Properties

Label 2-208-1.1-c9-0-53
Degree $2$
Conductor $208$
Sign $-1$
Analytic cond. $107.127$
Root an. cond. $10.3502$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 231.·3-s + 1.36e3·5-s − 3.00e3·7-s + 3.40e4·9-s − 8.49e4·11-s − 2.85e4·13-s + 3.15e5·15-s − 3.58e5·17-s − 3.15e5·19-s − 6.96e5·21-s − 6.49e5·23-s − 9.48e4·25-s + 3.31e6·27-s − 4.28e6·29-s − 1.18e6·31-s − 1.96e7·33-s − 4.09e6·35-s + 5.51e6·37-s − 6.61e6·39-s − 2.57e5·41-s + 7.99e5·43-s + 4.63e7·45-s − 3.91e7·47-s − 3.13e7·49-s − 8.29e7·51-s + 3.04e7·53-s − 1.15e8·55-s + ⋯
L(s)  = 1  + 1.65·3-s + 0.975·5-s − 0.473·7-s + 1.72·9-s − 1.75·11-s − 0.277·13-s + 1.61·15-s − 1.04·17-s − 0.554·19-s − 0.781·21-s − 0.484·23-s − 0.0485·25-s + 1.20·27-s − 1.12·29-s − 0.231·31-s − 2.89·33-s − 0.461·35-s + 0.483·37-s − 0.458·39-s − 0.0142·41-s + 0.0356·43-s + 1.68·45-s − 1.17·47-s − 0.776·49-s − 1.71·51-s + 0.530·53-s − 1.70·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(208\)    =    \(2^{4} \cdot 13\)
Sign: $-1$
Analytic conductor: \(107.127\)
Root analytic conductor: \(10.3502\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 208,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + 2.85e4T \)
good3 \( 1 - 231.T + 1.96e4T^{2} \)
5 \( 1 - 1.36e3T + 1.95e6T^{2} \)
7 \( 1 + 3.00e3T + 4.03e7T^{2} \)
11 \( 1 + 8.49e4T + 2.35e9T^{2} \)
17 \( 1 + 3.58e5T + 1.18e11T^{2} \)
19 \( 1 + 3.15e5T + 3.22e11T^{2} \)
23 \( 1 + 6.49e5T + 1.80e12T^{2} \)
29 \( 1 + 4.28e6T + 1.45e13T^{2} \)
31 \( 1 + 1.18e6T + 2.64e13T^{2} \)
37 \( 1 - 5.51e6T + 1.29e14T^{2} \)
41 \( 1 + 2.57e5T + 3.27e14T^{2} \)
43 \( 1 - 7.99e5T + 5.02e14T^{2} \)
47 \( 1 + 3.91e7T + 1.11e15T^{2} \)
53 \( 1 - 3.04e7T + 3.29e15T^{2} \)
59 \( 1 + 1.67e8T + 8.66e15T^{2} \)
61 \( 1 - 6.85e7T + 1.16e16T^{2} \)
67 \( 1 - 2.58e8T + 2.72e16T^{2} \)
71 \( 1 + 2.12e8T + 4.58e16T^{2} \)
73 \( 1 - 3.19e8T + 5.88e16T^{2} \)
79 \( 1 - 2.88e8T + 1.19e17T^{2} \)
83 \( 1 - 6.75e8T + 1.86e17T^{2} \)
89 \( 1 - 1.13e9T + 3.50e17T^{2} \)
97 \( 1 + 3.65e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.914133985360739554774884910086, −9.338374475747748933542889992097, −8.305276858613281929013537947262, −7.51883525957041780002949349111, −6.24413637483546910943741990348, −4.93080535678196584369151897101, −3.54227124432324091289546281913, −2.42393077355455098959891392874, −2.00410422293429755484992919432, 0, 2.00410422293429755484992919432, 2.42393077355455098959891392874, 3.54227124432324091289546281913, 4.93080535678196584369151897101, 6.24413637483546910943741990348, 7.51883525957041780002949349111, 8.305276858613281929013537947262, 9.338374475747748933542889992097, 9.914133985360739554774884910086

Graph of the $Z$-function along the critical line