 4184q^{84} + 4544q^{85} + 2548q^{87} - 64q^{88} - 704q^{89} + 18688q^{90} + 5104q^{91} + 11392q^{93} - 64q^{94} + 7728q^{95} + 25808q^{96} + 5360q^{97} + 3776q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1344))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1344.4.a \(\chi_{1344}(1, \cdot)\) 1344.4.a.a 1 1
1344.4.a.b 1
1344.4.a.c 1
1344.4.a.d 1
1344.4.a.e 1
1344.4.a.f 1
1344.4.a.g 1
1344.4.a.h 1
1344.4.a.i 1
1344.4.a.j 1
1344.4.a.k 1
1344.4.a.l 1
1344.4.a.m 1
1344.4.a.n 1
1344.4.a.o 1
1344.4.a.p 1
1344.4.a.q 1
1344.4.a.r 1
1344.4.a.s 1
1344.4.a.t 1
1344.4.a.u 1
1344.4.a.v 1
1344.4.a.w 1
1344.4.a.x 1
1344.4.a.y 1
1344.4.a.z 1
1344.4.a.ba 1
1344.4.a.bb 1
1344.4.a.bc 2
1344.4.a.bd 2
1344.4.a.be 2
1344.4.a.bf 2
1344.4.a.bg 2
1344.4.a.bh 2
1344.4.a.bi 2
1344.4.a.bj 2
1344.4.a.bk 2
1344.4.a.bl 2
1344.4.a.bm 2
1344.4.a.bn 2
1344.4.a.bo 2
1344.4.a.bp 2
1344.4.a.bq 2
1344.4.a.br 2
1344.4.a.bs 3
1344.4.a.bt 3
1344.4.a.bu 3
1344.4.a.bv 3
1344.4.b \(\chi_{1344}(895, \cdot)\) 1344.4.b.a 2 1
1344.4.b.b 2
1344.4.b.c 2
1344.4.b.d 2
1344.4.b.e 8
1344.4.b.f 8
1344.4.b.g 12
1344.4.b.h 12
1344.4.b.i 24
1344.4.b.j 24
1344.4.c \(\chi_{1344}(673, \cdot)\) 1344.4.c.a 6 1
1344.4.c.b 6
1344.4.c.c 6
1344.4.c.d 6
1344.4.c.e 12
1344.4.c.f 12
1344.4.c.g 12
1344.4.c.h 12
1344.4.h \(\chi_{1344}(575, \cdot)\) n/a 144 1
1344.4.i \(\chi_{1344}(545, \cdot)\) n/a 192 1
1344.4.j \(\chi_{1344}(1247, \cdot)\) n/a 144 1
1344.4.k \(\chi_{1344}(1217, \cdot)\) n/a 188 1
1344.4.p \(\chi_{1344}(223, \cdot)\) 1344.4.p.a 16 1
1344.4.p.b 16
1344.4.p.c 32
1344.4.p.d 32
1344.4.q \(\chi_{1344}(193, \cdot)\) n/a 192 2
1344.4.s \(\chi_{1344}(239, \cdot)\) n/a 288 2
1344.4.u \(\chi_{1344}(559, \cdot)\) n/a 192 2
1344.4.w \(\chi_{1344}(337, \cdot)\) n/a 144 2
1344.4.y \(\chi_{1344}(209, \cdot)\) n/a 376 2
1344.4.bb \(\chi_{1344}(31, \cdot)\) n/a 192 2
1344.4.bc \(\chi_{1344}(257, \cdot)\) n/a 376 2
1344.4.bd \(\chi_{1344}(95, \cdot)\) n/a 384 2
1344.4.bi \(\chi_{1344}(353, \cdot)\) n/a 384 2
1344.4.bj \(\chi_{1344}(191, \cdot)\) n/a 376 2
1344.4.bk \(\chi_{1344}(289, \cdot)\) n/a 192 2
1344.4.bl \(\chi_{1344}(703, \cdot)\) n/a 192 2
1344.4.bo \(\chi_{1344}(41, \cdot)\) None 0 4
1344.4.bq \(\chi_{1344}(169, \cdot)\) None 0 4
1344.4.bs \(\chi_{1344}(71, \cdot)\) None 0 4
1344.4.bu \(\chi_{1344}(55, \cdot)\) None 0 4
1344.4.bw \(\chi_{1344}(17, \cdot)\) n/a 752 4
1344.4.by \(\chi_{1344}(529, \cdot)\) n/a 384 4
1344.4.ca \(\chi_{1344}(271, \cdot)\) n/a 384 4
1344.4.cc \(\chi_{1344}(431, \cdot)\) n/a 752 4
1344.4.cg \(\chi_{1344}(85, \cdot)\) n/a 2304 8
1344.4.ch \(\chi_{1344}(139, \cdot)\) n/a 3072 8
1344.4.ci \(\chi_{1344}(155, \cdot)\) n/a 4608 8
1344.4.cj \(\chi_{1344}(125, \cdot)\) n/a 6112 8
1344.4.cn \(\chi_{1344}(103, \cdot)\) None 0 8
1344.4.cp \(\chi_{1344}(23, \cdot)\) None 0 8
1344.4.cr \(\chi_{1344}(25, \cdot)\) None 0 8
1344.4.ct \(\chi_{1344}(89, \cdot)\) None 0 8
1344.4.cw \(\chi_{1344}(5, \cdot)\) n/a 12224 16
1344.4.cx \(\chi_{1344}(11, \cdot)\) n/a 12224 16
1344.4.cy \(\chi_{1344}(19, \cdot)\) n/a 6144 16
1344.4.cz \(\chi_{1344}(37, \cdot)\) n/a 6144 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1344))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1344)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 14}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(112))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(168))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(192))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(224))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(336))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(448))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(672))\)\(^{\oplus 2}\)