Properties

Label 2100.4.k.g.1849.2
Level $2100$
Weight $4$
Character 2100.1849
Analytic conductor $123.904$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,4,Mod(1849,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.1849");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2100.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(123.904011012\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1849.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2100.1849
Dual form 2100.4.k.g.1849.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000i q^{3} +7.00000i q^{7} -9.00000 q^{9} +O(q^{10})\) \(q+3.00000i q^{3} +7.00000i q^{7} -9.00000 q^{9} +4.00000 q^{11} +54.0000i q^{13} +14.0000i q^{17} -92.0000 q^{19} -21.0000 q^{21} -152.000i q^{23} -27.0000i q^{27} +106.000 q^{29} -144.000 q^{31} +12.0000i q^{33} -158.000i q^{37} -162.000 q^{39} -390.000 q^{41} -508.000i q^{43} +528.000i q^{47} -49.0000 q^{49} -42.0000 q^{51} +606.000i q^{53} -276.000i q^{57} +364.000 q^{59} +678.000 q^{61} -63.0000i q^{63} -844.000i q^{67} +456.000 q^{69} -8.00000 q^{71} -422.000i q^{73} +28.0000i q^{77} -384.000 q^{79} +81.0000 q^{81} -548.000i q^{83} +318.000i q^{87} -1194.00 q^{89} -378.000 q^{91} -432.000i q^{93} +1502.00i q^{97} -36.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 18 q^{9} + 8 q^{11} - 184 q^{19} - 42 q^{21} + 212 q^{29} - 288 q^{31} - 324 q^{39} - 780 q^{41} - 98 q^{49} - 84 q^{51} + 728 q^{59} + 1356 q^{61} + 912 q^{69} - 16 q^{71} - 768 q^{79} + 162 q^{81} - 2388 q^{89} - 756 q^{91} - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 7.00000i 0.377964i
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 4.00000 0.109640 0.0548202 0.998496i \(-0.482541\pi\)
0.0548202 + 0.998496i \(0.482541\pi\)
\(12\) 0 0
\(13\) 54.0000i 1.15207i 0.817425 + 0.576035i \(0.195401\pi\)
−0.817425 + 0.576035i \(0.804599\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 14.0000i 0.199735i 0.995001 + 0.0998676i \(0.0318419\pi\)
−0.995001 + 0.0998676i \(0.968158\pi\)
\(18\) 0 0
\(19\) −92.0000 −1.11086 −0.555428 0.831565i \(-0.687445\pi\)
−0.555428 + 0.831565i \(0.687445\pi\)
\(20\) 0 0
\(21\) −21.0000 −0.218218
\(22\) 0 0
\(23\) − 152.000i − 1.37801i −0.724757 0.689004i \(-0.758048\pi\)
0.724757 0.689004i \(-0.241952\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 27.0000i − 0.192450i
\(28\) 0 0
\(29\) 106.000 0.678748 0.339374 0.940651i \(-0.389785\pi\)
0.339374 + 0.940651i \(0.389785\pi\)
\(30\) 0 0
\(31\) −144.000 −0.834296 −0.417148 0.908839i \(-0.636970\pi\)
−0.417148 + 0.908839i \(0.636970\pi\)
\(32\) 0 0
\(33\) 12.0000i 0.0633010i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 158.000i − 0.702028i −0.936370 0.351014i \(-0.885837\pi\)
0.936370 0.351014i \(-0.114163\pi\)
\(38\) 0 0
\(39\) −162.000 −0.665148
\(40\) 0 0
\(41\) −390.000 −1.48556 −0.742778 0.669538i \(-0.766492\pi\)
−0.742778 + 0.669538i \(0.766492\pi\)
\(42\) 0 0
\(43\) − 508.000i − 1.80161i −0.434223 0.900806i \(-0.642977\pi\)
0.434223 0.900806i \(-0.357023\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 528.000i 1.63865i 0.573327 + 0.819327i \(0.305653\pi\)
−0.573327 + 0.819327i \(0.694347\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) −42.0000 −0.115317
\(52\) 0 0
\(53\) 606.000i 1.57058i 0.619131 + 0.785288i \(0.287485\pi\)
−0.619131 + 0.785288i \(0.712515\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 276.000i − 0.641353i
\(58\) 0 0
\(59\) 364.000 0.803199 0.401600 0.915815i \(-0.368454\pi\)
0.401600 + 0.915815i \(0.368454\pi\)
\(60\) 0 0
\(61\) 678.000 1.42310 0.711549 0.702636i \(-0.247994\pi\)
0.711549 + 0.702636i \(0.247994\pi\)
\(62\) 0 0
\(63\) − 63.0000i − 0.125988i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 844.000i − 1.53897i −0.638665 0.769485i \(-0.720513\pi\)
0.638665 0.769485i \(-0.279487\pi\)
\(68\) 0 0
\(69\) 456.000 0.795593
\(70\) 0 0
\(71\) −8.00000 −0.0133722 −0.00668609 0.999978i \(-0.502128\pi\)
−0.00668609 + 0.999978i \(0.502128\pi\)
\(72\) 0 0
\(73\) − 422.000i − 0.676594i −0.941039 0.338297i \(-0.890149\pi\)
0.941039 0.338297i \(-0.109851\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 28.0000i 0.0414402i
\(78\) 0 0
\(79\) −384.000 −0.546878 −0.273439 0.961889i \(-0.588161\pi\)
−0.273439 + 0.961889i \(0.588161\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) − 548.000i − 0.724709i −0.932040 0.362354i \(-0.881973\pi\)
0.932040 0.362354i \(-0.118027\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 318.000i 0.391876i
\(88\) 0 0
\(89\) −1194.00 −1.42206 −0.711032 0.703159i \(-0.751772\pi\)
−0.711032 + 0.703159i \(0.751772\pi\)
\(90\) 0 0
\(91\) −378.000 −0.435441
\(92\) 0 0
\(93\) − 432.000i − 0.481681i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1502.00i 1.57222i 0.618089 + 0.786108i \(0.287907\pi\)
−0.618089 + 0.786108i \(0.712093\pi\)
\(98\) 0 0
\(99\) −36.0000 −0.0365468
\(100\) 0 0
\(101\) 398.000 0.392104 0.196052 0.980594i \(-0.437188\pi\)
0.196052 + 0.980594i \(0.437188\pi\)
\(102\) 0 0
\(103\) 1160.00i 1.10969i 0.831953 + 0.554846i \(0.187223\pi\)
−0.831953 + 0.554846i \(0.812777\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 324.000i − 0.292731i −0.989231 0.146366i \(-0.953242\pi\)
0.989231 0.146366i \(-0.0467576\pi\)
\(108\) 0 0
\(109\) 938.000 0.824258 0.412129 0.911126i \(-0.364785\pi\)
0.412129 + 0.911126i \(0.364785\pi\)
\(110\) 0 0
\(111\) 474.000 0.405316
\(112\) 0 0
\(113\) − 622.000i − 0.517813i −0.965902 0.258906i \(-0.916638\pi\)
0.965902 0.258906i \(-0.0833621\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 486.000i − 0.384023i
\(118\) 0 0
\(119\) −98.0000 −0.0754928
\(120\) 0 0
\(121\) −1315.00 −0.987979
\(122\) 0 0
\(123\) − 1170.00i − 0.857686i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 1200.00i − 0.838447i −0.907883 0.419224i \(-0.862302\pi\)
0.907883 0.419224i \(-0.137698\pi\)
\(128\) 0 0
\(129\) 1524.00 1.04016
\(130\) 0 0
\(131\) −1396.00 −0.931062 −0.465531 0.885032i \(-0.654137\pi\)
−0.465531 + 0.885032i \(0.654137\pi\)
\(132\) 0 0
\(133\) − 644.000i − 0.419864i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 2810.00i − 1.75237i −0.481976 0.876184i \(-0.660081\pi\)
0.481976 0.876184i \(-0.339919\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.00244083 −0.00122042 0.999999i \(-0.500388\pi\)
−0.00122042 + 0.999999i \(0.500388\pi\)
\(140\) 0 0
\(141\) −1584.00 −0.946077
\(142\) 0 0
\(143\) 216.000i 0.126313i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 147.000i − 0.0824786i
\(148\) 0 0
\(149\) −1374.00 −0.755453 −0.377726 0.925917i \(-0.623294\pi\)
−0.377726 + 0.925917i \(0.623294\pi\)
\(150\) 0 0
\(151\) 2104.00 1.13391 0.566957 0.823747i \(-0.308120\pi\)
0.566957 + 0.823747i \(0.308120\pi\)
\(152\) 0 0
\(153\) − 126.000i − 0.0665784i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 3206.00i − 1.62972i −0.579655 0.814862i \(-0.696813\pi\)
0.579655 0.814862i \(-0.303187\pi\)
\(158\) 0 0
\(159\) −1818.00 −0.906772
\(160\) 0 0
\(161\) 1064.00 0.520838
\(162\) 0 0
\(163\) 332.000i 0.159535i 0.996813 + 0.0797676i \(0.0254178\pi\)
−0.996813 + 0.0797676i \(0.974582\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 1496.00i − 0.693197i −0.938014 0.346599i \(-0.887337\pi\)
0.938014 0.346599i \(-0.112663\pi\)
\(168\) 0 0
\(169\) −719.000 −0.327264
\(170\) 0 0
\(171\) 828.000 0.370285
\(172\) 0 0
\(173\) − 3322.00i − 1.45992i −0.683487 0.729962i \(-0.739538\pi\)
0.683487 0.729962i \(-0.260462\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1092.00i 0.463727i
\(178\) 0 0
\(179\) 900.000 0.375805 0.187903 0.982188i \(-0.439831\pi\)
0.187903 + 0.982188i \(0.439831\pi\)
\(180\) 0 0
\(181\) 1902.00 0.781075 0.390537 0.920587i \(-0.372289\pi\)
0.390537 + 0.920587i \(0.372289\pi\)
\(182\) 0 0
\(183\) 2034.00i 0.821626i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 56.0000i 0.0218991i
\(188\) 0 0
\(189\) 189.000 0.0727393
\(190\) 0 0
\(191\) 4128.00 1.56383 0.781915 0.623385i \(-0.214243\pi\)
0.781915 + 0.623385i \(0.214243\pi\)
\(192\) 0 0
\(193\) − 1342.00i − 0.500514i −0.968179 0.250257i \(-0.919485\pi\)
0.968179 0.250257i \(-0.0805152\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3506.00i 1.26798i 0.773341 + 0.633990i \(0.218584\pi\)
−0.773341 + 0.633990i \(0.781416\pi\)
\(198\) 0 0
\(199\) −680.000 −0.242231 −0.121115 0.992638i \(-0.538647\pi\)
−0.121115 + 0.992638i \(0.538647\pi\)
\(200\) 0 0
\(201\) 2532.00 0.888525
\(202\) 0 0
\(203\) 742.000i 0.256543i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1368.00i 0.459336i
\(208\) 0 0
\(209\) −368.000 −0.121795
\(210\) 0 0
\(211\) 5372.00 1.75272 0.876360 0.481657i \(-0.159965\pi\)
0.876360 + 0.481657i \(0.159965\pi\)
\(212\) 0 0
\(213\) − 24.0000i − 0.00772044i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 1008.00i − 0.315334i
\(218\) 0 0
\(219\) 1266.00 0.390632
\(220\) 0 0
\(221\) −756.000 −0.230109
\(222\) 0 0
\(223\) − 1072.00i − 0.321912i −0.986962 0.160956i \(-0.948542\pi\)
0.986962 0.160956i \(-0.0514578\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2868.00i 0.838572i 0.907854 + 0.419286i \(0.137720\pi\)
−0.907854 + 0.419286i \(0.862280\pi\)
\(228\) 0 0
\(229\) −4798.00 −1.38454 −0.692272 0.721636i \(-0.743390\pi\)
−0.692272 + 0.721636i \(0.743390\pi\)
\(230\) 0 0
\(231\) −84.0000 −0.0239255
\(232\) 0 0
\(233\) − 5126.00i − 1.44127i −0.693316 0.720634i \(-0.743851\pi\)
0.693316 0.720634i \(-0.256149\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 1152.00i − 0.315740i
\(238\) 0 0
\(239\) 528.000 0.142902 0.0714508 0.997444i \(-0.477237\pi\)
0.0714508 + 0.997444i \(0.477237\pi\)
\(240\) 0 0
\(241\) −814.000 −0.217570 −0.108785 0.994065i \(-0.534696\pi\)
−0.108785 + 0.994065i \(0.534696\pi\)
\(242\) 0 0
\(243\) 243.000i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 4968.00i − 1.27978i
\(248\) 0 0
\(249\) 1644.00 0.418411
\(250\) 0 0
\(251\) −1932.00 −0.485844 −0.242922 0.970046i \(-0.578106\pi\)
−0.242922 + 0.970046i \(0.578106\pi\)
\(252\) 0 0
\(253\) − 608.000i − 0.151086i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3294.00i 0.799510i 0.916622 + 0.399755i \(0.130905\pi\)
−0.916622 + 0.399755i \(0.869095\pi\)
\(258\) 0 0
\(259\) 1106.00 0.265342
\(260\) 0 0
\(261\) −954.000 −0.226249
\(262\) 0 0
\(263\) − 7080.00i − 1.65997i −0.557787 0.829984i \(-0.688350\pi\)
0.557787 0.829984i \(-0.311650\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 3582.00i − 0.821029i
\(268\) 0 0
\(269\) −7814.00 −1.77111 −0.885554 0.464537i \(-0.846221\pi\)
−0.885554 + 0.464537i \(0.846221\pi\)
\(270\) 0 0
\(271\) 3168.00 0.710119 0.355060 0.934844i \(-0.384461\pi\)
0.355060 + 0.934844i \(0.384461\pi\)
\(272\) 0 0
\(273\) − 1134.00i − 0.251402i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 7858.00i 1.70448i 0.523150 + 0.852241i \(0.324757\pi\)
−0.523150 + 0.852241i \(0.675243\pi\)
\(278\) 0 0
\(279\) 1296.00 0.278099
\(280\) 0 0
\(281\) 6730.00 1.42875 0.714374 0.699764i \(-0.246712\pi\)
0.714374 + 0.699764i \(0.246712\pi\)
\(282\) 0 0
\(283\) − 3020.00i − 0.634348i −0.948367 0.317174i \(-0.897266\pi\)
0.948367 0.317174i \(-0.102734\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 2730.00i − 0.561487i
\(288\) 0 0
\(289\) 4717.00 0.960106
\(290\) 0 0
\(291\) −4506.00 −0.907720
\(292\) 0 0
\(293\) − 6834.00i − 1.36262i −0.731997 0.681308i \(-0.761411\pi\)
0.731997 0.681308i \(-0.238589\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 108.000i − 0.0211003i
\(298\) 0 0
\(299\) 8208.00 1.58756
\(300\) 0 0
\(301\) 3556.00 0.680945
\(302\) 0 0
\(303\) 1194.00i 0.226381i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 2332.00i − 0.433532i −0.976224 0.216766i \(-0.930449\pi\)
0.976224 0.216766i \(-0.0695508\pi\)
\(308\) 0 0
\(309\) −3480.00 −0.640681
\(310\) 0 0
\(311\) 8840.00 1.61180 0.805901 0.592050i \(-0.201681\pi\)
0.805901 + 0.592050i \(0.201681\pi\)
\(312\) 0 0
\(313\) − 1046.00i − 0.188893i −0.995530 0.0944464i \(-0.969892\pi\)
0.995530 0.0944464i \(-0.0301081\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 7542.00i − 1.33628i −0.744035 0.668140i \(-0.767091\pi\)
0.744035 0.668140i \(-0.232909\pi\)
\(318\) 0 0
\(319\) 424.000 0.0744183
\(320\) 0 0
\(321\) 972.000 0.169009
\(322\) 0 0
\(323\) − 1288.00i − 0.221877i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 2814.00i 0.475885i
\(328\) 0 0
\(329\) −3696.00 −0.619353
\(330\) 0 0
\(331\) 2756.00 0.457654 0.228827 0.973467i \(-0.426511\pi\)
0.228827 + 0.973467i \(0.426511\pi\)
\(332\) 0 0
\(333\) 1422.00i 0.234009i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 3954.00i − 0.639134i −0.947564 0.319567i \(-0.896463\pi\)
0.947564 0.319567i \(-0.103537\pi\)
\(338\) 0 0
\(339\) 1866.00 0.298959
\(340\) 0 0
\(341\) −576.000 −0.0914726
\(342\) 0 0
\(343\) − 343.000i − 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 6900.00i − 1.06747i −0.845652 0.533734i \(-0.820788\pi\)
0.845652 0.533734i \(-0.179212\pi\)
\(348\) 0 0
\(349\) 2426.00 0.372094 0.186047 0.982541i \(-0.440432\pi\)
0.186047 + 0.982541i \(0.440432\pi\)
\(350\) 0 0
\(351\) 1458.00 0.221716
\(352\) 0 0
\(353\) − 1470.00i − 0.221644i −0.993840 0.110822i \(-0.964652\pi\)
0.993840 0.110822i \(-0.0353483\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 294.000i − 0.0435858i
\(358\) 0 0
\(359\) −6872.00 −1.01028 −0.505140 0.863038i \(-0.668559\pi\)
−0.505140 + 0.863038i \(0.668559\pi\)
\(360\) 0 0
\(361\) 1605.00 0.233999
\(362\) 0 0
\(363\) − 3945.00i − 0.570410i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 7072.00i 1.00587i 0.864323 + 0.502937i \(0.167747\pi\)
−0.864323 + 0.502937i \(0.832253\pi\)
\(368\) 0 0
\(369\) 3510.00 0.495185
\(370\) 0 0
\(371\) −4242.00 −0.593622
\(372\) 0 0
\(373\) − 818.000i − 0.113551i −0.998387 0.0567754i \(-0.981918\pi\)
0.998387 0.0567754i \(-0.0180819\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5724.00i 0.781966i
\(378\) 0 0
\(379\) 5132.00 0.695549 0.347775 0.937578i \(-0.386937\pi\)
0.347775 + 0.937578i \(0.386937\pi\)
\(380\) 0 0
\(381\) 3600.00 0.484078
\(382\) 0 0
\(383\) − 8576.00i − 1.14416i −0.820198 0.572080i \(-0.806137\pi\)
0.820198 0.572080i \(-0.193863\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4572.00i 0.600537i
\(388\) 0 0
\(389\) 3730.00 0.486166 0.243083 0.970006i \(-0.421841\pi\)
0.243083 + 0.970006i \(0.421841\pi\)
\(390\) 0 0
\(391\) 2128.00 0.275237
\(392\) 0 0
\(393\) − 4188.00i − 0.537549i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 6678.00i − 0.844230i −0.906542 0.422115i \(-0.861288\pi\)
0.906542 0.422115i \(-0.138712\pi\)
\(398\) 0 0
\(399\) 1932.00 0.242408
\(400\) 0 0
\(401\) −3054.00 −0.380323 −0.190161 0.981753i \(-0.560901\pi\)
−0.190161 + 0.981753i \(0.560901\pi\)
\(402\) 0 0
\(403\) − 7776.00i − 0.961167i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 632.000i − 0.0769707i
\(408\) 0 0
\(409\) −266.000 −0.0321586 −0.0160793 0.999871i \(-0.505118\pi\)
−0.0160793 + 0.999871i \(0.505118\pi\)
\(410\) 0 0
\(411\) 8430.00 1.01173
\(412\) 0 0
\(413\) 2548.00i 0.303581i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 12.0000i − 0.00140921i
\(418\) 0 0
\(419\) −8844.00 −1.03116 −0.515582 0.856840i \(-0.672424\pi\)
−0.515582 + 0.856840i \(0.672424\pi\)
\(420\) 0 0
\(421\) −4482.00 −0.518858 −0.259429 0.965762i \(-0.583534\pi\)
−0.259429 + 0.965762i \(0.583534\pi\)
\(422\) 0 0
\(423\) − 4752.00i − 0.546218i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 4746.00i 0.537881i
\(428\) 0 0
\(429\) −648.000 −0.0729271
\(430\) 0 0
\(431\) 9936.00 1.11044 0.555221 0.831703i \(-0.312634\pi\)
0.555221 + 0.831703i \(0.312634\pi\)
\(432\) 0 0
\(433\) − 11758.0i − 1.30497i −0.757800 0.652487i \(-0.773726\pi\)
0.757800 0.652487i \(-0.226274\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 13984.0i 1.53077i
\(438\) 0 0
\(439\) 4104.00 0.446180 0.223090 0.974798i \(-0.428386\pi\)
0.223090 + 0.974798i \(0.428386\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) 9748.00i 1.04547i 0.852496 + 0.522733i \(0.175088\pi\)
−0.852496 + 0.522733i \(0.824912\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 4122.00i − 0.436161i
\(448\) 0 0
\(449\) 478.000 0.0502410 0.0251205 0.999684i \(-0.492003\pi\)
0.0251205 + 0.999684i \(0.492003\pi\)
\(450\) 0 0
\(451\) −1560.00 −0.162877
\(452\) 0 0
\(453\) 6312.00i 0.654666i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11174.0i 1.14376i 0.820338 + 0.571879i \(0.193785\pi\)
−0.820338 + 0.571879i \(0.806215\pi\)
\(458\) 0 0
\(459\) 378.000 0.0384391
\(460\) 0 0
\(461\) −11674.0 −1.17942 −0.589710 0.807615i \(-0.700758\pi\)
−0.589710 + 0.807615i \(0.700758\pi\)
\(462\) 0 0
\(463\) 10528.0i 1.05676i 0.849009 + 0.528378i \(0.177199\pi\)
−0.849009 + 0.528378i \(0.822801\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 16604.0i − 1.64527i −0.568569 0.822635i \(-0.692503\pi\)
0.568569 0.822635i \(-0.307497\pi\)
\(468\) 0 0
\(469\) 5908.00 0.581676
\(470\) 0 0
\(471\) 9618.00 0.940922
\(472\) 0 0
\(473\) − 2032.00i − 0.197530i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 5454.00i − 0.523525i
\(478\) 0 0
\(479\) 8576.00 0.818053 0.409027 0.912522i \(-0.365868\pi\)
0.409027 + 0.912522i \(0.365868\pi\)
\(480\) 0 0
\(481\) 8532.00 0.808785
\(482\) 0 0
\(483\) 3192.00i 0.300706i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 9704.00i − 0.902937i −0.892287 0.451468i \(-0.850900\pi\)
0.892287 0.451468i \(-0.149100\pi\)
\(488\) 0 0
\(489\) −996.000 −0.0921077
\(490\) 0 0
\(491\) −4092.00 −0.376109 −0.188054 0.982159i \(-0.560218\pi\)
−0.188054 + 0.982159i \(0.560218\pi\)
\(492\) 0 0
\(493\) 1484.00i 0.135570i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 56.0000i − 0.00505421i
\(498\) 0 0
\(499\) −17884.0 −1.60440 −0.802202 0.597052i \(-0.796338\pi\)
−0.802202 + 0.597052i \(0.796338\pi\)
\(500\) 0 0
\(501\) 4488.00 0.400218
\(502\) 0 0
\(503\) − 7704.00i − 0.682911i −0.939898 0.341456i \(-0.889080\pi\)
0.939898 0.341456i \(-0.110920\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 2157.00i − 0.188946i
\(508\) 0 0
\(509\) −14358.0 −1.25031 −0.625154 0.780501i \(-0.714964\pi\)
−0.625154 + 0.780501i \(0.714964\pi\)
\(510\) 0 0
\(511\) 2954.00 0.255729
\(512\) 0 0
\(513\) 2484.00i 0.213784i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 2112.00i 0.179663i
\(518\) 0 0
\(519\) 9966.00 0.842888
\(520\) 0 0
\(521\) 5082.00 0.427344 0.213672 0.976905i \(-0.431458\pi\)
0.213672 + 0.976905i \(0.431458\pi\)
\(522\) 0 0
\(523\) − 1756.00i − 0.146816i −0.997302 0.0734078i \(-0.976613\pi\)
0.997302 0.0734078i \(-0.0233875\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 2016.00i − 0.166638i
\(528\) 0 0
\(529\) −10937.0 −0.898907
\(530\) 0 0
\(531\) −3276.00 −0.267733
\(532\) 0 0
\(533\) − 21060.0i − 1.71146i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 2700.00i 0.216971i
\(538\) 0 0
\(539\) −196.000 −0.0156629
\(540\) 0 0
\(541\) 16230.0 1.28980 0.644900 0.764267i \(-0.276899\pi\)
0.644900 + 0.764267i \(0.276899\pi\)
\(542\) 0 0
\(543\) 5706.00i 0.450954i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 17676.0i − 1.38167i −0.723014 0.690833i \(-0.757244\pi\)
0.723014 0.690833i \(-0.242756\pi\)
\(548\) 0 0
\(549\) −6102.00 −0.474366
\(550\) 0 0
\(551\) −9752.00 −0.753991
\(552\) 0 0
\(553\) − 2688.00i − 0.206701i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12250.0i 0.931866i 0.884820 + 0.465933i \(0.154281\pi\)
−0.884820 + 0.465933i \(0.845719\pi\)
\(558\) 0 0
\(559\) 27432.0 2.07558
\(560\) 0 0
\(561\) −168.000 −0.0126434
\(562\) 0 0
\(563\) − 10052.0i − 0.752471i −0.926524 0.376236i \(-0.877218\pi\)
0.926524 0.376236i \(-0.122782\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 567.000i 0.0419961i
\(568\) 0 0
\(569\) −25674.0 −1.89158 −0.945791 0.324776i \(-0.894711\pi\)
−0.945791 + 0.324776i \(0.894711\pi\)
\(570\) 0 0
\(571\) 3732.00 0.273519 0.136759 0.990604i \(-0.456331\pi\)
0.136759 + 0.990604i \(0.456331\pi\)
\(572\) 0 0
\(573\) 12384.0i 0.902878i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1214.00i 0.0875901i 0.999041 + 0.0437950i \(0.0139449\pi\)
−0.999041 + 0.0437950i \(0.986055\pi\)
\(578\) 0 0
\(579\) 4026.00 0.288972
\(580\) 0 0
\(581\) 3836.00 0.273914
\(582\) 0 0
\(583\) 2424.00i 0.172199i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 7108.00i − 0.499793i −0.968273 0.249897i \(-0.919603\pi\)
0.968273 0.249897i \(-0.0803966\pi\)
\(588\) 0 0
\(589\) 13248.0 0.926782
\(590\) 0 0
\(591\) −10518.0 −0.732069
\(592\) 0 0
\(593\) 6162.00i 0.426717i 0.976974 + 0.213358i \(0.0684402\pi\)
−0.976974 + 0.213358i \(0.931560\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 2040.00i − 0.139852i
\(598\) 0 0
\(599\) −2472.00 −0.168620 −0.0843098 0.996440i \(-0.526869\pi\)
−0.0843098 + 0.996440i \(0.526869\pi\)
\(600\) 0 0
\(601\) −13750.0 −0.933235 −0.466617 0.884459i \(-0.654528\pi\)
−0.466617 + 0.884459i \(0.654528\pi\)
\(602\) 0 0
\(603\) 7596.00i 0.512990i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 11376.0i 0.760688i 0.924845 + 0.380344i \(0.124194\pi\)
−0.924845 + 0.380344i \(0.875806\pi\)
\(608\) 0 0
\(609\) −2226.00 −0.148115
\(610\) 0 0
\(611\) −28512.0 −1.88784
\(612\) 0 0
\(613\) 20382.0i 1.34294i 0.741032 + 0.671469i \(0.234336\pi\)
−0.741032 + 0.671469i \(0.765664\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 21178.0i − 1.38184i −0.722932 0.690919i \(-0.757206\pi\)
0.722932 0.690919i \(-0.242794\pi\)
\(618\) 0 0
\(619\) 4700.00 0.305184 0.152592 0.988289i \(-0.451238\pi\)
0.152592 + 0.988289i \(0.451238\pi\)
\(620\) 0 0
\(621\) −4104.00 −0.265198
\(622\) 0 0
\(623\) − 8358.00i − 0.537490i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 1104.00i − 0.0703182i
\(628\) 0 0
\(629\) 2212.00 0.140220
\(630\) 0 0
\(631\) −21736.0 −1.37131 −0.685655 0.727927i \(-0.740484\pi\)
−0.685655 + 0.727927i \(0.740484\pi\)
\(632\) 0 0
\(633\) 16116.0i 1.01193i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 2646.00i − 0.164581i
\(638\) 0 0
\(639\) 72.0000 0.00445740
\(640\) 0 0
\(641\) −13022.0 −0.802399 −0.401200 0.915991i \(-0.631407\pi\)
−0.401200 + 0.915991i \(0.631407\pi\)
\(642\) 0 0
\(643\) 3308.00i 0.202885i 0.994841 + 0.101442i \(0.0323457\pi\)
−0.994841 + 0.101442i \(0.967654\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 13800.0i 0.838538i 0.907862 + 0.419269i \(0.137714\pi\)
−0.907862 + 0.419269i \(0.862286\pi\)
\(648\) 0 0
\(649\) 1456.00 0.0880632
\(650\) 0 0
\(651\) 3024.00 0.182058
\(652\) 0 0
\(653\) − 2682.00i − 0.160727i −0.996766 0.0803635i \(-0.974392\pi\)
0.996766 0.0803635i \(-0.0256081\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 3798.00i 0.225531i
\(658\) 0 0
\(659\) −23836.0 −1.40898 −0.704491 0.709713i \(-0.748825\pi\)
−0.704491 + 0.709713i \(0.748825\pi\)
\(660\) 0 0
\(661\) −11282.0 −0.663871 −0.331936 0.943302i \(-0.607702\pi\)
−0.331936 + 0.943302i \(0.607702\pi\)
\(662\) 0 0
\(663\) − 2268.00i − 0.132853i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 16112.0i − 0.935321i
\(668\) 0 0
\(669\) 3216.00 0.185856
\(670\) 0 0
\(671\) 2712.00 0.156029
\(672\) 0 0
\(673\) − 13726.0i − 0.786179i −0.919500 0.393089i \(-0.871406\pi\)
0.919500 0.393089i \(-0.128594\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 4974.00i − 0.282373i −0.989983 0.141186i \(-0.954908\pi\)
0.989983 0.141186i \(-0.0450917\pi\)
\(678\) 0 0
\(679\) −10514.0 −0.594242
\(680\) 0 0
\(681\) −8604.00 −0.484150
\(682\) 0 0
\(683\) − 8988.00i − 0.503538i −0.967787 0.251769i \(-0.918988\pi\)
0.967787 0.251769i \(-0.0810123\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 14394.0i − 0.799367i
\(688\) 0 0
\(689\) −32724.0 −1.80941
\(690\) 0 0
\(691\) 10172.0 0.560002 0.280001 0.960000i \(-0.409665\pi\)
0.280001 + 0.960000i \(0.409665\pi\)
\(692\) 0 0
\(693\) − 252.000i − 0.0138134i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 5460.00i − 0.296718i
\(698\) 0 0
\(699\) 15378.0 0.832116
\(700\) 0 0
\(701\) 27446.0 1.47877 0.739387 0.673280i \(-0.235115\pi\)
0.739387 + 0.673280i \(0.235115\pi\)
\(702\) 0 0
\(703\) 14536.0i 0.779852i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2786.00i 0.148201i
\(708\) 0 0
\(709\) −3998.00 −0.211774 −0.105887 0.994378i \(-0.533768\pi\)
−0.105887 + 0.994378i \(0.533768\pi\)
\(710\) 0 0
\(711\) 3456.00 0.182293
\(712\) 0 0
\(713\) 21888.0i 1.14967i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1584.00i 0.0825043i
\(718\) 0 0
\(719\) −25872.0 −1.34195 −0.670976 0.741480i \(-0.734124\pi\)
−0.670976 + 0.741480i \(0.734124\pi\)
\(720\) 0 0
\(721\) −8120.00 −0.419424
\(722\) 0 0
\(723\) − 2442.00i − 0.125614i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 12088.0i − 0.616670i −0.951278 0.308335i \(-0.900228\pi\)
0.951278 0.308335i \(-0.0997718\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) 7112.00 0.359845
\(732\) 0 0
\(733\) 7974.00i 0.401810i 0.979611 + 0.200905i \(0.0643882\pi\)
−0.979611 + 0.200905i \(0.935612\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 3376.00i − 0.168733i
\(738\) 0 0
\(739\) 31764.0 1.58113 0.790567 0.612376i \(-0.209786\pi\)
0.790567 + 0.612376i \(0.209786\pi\)
\(740\) 0 0
\(741\) 14904.0 0.738883
\(742\) 0 0
\(743\) 888.000i 0.0438460i 0.999760 + 0.0219230i \(0.00697886\pi\)
−0.999760 + 0.0219230i \(0.993021\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 4932.00i 0.241570i
\(748\) 0 0
\(749\) 2268.00 0.110642
\(750\) 0 0
\(751\) −34656.0 −1.68391 −0.841954 0.539549i \(-0.818595\pi\)
−0.841954 + 0.539549i \(0.818595\pi\)
\(752\) 0 0
\(753\) − 5796.00i − 0.280502i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 22866.0i 1.09786i 0.835869 + 0.548929i \(0.184964\pi\)
−0.835869 + 0.548929i \(0.815036\pi\)
\(758\) 0 0
\(759\) 1824.00 0.0872293
\(760\) 0 0
\(761\) 22570.0 1.07511 0.537557 0.843227i \(-0.319347\pi\)
0.537557 + 0.843227i \(0.319347\pi\)
\(762\) 0 0
\(763\) 6566.00i 0.311540i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 19656.0i 0.925342i
\(768\) 0 0
\(769\) 1790.00 0.0839389 0.0419695 0.999119i \(-0.486637\pi\)
0.0419695 + 0.999119i \(0.486637\pi\)
\(770\) 0 0
\(771\) −9882.00 −0.461597
\(772\) 0 0
\(773\) 2990.00i 0.139124i 0.997578 + 0.0695620i \(0.0221602\pi\)
−0.997578 + 0.0695620i \(0.977840\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 3318.00i 0.153195i
\(778\) 0 0
\(779\) 35880.0 1.65024
\(780\) 0 0
\(781\) −32.0000 −0.00146613
\(782\) 0 0
\(783\) − 2862.00i − 0.130625i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 30756.0i 1.39305i 0.717531 + 0.696527i \(0.245272\pi\)
−0.717531 + 0.696527i \(0.754728\pi\)
\(788\) 0 0
\(789\) 21240.0 0.958383
\(790\) 0 0
\(791\) 4354.00 0.195715
\(792\) 0 0
\(793\) 36612.0i 1.63951i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 15126.0i − 0.672259i −0.941816 0.336129i \(-0.890882\pi\)
0.941816 0.336129i \(-0.109118\pi\)
\(798\) 0 0
\(799\) −7392.00 −0.327297
\(800\) 0 0
\(801\) 10746.0 0.474022
\(802\) 0 0
\(803\) − 1688.00i − 0.0741821i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 23442.0i − 1.02255i
\(808\) 0 0
\(809\) 6502.00 0.282569 0.141284 0.989969i \(-0.454877\pi\)
0.141284 + 0.989969i \(0.454877\pi\)
\(810\) 0 0
\(811\) −8252.00 −0.357296 −0.178648 0.983913i \(-0.557172\pi\)
−0.178648 + 0.983913i \(0.557172\pi\)
\(812\) 0 0
\(813\) 9504.00i 0.409987i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 46736.0i 2.00133i
\(818\) 0 0
\(819\) 3402.00 0.145147
\(820\) 0 0
\(821\) −21986.0 −0.934612 −0.467306 0.884096i \(-0.654775\pi\)
−0.467306 + 0.884096i \(0.654775\pi\)
\(822\) 0 0
\(823\) 3736.00i 0.158237i 0.996865 + 0.0791183i \(0.0252105\pi\)
−0.996865 + 0.0791183i \(0.974790\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 23820.0i 1.00158i 0.865570 + 0.500788i \(0.166956\pi\)
−0.865570 + 0.500788i \(0.833044\pi\)
\(828\) 0 0
\(829\) −7942.00 −0.332735 −0.166367 0.986064i \(-0.553204\pi\)
−0.166367 + 0.986064i \(0.553204\pi\)
\(830\) 0 0
\(831\) −23574.0 −0.984083
\(832\) 0 0
\(833\) − 686.000i − 0.0285336i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 3888.00i 0.160560i
\(838\) 0 0
\(839\) −21016.0 −0.864783 −0.432391 0.901686i \(-0.642330\pi\)
−0.432391 + 0.901686i \(0.642330\pi\)
\(840\) 0 0
\(841\) −13153.0 −0.539301
\(842\) 0 0
\(843\) 20190.0i 0.824888i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 9205.00i − 0.373421i
\(848\) 0 0
\(849\) 9060.00 0.366241
\(850\) 0 0
\(851\) −24016.0 −0.967401
\(852\) 0 0
\(853\) 24878.0i 0.998601i 0.866429 + 0.499300i \(0.166410\pi\)
−0.866429 + 0.499300i \(0.833590\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6390.00i 0.254700i 0.991858 + 0.127350i \(0.0406472\pi\)
−0.991858 + 0.127350i \(0.959353\pi\)
\(858\) 0 0
\(859\) 46444.0 1.84476 0.922380 0.386284i \(-0.126241\pi\)
0.922380 + 0.386284i \(0.126241\pi\)
\(860\) 0 0
\(861\) 8190.00 0.324175
\(862\) 0 0
\(863\) − 25408.0i − 1.00220i −0.865389 0.501100i \(-0.832929\pi\)
0.865389 0.501100i \(-0.167071\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 14151.0i 0.554317i
\(868\) 0 0
\(869\) −1536.00 −0.0599600
\(870\) 0 0
\(871\) 45576.0 1.77300
\(872\) 0 0
\(873\) − 13518.0i − 0.524072i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 1078.00i − 0.0415068i −0.999785 0.0207534i \(-0.993394\pi\)
0.999785 0.0207534i \(-0.00660649\pi\)
\(878\) 0 0
\(879\) 20502.0 0.786707
\(880\) 0 0
\(881\) −45006.0 −1.72110 −0.860551 0.509364i \(-0.829881\pi\)
−0.860551 + 0.509364i \(0.829881\pi\)
\(882\) 0 0
\(883\) 4028.00i 0.153514i 0.997050 + 0.0767571i \(0.0244566\pi\)
−0.997050 + 0.0767571i \(0.975543\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 29304.0i 1.10928i 0.832090 + 0.554640i \(0.187144\pi\)
−0.832090 + 0.554640i \(0.812856\pi\)
\(888\) 0 0
\(889\) 8400.00 0.316903
\(890\) 0 0
\(891\) 324.000 0.0121823
\(892\) 0 0
\(893\) − 48576.0i − 1.82031i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 24624.0i 0.916579i
\(898\) 0 0
\(899\) −15264.0 −0.566277
\(900\) 0 0
\(901\) −8484.00 −0.313699
\(902\) 0 0
\(903\) 10668.0i 0.393144i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 50916.0i − 1.86399i −0.362472 0.931995i \(-0.618067\pi\)
0.362472 0.931995i \(-0.381933\pi\)
\(908\) 0 0
\(909\) −3582.00 −0.130701
\(910\) 0 0
\(911\) −24432.0 −0.888549 −0.444275 0.895891i \(-0.646539\pi\)
−0.444275 + 0.895891i \(0.646539\pi\)
\(912\) 0 0
\(913\) − 2192.00i − 0.0794574i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 9772.00i − 0.351908i
\(918\) 0 0
\(919\) 20360.0 0.730810 0.365405 0.930849i \(-0.380930\pi\)
0.365405 + 0.930849i \(0.380930\pi\)
\(920\) 0 0
\(921\) 6996.00 0.250300
\(922\) 0 0
\(923\) − 432.000i − 0.0154057i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 10440.0i − 0.369897i
\(928\) 0 0
\(929\) −23202.0 −0.819411 −0.409706 0.912218i \(-0.634369\pi\)
−0.409706 + 0.912218i \(0.634369\pi\)
\(930\) 0 0
\(931\) 4508.00 0.158694
\(932\) 0 0
\(933\) 26520.0i 0.930574i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1990.00i 0.0693815i 0.999398 + 0.0346908i \(0.0110446\pi\)
−0.999398 + 0.0346908i \(0.988955\pi\)
\(938\) 0 0
\(939\) 3138.00 0.109057
\(940\) 0 0
\(941\) −51130.0 −1.77130 −0.885648 0.464356i \(-0.846286\pi\)
−0.885648 + 0.464356i \(0.846286\pi\)
\(942\) 0 0
\(943\) 59280.0i 2.04711i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 47044.0i 1.61428i 0.590359 + 0.807141i \(0.298986\pi\)
−0.590359 + 0.807141i \(0.701014\pi\)
\(948\) 0 0
\(949\) 22788.0 0.779483
\(950\) 0 0
\(951\) 22626.0 0.771502
\(952\) 0 0
\(953\) 46858.0i 1.59274i 0.604811 + 0.796369i \(0.293249\pi\)
−0.604811 + 0.796369i \(0.706751\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1272.00i 0.0429654i
\(958\) 0 0
\(959\) 19670.0 0.662333
\(960\) 0 0
\(961\) −9055.00 −0.303951
\(962\) 0 0
\(963\) 2916.00i 0.0975771i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 30632.0i − 1.01867i −0.860567 0.509337i \(-0.829890\pi\)
0.860567 0.509337i \(-0.170110\pi\)
\(968\) 0 0
\(969\) 3864.00 0.128101
\(970\) 0 0
\(971\) −3804.00 −0.125722 −0.0628611 0.998022i \(-0.520022\pi\)
−0.0628611 + 0.998022i \(0.520022\pi\)
\(972\) 0 0
\(973\) − 28.0000i 0 0.000922548i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 49326.0i 1.61523i 0.589711 + 0.807614i \(0.299242\pi\)
−0.589711 + 0.807614i \(0.700758\pi\)
\(978\) 0 0
\(979\) −4776.00 −0.155916
\(980\) 0 0
\(981\) −8442.00 −0.274753
\(982\) 0 0
\(983\) 11112.0i 0.360547i 0.983617 + 0.180274i \(0.0576983\pi\)
−0.983617 + 0.180274i \(0.942302\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 11088.0i − 0.357584i
\(988\) 0 0
\(989\) −77216.0 −2.48263
\(990\) 0 0
\(991\) 13616.0 0.436455 0.218227 0.975898i \(-0.429973\pi\)
0.218227 + 0.975898i \(0.429973\pi\)
\(992\) 0 0
\(993\) 8268.00i 0.264227i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 56674.0i 1.80028i 0.435596 + 0.900142i \(0.356538\pi\)
−0.435596 + 0.900142i \(0.643462\pi\)
\(998\) 0 0
\(999\) −4266.00 −0.135105
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2100.4.k.g.1849.2 2
5.2 odd 4 84.4.a.b.1.1 1
5.3 odd 4 2100.4.a.g.1.1 1
5.4 even 2 inner 2100.4.k.g.1849.1 2
15.2 even 4 252.4.a.a.1.1 1
20.7 even 4 336.4.a.e.1.1 1
35.2 odd 12 588.4.i.a.361.1 2
35.12 even 12 588.4.i.h.361.1 2
35.17 even 12 588.4.i.h.373.1 2
35.27 even 4 588.4.a.a.1.1 1
35.32 odd 12 588.4.i.a.373.1 2
40.27 even 4 1344.4.a.p.1.1 1
40.37 odd 4 1344.4.a.b.1.1 1
60.47 odd 4 1008.4.a.d.1.1 1
105.2 even 12 1764.4.k.n.361.1 2
105.17 odd 12 1764.4.k.c.1549.1 2
105.32 even 12 1764.4.k.n.1549.1 2
105.47 odd 12 1764.4.k.c.361.1 2
105.62 odd 4 1764.4.a.l.1.1 1
140.27 odd 4 2352.4.a.v.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.4.a.b.1.1 1 5.2 odd 4
252.4.a.a.1.1 1 15.2 even 4
336.4.a.e.1.1 1 20.7 even 4
588.4.a.a.1.1 1 35.27 even 4
588.4.i.a.361.1 2 35.2 odd 12
588.4.i.a.373.1 2 35.32 odd 12
588.4.i.h.361.1 2 35.12 even 12
588.4.i.h.373.1 2 35.17 even 12
1008.4.a.d.1.1 1 60.47 odd 4
1344.4.a.b.1.1 1 40.37 odd 4
1344.4.a.p.1.1 1 40.27 even 4
1764.4.a.l.1.1 1 105.62 odd 4
1764.4.k.c.361.1 2 105.47 odd 12
1764.4.k.c.1549.1 2 105.17 odd 12
1764.4.k.n.361.1 2 105.2 even 12
1764.4.k.n.1549.1 2 105.32 even 12
2100.4.a.g.1.1 1 5.3 odd 4
2100.4.k.g.1849.1 2 5.4 even 2 inner
2100.4.k.g.1849.2 2 1.1 even 1 trivial
2352.4.a.v.1.1 1 140.27 odd 4