Properties

Label 2-2100-1.1-c3-0-10
Degree $2$
Conductor $2100$
Sign $1$
Analytic cond. $123.904$
Root an. cond. $11.1312$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 7·7-s + 9·9-s + 4·11-s − 54·13-s + 14·17-s + 92·19-s − 21·21-s + 152·23-s − 27·27-s − 106·29-s − 144·31-s − 12·33-s − 158·37-s + 162·39-s − 390·41-s + 508·43-s + 528·47-s + 49·49-s − 42·51-s − 606·53-s − 276·57-s − 364·59-s + 678·61-s + 63·63-s − 844·67-s − 456·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s + 0.109·11-s − 1.15·13-s + 0.199·17-s + 1.11·19-s − 0.218·21-s + 1.37·23-s − 0.192·27-s − 0.678·29-s − 0.834·31-s − 0.0633·33-s − 0.702·37-s + 0.665·39-s − 1.48·41-s + 1.80·43-s + 1.63·47-s + 1/7·49-s − 0.115·51-s − 1.57·53-s − 0.641·57-s − 0.803·59-s + 1.42·61-s + 0.125·63-s − 1.53·67-s − 0.795·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2100\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(123.904\)
Root analytic conductor: \(11.1312\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2100,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.647786247\)
\(L(\frac12)\) \(\approx\) \(1.647786247\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
5 \( 1 \)
7 \( 1 - p T \)
good11 \( 1 - 4 T + p^{3} T^{2} \)
13 \( 1 + 54 T + p^{3} T^{2} \)
17 \( 1 - 14 T + p^{3} T^{2} \)
19 \( 1 - 92 T + p^{3} T^{2} \)
23 \( 1 - 152 T + p^{3} T^{2} \)
29 \( 1 + 106 T + p^{3} T^{2} \)
31 \( 1 + 144 T + p^{3} T^{2} \)
37 \( 1 + 158 T + p^{3} T^{2} \)
41 \( 1 + 390 T + p^{3} T^{2} \)
43 \( 1 - 508 T + p^{3} T^{2} \)
47 \( 1 - 528 T + p^{3} T^{2} \)
53 \( 1 + 606 T + p^{3} T^{2} \)
59 \( 1 + 364 T + p^{3} T^{2} \)
61 \( 1 - 678 T + p^{3} T^{2} \)
67 \( 1 + 844 T + p^{3} T^{2} \)
71 \( 1 + 8 T + p^{3} T^{2} \)
73 \( 1 - 422 T + p^{3} T^{2} \)
79 \( 1 - 384 T + p^{3} T^{2} \)
83 \( 1 - 548 T + p^{3} T^{2} \)
89 \( 1 - 1194 T + p^{3} T^{2} \)
97 \( 1 - 1502 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.973717165393027095650813641124, −7.61829011758028150733323460229, −7.37926271137014986671725390496, −6.41013498270428555975300903561, −5.29612359907441728252454139324, −5.04884284403760732411064517662, −3.89165353806744324855294226971, −2.85917309412337005446459649264, −1.69854703260050036206031523288, −0.61429701986968373460264030841, 0.61429701986968373460264030841, 1.69854703260050036206031523288, 2.85917309412337005446459649264, 3.89165353806744324855294226971, 5.04884284403760732411064517662, 5.29612359907441728252454139324, 6.41013498270428555975300903561, 7.37926271137014986671725390496, 7.61829011758028150733323460229, 8.973717165393027095650813641124

Graph of the $Z$-function along the critical line