Properties

Label 208.10.a.l
Level $208$
Weight $10$
Character orbit 208.a
Self dual yes
Analytic conductor $107.127$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(1,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,0,-13] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 112810 x^{5} + 1645934 x^{4} + 3493976849 x^{3} - 83049726457 x^{2} + \cdots + 864293655586764 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{19}\cdot 3 \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 2) q^{3} + (\beta_{2} - 114) q^{5} + ( - \beta_{3} + \beta_{2} - 3 \beta_1 + 157) q^{7} + (\beta_{6} + 3 \beta_{3} + \cdots + 12557) q^{9} + ( - \beta_{5} - \beta_{4} + \cdots - 4617) q^{11}+ \cdots + ( - 41179 \beta_{6} - 29496 \beta_{5} + \cdots - 744056693) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 13 q^{3} - 801 q^{5} + 1091 q^{7} + 87864 q^{9} - 32218 q^{11} - 199927 q^{13} - 58323 q^{15} - 870531 q^{17} + 128950 q^{19} - 719663 q^{21} - 2198844 q^{23} + 992010 q^{25} - 5441383 q^{27} + 6327710 q^{29}+ \cdots - 5204667600 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - x^{6} - 112810 x^{5} + 1645934 x^{4} + 3493976849 x^{3} - 83049726457 x^{2} + \cdots + 864293655586764 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 15795768817 \nu^{6} + 7343349530000 \nu^{5} + \cdots - 40\!\cdots\!92 ) / 28\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 211182971761 \nu^{6} - 18750683527060 \nu^{5} + \cdots + 23\!\cdots\!44 ) / 14\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 13594023070 \nu^{6} + 1534496734189 \nu^{5} + \cdots - 45\!\cdots\!40 ) / 72\!\cdots\!18 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 290869471067 \nu^{6} + 28034206523120 \nu^{5} + \cdots - 74\!\cdots\!48 ) / 72\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 1346076674651 \nu^{6} + 75787353512360 \nu^{5} + \cdots - 22\!\cdots\!24 ) / 28\!\cdots\!20 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + 3\beta_{3} + 5\beta_{2} - 19\beta _1 + 32236 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -30\beta_{6} + 31\beta_{5} - 89\beta_{4} - 123\beta_{3} - 48\beta_{2} + 50852\beta _1 - 664328 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 60533 \beta_{6} + 2992 \beta_{5} + 13665 \beta_{4} + 208312 \beta_{3} + 279175 \beta_{2} + \cdots + 1638969460 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 4117404 \beta_{6} + 2106530 \beta_{5} - 7401118 \beta_{4} - 17649132 \beta_{3} + 21430620 \beta_{2} + \cdots - 67110000604 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 3672138117 \beta_{6} + 348731636 \beta_{5} + 1507906206 \beta_{4} + 13441220573 \beta_{3} + \cdots + 92010955632088 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−262.020
−202.282
−98.0566
46.9663
71.8667
210.821
233.704
0 −264.020 0 −498.097 0 −8282.02 0 50023.3 0
1.2 0 −204.282 0 2155.51 0 6106.83 0 22048.1 0
1.3 0 −100.057 0 −2398.21 0 1546.37 0 −9671.67 0
1.4 0 44.9663 0 193.817 0 763.904 0 −17661.0 0
1.5 0 69.8667 0 −170.421 0 12012.7 0 −14801.7 0
1.6 0 208.821 0 −1446.79 0 −8051.09 0 23923.4 0
1.7 0 231.704 0 1363.19 0 −3005.73 0 34003.6 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 208.10.a.l 7
4.b odd 2 1 104.10.a.c 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.10.a.c 7 4.b odd 2 1
208.10.a.l 7 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{7} + 13 T_{3}^{6} - 112738 T_{3}^{5} + 518054 T_{3}^{4} + 3502632321 T_{3}^{3} + \cdots + 820307149606656 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(208))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} \) Copy content Toggle raw display
$3$ \( T^{7} + \cdots + 820307149606656 \) Copy content Toggle raw display
$5$ \( T^{7} + \cdots - 16\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{7} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
$11$ \( T^{7} + \cdots + 25\!\cdots\!32 \) Copy content Toggle raw display
$13$ \( (T + 28561)^{7} \) Copy content Toggle raw display
$17$ \( T^{7} + \cdots + 59\!\cdots\!20 \) Copy content Toggle raw display
$19$ \( T^{7} + \cdots - 14\!\cdots\!72 \) Copy content Toggle raw display
$23$ \( T^{7} + \cdots - 51\!\cdots\!32 \) Copy content Toggle raw display
$29$ \( T^{7} + \cdots + 26\!\cdots\!92 \) Copy content Toggle raw display
$31$ \( T^{7} + \cdots - 32\!\cdots\!60 \) Copy content Toggle raw display
$37$ \( T^{7} + \cdots + 34\!\cdots\!32 \) Copy content Toggle raw display
$41$ \( T^{7} + \cdots - 35\!\cdots\!32 \) Copy content Toggle raw display
$43$ \( T^{7} + \cdots + 14\!\cdots\!48 \) Copy content Toggle raw display
$47$ \( T^{7} + \cdots + 19\!\cdots\!44 \) Copy content Toggle raw display
$53$ \( T^{7} + \cdots + 52\!\cdots\!48 \) Copy content Toggle raw display
$59$ \( T^{7} + \cdots + 28\!\cdots\!12 \) Copy content Toggle raw display
$61$ \( T^{7} + \cdots + 99\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{7} + \cdots + 78\!\cdots\!96 \) Copy content Toggle raw display
$71$ \( T^{7} + \cdots - 70\!\cdots\!44 \) Copy content Toggle raw display
$73$ \( T^{7} + \cdots - 50\!\cdots\!36 \) Copy content Toggle raw display
$79$ \( T^{7} + \cdots - 87\!\cdots\!52 \) Copy content Toggle raw display
$83$ \( T^{7} + \cdots - 41\!\cdots\!48 \) Copy content Toggle raw display
$89$ \( T^{7} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{7} + \cdots - 25\!\cdots\!00 \) Copy content Toggle raw display
show more
show less