Properties

Label 208.10.a.l.1.7
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(1,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,0,-13] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 112810 x^{5} + 1645934 x^{4} + 3493976849 x^{3} - 83049726457 x^{2} + \cdots + 864293655586764 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{19}\cdot 3 \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(233.704\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+231.704 q^{3} +1363.19 q^{5} -3005.73 q^{7} +34003.6 q^{9} -84978.4 q^{11} -28561.0 q^{13} +315857. q^{15} -358184. q^{17} -315187. q^{19} -696439. q^{21} -649646. q^{23} -94826.5 q^{25} +3.31814e6 q^{27} -4.28284e6 q^{29} -1.18999e6 q^{31} -1.96898e7 q^{33} -4.09739e6 q^{35} +5.51296e6 q^{37} -6.61769e6 q^{39} -257315. q^{41} +799842. q^{43} +4.63535e7 q^{45} -3.91606e7 q^{47} -3.13192e7 q^{49} -8.29926e7 q^{51} +3.04463e7 q^{53} -1.15842e8 q^{55} -7.30300e7 q^{57} -1.67474e8 q^{59} +6.85381e7 q^{61} -1.02206e8 q^{63} -3.89342e7 q^{65} +2.58838e8 q^{67} -1.50525e8 q^{69} -2.12909e8 q^{71} +3.19100e8 q^{73} -2.19717e7 q^{75} +2.55422e8 q^{77} +2.88383e8 q^{79} +9.95316e7 q^{81} +6.75948e8 q^{83} -4.88274e8 q^{85} -9.92350e8 q^{87} +1.13653e9 q^{89} +8.58467e7 q^{91} -2.75726e8 q^{93} -4.29661e8 q^{95} -3.65840e8 q^{97} -2.88957e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 13 q^{3} - 801 q^{5} + 1091 q^{7} + 87864 q^{9} - 32218 q^{11} - 199927 q^{13} - 58323 q^{15} - 870531 q^{17} + 128950 q^{19} - 719663 q^{21} - 2198844 q^{23} + 992010 q^{25} - 5441383 q^{27} + 6327710 q^{29}+ \cdots - 5204667600 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 231.704 1.65153 0.825767 0.564012i \(-0.190743\pi\)
0.825767 + 0.564012i \(0.190743\pi\)
\(4\) 0 0
\(5\) 1363.19 0.975422 0.487711 0.873005i \(-0.337832\pi\)
0.487711 + 0.873005i \(0.337832\pi\)
\(6\) 0 0
\(7\) −3005.73 −0.473161 −0.236580 0.971612i \(-0.576027\pi\)
−0.236580 + 0.971612i \(0.576027\pi\)
\(8\) 0 0
\(9\) 34003.6 1.72756
\(10\) 0 0
\(11\) −84978.4 −1.75001 −0.875007 0.484111i \(-0.839143\pi\)
−0.875007 + 0.484111i \(0.839143\pi\)
\(12\) 0 0
\(13\) −28561.0 −0.277350
\(14\) 0 0
\(15\) 315857. 1.61094
\(16\) 0 0
\(17\) −358184. −1.04013 −0.520063 0.854128i \(-0.674092\pi\)
−0.520063 + 0.854128i \(0.674092\pi\)
\(18\) 0 0
\(19\) −315187. −0.554852 −0.277426 0.960747i \(-0.589481\pi\)
−0.277426 + 0.960747i \(0.589481\pi\)
\(20\) 0 0
\(21\) −696439. −0.781441
\(22\) 0 0
\(23\) −649646. −0.484062 −0.242031 0.970268i \(-0.577814\pi\)
−0.242031 + 0.970268i \(0.577814\pi\)
\(24\) 0 0
\(25\) −94826.5 −0.0485512
\(26\) 0 0
\(27\) 3.31814e6 1.20159
\(28\) 0 0
\(29\) −4.28284e6 −1.12445 −0.562226 0.826984i \(-0.690055\pi\)
−0.562226 + 0.826984i \(0.690055\pi\)
\(30\) 0 0
\(31\) −1.18999e6 −0.231429 −0.115714 0.993283i \(-0.536916\pi\)
−0.115714 + 0.993283i \(0.536916\pi\)
\(32\) 0 0
\(33\) −1.96898e7 −2.89021
\(34\) 0 0
\(35\) −4.09739e6 −0.461532
\(36\) 0 0
\(37\) 5.51296e6 0.483590 0.241795 0.970327i \(-0.422264\pi\)
0.241795 + 0.970327i \(0.422264\pi\)
\(38\) 0 0
\(39\) −6.61769e6 −0.458053
\(40\) 0 0
\(41\) −257315. −0.0142212 −0.00711062 0.999975i \(-0.502263\pi\)
−0.00711062 + 0.999975i \(0.502263\pi\)
\(42\) 0 0
\(43\) 799842. 0.0356777 0.0178388 0.999841i \(-0.494321\pi\)
0.0178388 + 0.999841i \(0.494321\pi\)
\(44\) 0 0
\(45\) 4.63535e7 1.68510
\(46\) 0 0
\(47\) −3.91606e7 −1.17060 −0.585301 0.810816i \(-0.699024\pi\)
−0.585301 + 0.810816i \(0.699024\pi\)
\(48\) 0 0
\(49\) −3.13192e7 −0.776119
\(50\) 0 0
\(51\) −8.29926e7 −1.71780
\(52\) 0 0
\(53\) 3.04463e7 0.530021 0.265010 0.964246i \(-0.414625\pi\)
0.265010 + 0.964246i \(0.414625\pi\)
\(54\) 0 0
\(55\) −1.15842e8 −1.70700
\(56\) 0 0
\(57\) −7.30300e7 −0.916356
\(58\) 0 0
\(59\) −1.67474e8 −1.79934 −0.899672 0.436566i \(-0.856194\pi\)
−0.899672 + 0.436566i \(0.856194\pi\)
\(60\) 0 0
\(61\) 6.85381e7 0.633793 0.316897 0.948460i \(-0.397359\pi\)
0.316897 + 0.948460i \(0.397359\pi\)
\(62\) 0 0
\(63\) −1.02206e8 −0.817415
\(64\) 0 0
\(65\) −3.89342e7 −0.270533
\(66\) 0 0
\(67\) 2.58838e8 1.56925 0.784624 0.619971i \(-0.212856\pi\)
0.784624 + 0.619971i \(0.212856\pi\)
\(68\) 0 0
\(69\) −1.50525e8 −0.799445
\(70\) 0 0
\(71\) −2.12909e8 −0.994333 −0.497167 0.867655i \(-0.665626\pi\)
−0.497167 + 0.867655i \(0.665626\pi\)
\(72\) 0 0
\(73\) 3.19100e8 1.31515 0.657573 0.753391i \(-0.271583\pi\)
0.657573 + 0.753391i \(0.271583\pi\)
\(74\) 0 0
\(75\) −2.19717e7 −0.0801839
\(76\) 0 0
\(77\) 2.55422e8 0.828038
\(78\) 0 0
\(79\) 2.88383e8 0.833006 0.416503 0.909134i \(-0.363256\pi\)
0.416503 + 0.909134i \(0.363256\pi\)
\(80\) 0 0
\(81\) 9.95316e7 0.256908
\(82\) 0 0
\(83\) 6.75948e8 1.56337 0.781685 0.623674i \(-0.214361\pi\)
0.781685 + 0.623674i \(0.214361\pi\)
\(84\) 0 0
\(85\) −4.88274e8 −1.01456
\(86\) 0 0
\(87\) −9.92350e8 −1.85707
\(88\) 0 0
\(89\) 1.13653e9 1.92011 0.960055 0.279812i \(-0.0902722\pi\)
0.960055 + 0.279812i \(0.0902722\pi\)
\(90\) 0 0
\(91\) 8.58467e7 0.131231
\(92\) 0 0
\(93\) −2.75726e8 −0.382212
\(94\) 0 0
\(95\) −4.29661e8 −0.541215
\(96\) 0 0
\(97\) −3.65840e8 −0.419583 −0.209792 0.977746i \(-0.567279\pi\)
−0.209792 + 0.977746i \(0.567279\pi\)
\(98\) 0 0
\(99\) −2.88957e9 −3.02326
\(100\) 0 0
\(101\) −1.15655e9 −1.10590 −0.552952 0.833213i \(-0.686499\pi\)
−0.552952 + 0.833213i \(0.686499\pi\)
\(102\) 0 0
\(103\) 2.27280e8 0.198973 0.0994865 0.995039i \(-0.468280\pi\)
0.0994865 + 0.995039i \(0.468280\pi\)
\(104\) 0 0
\(105\) −9.49381e8 −0.762235
\(106\) 0 0
\(107\) −9.67474e8 −0.713530 −0.356765 0.934194i \(-0.616120\pi\)
−0.356765 + 0.934194i \(0.616120\pi\)
\(108\) 0 0
\(109\) 2.60415e9 1.76704 0.883520 0.468394i \(-0.155167\pi\)
0.883520 + 0.468394i \(0.155167\pi\)
\(110\) 0 0
\(111\) 1.27737e9 0.798664
\(112\) 0 0
\(113\) 2.19137e9 1.26433 0.632167 0.774832i \(-0.282166\pi\)
0.632167 + 0.774832i \(0.282166\pi\)
\(114\) 0 0
\(115\) −8.85593e8 −0.472165
\(116\) 0 0
\(117\) −9.71177e8 −0.479139
\(118\) 0 0
\(119\) 1.07660e9 0.492147
\(120\) 0 0
\(121\) 4.86338e9 2.06255
\(122\) 0 0
\(123\) −5.96208e7 −0.0234868
\(124\) 0 0
\(125\) −2.79176e9 −1.02278
\(126\) 0 0
\(127\) 2.18989e9 0.746973 0.373487 0.927636i \(-0.378162\pi\)
0.373487 + 0.927636i \(0.378162\pi\)
\(128\) 0 0
\(129\) 1.85326e8 0.0589228
\(130\) 0 0
\(131\) −1.90918e9 −0.566403 −0.283201 0.959060i \(-0.591397\pi\)
−0.283201 + 0.959060i \(0.591397\pi\)
\(132\) 0 0
\(133\) 9.47367e8 0.262534
\(134\) 0 0
\(135\) 4.52326e9 1.17206
\(136\) 0 0
\(137\) −1.19958e9 −0.290930 −0.145465 0.989363i \(-0.546468\pi\)
−0.145465 + 0.989363i \(0.546468\pi\)
\(138\) 0 0
\(139\) 1.40633e9 0.319538 0.159769 0.987154i \(-0.448925\pi\)
0.159769 + 0.987154i \(0.448925\pi\)
\(140\) 0 0
\(141\) −9.07366e9 −1.93329
\(142\) 0 0
\(143\) 2.42707e9 0.485366
\(144\) 0 0
\(145\) −5.83834e9 −1.09682
\(146\) 0 0
\(147\) −7.25677e9 −1.28179
\(148\) 0 0
\(149\) −1.80364e9 −0.299786 −0.149893 0.988702i \(-0.547893\pi\)
−0.149893 + 0.988702i \(0.547893\pi\)
\(150\) 0 0
\(151\) −1.05410e10 −1.65000 −0.825000 0.565132i \(-0.808825\pi\)
−0.825000 + 0.565132i \(0.808825\pi\)
\(152\) 0 0
\(153\) −1.21795e10 −1.79688
\(154\) 0 0
\(155\) −1.62219e9 −0.225741
\(156\) 0 0
\(157\) −1.02542e10 −1.34696 −0.673479 0.739206i \(-0.735201\pi\)
−0.673479 + 0.739206i \(0.735201\pi\)
\(158\) 0 0
\(159\) 7.05451e9 0.875346
\(160\) 0 0
\(161\) 1.95266e9 0.229039
\(162\) 0 0
\(163\) 4.42748e8 0.0491261 0.0245630 0.999698i \(-0.492181\pi\)
0.0245630 + 0.999698i \(0.492181\pi\)
\(164\) 0 0
\(165\) −2.68410e10 −2.81917
\(166\) 0 0
\(167\) −2.24534e9 −0.223387 −0.111694 0.993743i \(-0.535628\pi\)
−0.111694 + 0.993743i \(0.535628\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) −1.07175e10 −0.958541
\(172\) 0 0
\(173\) 3.81893e9 0.324141 0.162071 0.986779i \(-0.448183\pi\)
0.162071 + 0.986779i \(0.448183\pi\)
\(174\) 0 0
\(175\) 2.85023e8 0.0229725
\(176\) 0 0
\(177\) −3.88044e10 −2.97168
\(178\) 0 0
\(179\) −2.65522e10 −1.93313 −0.966567 0.256414i \(-0.917459\pi\)
−0.966567 + 0.256414i \(0.917459\pi\)
\(180\) 0 0
\(181\) −1.23202e10 −0.853224 −0.426612 0.904435i \(-0.640293\pi\)
−0.426612 + 0.904435i \(0.640293\pi\)
\(182\) 0 0
\(183\) 1.58805e10 1.04673
\(184\) 0 0
\(185\) 7.51523e9 0.471704
\(186\) 0 0
\(187\) 3.04379e10 1.82024
\(188\) 0 0
\(189\) −9.97342e9 −0.568547
\(190\) 0 0
\(191\) −3.39753e10 −1.84720 −0.923598 0.383362i \(-0.874766\pi\)
−0.923598 + 0.383362i \(0.874766\pi\)
\(192\) 0 0
\(193\) 1.42354e10 0.738518 0.369259 0.929327i \(-0.379612\pi\)
0.369259 + 0.929327i \(0.379612\pi\)
\(194\) 0 0
\(195\) −9.02120e9 −0.446795
\(196\) 0 0
\(197\) 3.21189e10 1.51937 0.759684 0.650292i \(-0.225353\pi\)
0.759684 + 0.650292i \(0.225353\pi\)
\(198\) 0 0
\(199\) −3.30486e10 −1.49387 −0.746937 0.664895i \(-0.768476\pi\)
−0.746937 + 0.664895i \(0.768476\pi\)
\(200\) 0 0
\(201\) 5.99738e10 2.59167
\(202\) 0 0
\(203\) 1.28731e10 0.532047
\(204\) 0 0
\(205\) −3.50770e8 −0.0138717
\(206\) 0 0
\(207\) −2.20903e10 −0.836248
\(208\) 0 0
\(209\) 2.67841e10 0.970998
\(210\) 0 0
\(211\) −3.46440e10 −1.20325 −0.601626 0.798778i \(-0.705480\pi\)
−0.601626 + 0.798778i \(0.705480\pi\)
\(212\) 0 0
\(213\) −4.93319e10 −1.64217
\(214\) 0 0
\(215\) 1.09034e9 0.0348008
\(216\) 0 0
\(217\) 3.57680e9 0.109503
\(218\) 0 0
\(219\) 7.39366e10 2.17201
\(220\) 0 0
\(221\) 1.02301e10 0.288479
\(222\) 0 0
\(223\) −1.05085e10 −0.284557 −0.142278 0.989827i \(-0.545443\pi\)
−0.142278 + 0.989827i \(0.545443\pi\)
\(224\) 0 0
\(225\) −3.22444e9 −0.0838752
\(226\) 0 0
\(227\) 5.02538e10 1.25618 0.628090 0.778140i \(-0.283837\pi\)
0.628090 + 0.778140i \(0.283837\pi\)
\(228\) 0 0
\(229\) −8.14531e10 −1.95726 −0.978629 0.205634i \(-0.934074\pi\)
−0.978629 + 0.205634i \(0.934074\pi\)
\(230\) 0 0
\(231\) 5.91822e10 1.36753
\(232\) 0 0
\(233\) −4.16919e10 −0.926724 −0.463362 0.886169i \(-0.653357\pi\)
−0.463362 + 0.886169i \(0.653357\pi\)
\(234\) 0 0
\(235\) −5.33835e10 −1.14183
\(236\) 0 0
\(237\) 6.68194e10 1.37574
\(238\) 0 0
\(239\) 2.59529e10 0.514512 0.257256 0.966343i \(-0.417182\pi\)
0.257256 + 0.966343i \(0.417182\pi\)
\(240\) 0 0
\(241\) 2.58108e10 0.492862 0.246431 0.969160i \(-0.420742\pi\)
0.246431 + 0.969160i \(0.420742\pi\)
\(242\) 0 0
\(243\) −4.22490e10 −0.777300
\(244\) 0 0
\(245\) −4.26941e10 −0.757044
\(246\) 0 0
\(247\) 9.00205e9 0.153888
\(248\) 0 0
\(249\) 1.56620e11 2.58196
\(250\) 0 0
\(251\) 4.41867e10 0.702684 0.351342 0.936247i \(-0.385725\pi\)
0.351342 + 0.936247i \(0.385725\pi\)
\(252\) 0 0
\(253\) 5.52059e10 0.847116
\(254\) 0 0
\(255\) −1.13135e11 −1.67558
\(256\) 0 0
\(257\) 1.28156e11 1.83249 0.916244 0.400621i \(-0.131205\pi\)
0.916244 + 0.400621i \(0.131205\pi\)
\(258\) 0 0
\(259\) −1.65705e10 −0.228816
\(260\) 0 0
\(261\) −1.45632e11 −1.94256
\(262\) 0 0
\(263\) −5.05576e10 −0.651607 −0.325804 0.945437i \(-0.605635\pi\)
−0.325804 + 0.945437i \(0.605635\pi\)
\(264\) 0 0
\(265\) 4.15042e10 0.516994
\(266\) 0 0
\(267\) 2.63338e11 3.17112
\(268\) 0 0
\(269\) 8.08338e10 0.941256 0.470628 0.882332i \(-0.344027\pi\)
0.470628 + 0.882332i \(0.344027\pi\)
\(270\) 0 0
\(271\) −3.22924e10 −0.363696 −0.181848 0.983327i \(-0.558208\pi\)
−0.181848 + 0.983327i \(0.558208\pi\)
\(272\) 0 0
\(273\) 1.98910e10 0.216733
\(274\) 0 0
\(275\) 8.05821e9 0.0849652
\(276\) 0 0
\(277\) 9.35939e10 0.955187 0.477594 0.878581i \(-0.341509\pi\)
0.477594 + 0.878581i \(0.341509\pi\)
\(278\) 0 0
\(279\) −4.04641e10 −0.399807
\(280\) 0 0
\(281\) 1.19578e11 1.14413 0.572063 0.820210i \(-0.306143\pi\)
0.572063 + 0.820210i \(0.306143\pi\)
\(282\) 0 0
\(283\) −1.82984e11 −1.69580 −0.847899 0.530157i \(-0.822133\pi\)
−0.847899 + 0.530157i \(0.822133\pi\)
\(284\) 0 0
\(285\) −9.95540e10 −0.893834
\(286\) 0 0
\(287\) 7.73419e8 0.00672893
\(288\) 0 0
\(289\) 9.70793e9 0.0818628
\(290\) 0 0
\(291\) −8.47664e10 −0.692956
\(292\) 0 0
\(293\) −1.56706e11 −1.24217 −0.621083 0.783744i \(-0.713307\pi\)
−0.621083 + 0.783744i \(0.713307\pi\)
\(294\) 0 0
\(295\) −2.28300e11 −1.75512
\(296\) 0 0
\(297\) −2.81970e11 −2.10280
\(298\) 0 0
\(299\) 1.85545e10 0.134255
\(300\) 0 0
\(301\) −2.40411e9 −0.0168813
\(302\) 0 0
\(303\) −2.67976e11 −1.82644
\(304\) 0 0
\(305\) 9.34307e10 0.618216
\(306\) 0 0
\(307\) 1.70113e10 0.109299 0.0546494 0.998506i \(-0.482596\pi\)
0.0546494 + 0.998506i \(0.482596\pi\)
\(308\) 0 0
\(309\) 5.26617e10 0.328611
\(310\) 0 0
\(311\) 2.20604e11 1.33719 0.668594 0.743628i \(-0.266896\pi\)
0.668594 + 0.743628i \(0.266896\pi\)
\(312\) 0 0
\(313\) 1.72838e11 1.01786 0.508931 0.860807i \(-0.330041\pi\)
0.508931 + 0.860807i \(0.330041\pi\)
\(314\) 0 0
\(315\) −1.39326e11 −0.797325
\(316\) 0 0
\(317\) −1.87242e11 −1.04144 −0.520722 0.853726i \(-0.674337\pi\)
−0.520722 + 0.853726i \(0.674337\pi\)
\(318\) 0 0
\(319\) 3.63949e11 1.96781
\(320\) 0 0
\(321\) −2.24167e11 −1.17842
\(322\) 0 0
\(323\) 1.12895e11 0.577116
\(324\) 0 0
\(325\) 2.70834e9 0.0134657
\(326\) 0 0
\(327\) 6.03391e11 2.91832
\(328\) 0 0
\(329\) 1.17706e11 0.553883
\(330\) 0 0
\(331\) −7.24889e10 −0.331929 −0.165965 0.986132i \(-0.553074\pi\)
−0.165965 + 0.986132i \(0.553074\pi\)
\(332\) 0 0
\(333\) 1.87460e11 0.835431
\(334\) 0 0
\(335\) 3.52847e11 1.53068
\(336\) 0 0
\(337\) −1.67327e11 −0.706693 −0.353347 0.935492i \(-0.614956\pi\)
−0.353347 + 0.935492i \(0.614956\pi\)
\(338\) 0 0
\(339\) 5.07748e11 2.08809
\(340\) 0 0
\(341\) 1.01124e11 0.405003
\(342\) 0 0
\(343\) 2.15429e11 0.840390
\(344\) 0 0
\(345\) −2.05195e11 −0.779797
\(346\) 0 0
\(347\) −1.33712e11 −0.495095 −0.247548 0.968876i \(-0.579625\pi\)
−0.247548 + 0.968876i \(0.579625\pi\)
\(348\) 0 0
\(349\) −2.28882e10 −0.0825842 −0.0412921 0.999147i \(-0.513147\pi\)
−0.0412921 + 0.999147i \(0.513147\pi\)
\(350\) 0 0
\(351\) −9.47693e10 −0.333262
\(352\) 0 0
\(353\) −1.87200e11 −0.641680 −0.320840 0.947133i \(-0.603965\pi\)
−0.320840 + 0.947133i \(0.603965\pi\)
\(354\) 0 0
\(355\) −2.90237e11 −0.969895
\(356\) 0 0
\(357\) 2.49453e11 0.812797
\(358\) 0 0
\(359\) 2.70226e11 0.858621 0.429311 0.903157i \(-0.358757\pi\)
0.429311 + 0.903157i \(0.358757\pi\)
\(360\) 0 0
\(361\) −2.23345e11 −0.692140
\(362\) 0 0
\(363\) 1.12686e12 3.40637
\(364\) 0 0
\(365\) 4.34995e11 1.28282
\(366\) 0 0
\(367\) −1.23357e11 −0.354949 −0.177474 0.984125i \(-0.556793\pi\)
−0.177474 + 0.984125i \(0.556793\pi\)
\(368\) 0 0
\(369\) −8.74963e9 −0.0245681
\(370\) 0 0
\(371\) −9.15133e10 −0.250785
\(372\) 0 0
\(373\) 3.23044e11 0.864116 0.432058 0.901846i \(-0.357788\pi\)
0.432058 + 0.901846i \(0.357788\pi\)
\(374\) 0 0
\(375\) −6.46860e11 −1.68916
\(376\) 0 0
\(377\) 1.22322e11 0.311867
\(378\) 0 0
\(379\) 1.68579e11 0.419687 0.209844 0.977735i \(-0.432705\pi\)
0.209844 + 0.977735i \(0.432705\pi\)
\(380\) 0 0
\(381\) 5.07405e11 1.23365
\(382\) 0 0
\(383\) −7.88973e11 −1.87356 −0.936780 0.349918i \(-0.886209\pi\)
−0.936780 + 0.349918i \(0.886209\pi\)
\(384\) 0 0
\(385\) 3.48190e11 0.807687
\(386\) 0 0
\(387\) 2.71975e10 0.0616354
\(388\) 0 0
\(389\) −1.33409e11 −0.295400 −0.147700 0.989032i \(-0.547187\pi\)
−0.147700 + 0.989032i \(0.547187\pi\)
\(390\) 0 0
\(391\) 2.32693e11 0.503486
\(392\) 0 0
\(393\) −4.42363e11 −0.935433
\(394\) 0 0
\(395\) 3.93122e11 0.812532
\(396\) 0 0
\(397\) −3.70840e11 −0.749255 −0.374628 0.927175i \(-0.622229\pi\)
−0.374628 + 0.927175i \(0.622229\pi\)
\(398\) 0 0
\(399\) 2.19508e11 0.433584
\(400\) 0 0
\(401\) −4.67514e11 −0.902912 −0.451456 0.892293i \(-0.649095\pi\)
−0.451456 + 0.892293i \(0.649095\pi\)
\(402\) 0 0
\(403\) 3.39874e10 0.0641868
\(404\) 0 0
\(405\) 1.35681e11 0.250594
\(406\) 0 0
\(407\) −4.68482e11 −0.846289
\(408\) 0 0
\(409\) 7.00780e11 1.23830 0.619151 0.785272i \(-0.287477\pi\)
0.619151 + 0.785272i \(0.287477\pi\)
\(410\) 0 0
\(411\) −2.77948e11 −0.480480
\(412\) 0 0
\(413\) 5.03383e11 0.851379
\(414\) 0 0
\(415\) 9.21448e11 1.52495
\(416\) 0 0
\(417\) 3.25853e11 0.527727
\(418\) 0 0
\(419\) 9.60695e11 1.52273 0.761364 0.648324i \(-0.224530\pi\)
0.761364 + 0.648324i \(0.224530\pi\)
\(420\) 0 0
\(421\) 1.82836e11 0.283657 0.141828 0.989891i \(-0.454702\pi\)
0.141828 + 0.989891i \(0.454702\pi\)
\(422\) 0 0
\(423\) −1.33160e12 −2.02229
\(424\) 0 0
\(425\) 3.39653e10 0.0504994
\(426\) 0 0
\(427\) −2.06007e11 −0.299886
\(428\) 0 0
\(429\) 5.62361e11 0.801599
\(430\) 0 0
\(431\) −7.99636e11 −1.11621 −0.558103 0.829772i \(-0.688471\pi\)
−0.558103 + 0.829772i \(0.688471\pi\)
\(432\) 0 0
\(433\) −7.10514e11 −0.971353 −0.485676 0.874139i \(-0.661427\pi\)
−0.485676 + 0.874139i \(0.661427\pi\)
\(434\) 0 0
\(435\) −1.35277e12 −1.81143
\(436\) 0 0
\(437\) 2.04760e11 0.268583
\(438\) 0 0
\(439\) −2.00643e11 −0.257830 −0.128915 0.991656i \(-0.541149\pi\)
−0.128915 + 0.991656i \(0.541149\pi\)
\(440\) 0 0
\(441\) −1.06497e12 −1.34079
\(442\) 0 0
\(443\) −6.10644e11 −0.753305 −0.376653 0.926355i \(-0.622925\pi\)
−0.376653 + 0.926355i \(0.622925\pi\)
\(444\) 0 0
\(445\) 1.54931e12 1.87292
\(446\) 0 0
\(447\) −4.17910e11 −0.495107
\(448\) 0 0
\(449\) −2.36542e11 −0.274663 −0.137331 0.990525i \(-0.543853\pi\)
−0.137331 + 0.990525i \(0.543853\pi\)
\(450\) 0 0
\(451\) 2.18662e10 0.0248874
\(452\) 0 0
\(453\) −2.44238e12 −2.72503
\(454\) 0 0
\(455\) 1.17026e11 0.128006
\(456\) 0 0
\(457\) −9.93183e10 −0.106514 −0.0532570 0.998581i \(-0.516960\pi\)
−0.0532570 + 0.998581i \(0.516960\pi\)
\(458\) 0 0
\(459\) −1.18850e12 −1.24981
\(460\) 0 0
\(461\) −8.62553e11 −0.889471 −0.444735 0.895662i \(-0.646702\pi\)
−0.444735 + 0.895662i \(0.646702\pi\)
\(462\) 0 0
\(463\) 5.44955e11 0.551120 0.275560 0.961284i \(-0.411137\pi\)
0.275560 + 0.961284i \(0.411137\pi\)
\(464\) 0 0
\(465\) −3.75868e11 −0.372818
\(466\) 0 0
\(467\) 1.17483e12 1.14300 0.571502 0.820601i \(-0.306361\pi\)
0.571502 + 0.820601i \(0.306361\pi\)
\(468\) 0 0
\(469\) −7.77998e11 −0.742507
\(470\) 0 0
\(471\) −2.37594e12 −2.22455
\(472\) 0 0
\(473\) −6.79693e10 −0.0624364
\(474\) 0 0
\(475\) 2.98881e10 0.0269387
\(476\) 0 0
\(477\) 1.03528e12 0.915643
\(478\) 0 0
\(479\) 1.83595e12 1.59350 0.796748 0.604311i \(-0.206552\pi\)
0.796748 + 0.604311i \(0.206552\pi\)
\(480\) 0 0
\(481\) −1.57456e11 −0.134124
\(482\) 0 0
\(483\) 4.52438e11 0.378266
\(484\) 0 0
\(485\) −4.98711e11 −0.409271
\(486\) 0 0
\(487\) 4.49688e11 0.362269 0.181134 0.983458i \(-0.442023\pi\)
0.181134 + 0.983458i \(0.442023\pi\)
\(488\) 0 0
\(489\) 1.02586e11 0.0811334
\(490\) 0 0
\(491\) −1.13272e12 −0.879538 −0.439769 0.898111i \(-0.644940\pi\)
−0.439769 + 0.898111i \(0.644940\pi\)
\(492\) 0 0
\(493\) 1.53405e12 1.16957
\(494\) 0 0
\(495\) −3.93905e12 −2.94895
\(496\) 0 0
\(497\) 6.39948e11 0.470480
\(498\) 0 0
\(499\) −2.34370e11 −0.169220 −0.0846098 0.996414i \(-0.526964\pi\)
−0.0846098 + 0.996414i \(0.526964\pi\)
\(500\) 0 0
\(501\) −5.20254e11 −0.368931
\(502\) 0 0
\(503\) −9.14574e11 −0.637035 −0.318517 0.947917i \(-0.603185\pi\)
−0.318517 + 0.947917i \(0.603185\pi\)
\(504\) 0 0
\(505\) −1.57660e12 −1.07872
\(506\) 0 0
\(507\) 1.89008e11 0.127041
\(508\) 0 0
\(509\) −2.69648e12 −1.78060 −0.890301 0.455373i \(-0.849506\pi\)
−0.890301 + 0.455373i \(0.849506\pi\)
\(510\) 0 0
\(511\) −9.59128e11 −0.622276
\(512\) 0 0
\(513\) −1.04583e12 −0.666706
\(514\) 0 0
\(515\) 3.09827e11 0.194083
\(516\) 0 0
\(517\) 3.32781e12 2.04857
\(518\) 0 0
\(519\) 8.84861e11 0.535330
\(520\) 0 0
\(521\) 2.56880e11 0.152742 0.0763712 0.997079i \(-0.475667\pi\)
0.0763712 + 0.997079i \(0.475667\pi\)
\(522\) 0 0
\(523\) 2.91617e12 1.70434 0.852169 0.523266i \(-0.175287\pi\)
0.852169 + 0.523266i \(0.175287\pi\)
\(524\) 0 0
\(525\) 6.60409e10 0.0379399
\(526\) 0 0
\(527\) 4.26237e11 0.240715
\(528\) 0 0
\(529\) −1.37911e12 −0.765684
\(530\) 0 0
\(531\) −5.69473e12 −3.10848
\(532\) 0 0
\(533\) 7.34917e9 0.00394426
\(534\) 0 0
\(535\) −1.31886e12 −0.695993
\(536\) 0 0
\(537\) −6.15224e12 −3.19263
\(538\) 0 0
\(539\) 2.66145e12 1.35822
\(540\) 0 0
\(541\) 2.40787e12 1.20850 0.604248 0.796797i \(-0.293474\pi\)
0.604248 + 0.796797i \(0.293474\pi\)
\(542\) 0 0
\(543\) −2.85463e12 −1.40913
\(544\) 0 0
\(545\) 3.54996e12 1.72361
\(546\) 0 0
\(547\) 1.80446e12 0.861794 0.430897 0.902401i \(-0.358197\pi\)
0.430897 + 0.902401i \(0.358197\pi\)
\(548\) 0 0
\(549\) 2.33054e12 1.09492
\(550\) 0 0
\(551\) 1.34990e12 0.623904
\(552\) 0 0
\(553\) −8.66802e11 −0.394146
\(554\) 0 0
\(555\) 1.74131e12 0.779035
\(556\) 0 0
\(557\) −3.09918e12 −1.36426 −0.682131 0.731230i \(-0.738947\pi\)
−0.682131 + 0.731230i \(0.738947\pi\)
\(558\) 0 0
\(559\) −2.28443e10 −0.00989520
\(560\) 0 0
\(561\) 7.05258e12 3.00618
\(562\) 0 0
\(563\) 1.15491e12 0.484465 0.242232 0.970218i \(-0.422120\pi\)
0.242232 + 0.970218i \(0.422120\pi\)
\(564\) 0 0
\(565\) 2.98726e12 1.23326
\(566\) 0 0
\(567\) −2.99165e11 −0.121559
\(568\) 0 0
\(569\) −2.85199e12 −1.14062 −0.570311 0.821429i \(-0.693177\pi\)
−0.570311 + 0.821429i \(0.693177\pi\)
\(570\) 0 0
\(571\) −1.27646e12 −0.502512 −0.251256 0.967921i \(-0.580844\pi\)
−0.251256 + 0.967921i \(0.580844\pi\)
\(572\) 0 0
\(573\) −7.87220e12 −3.05071
\(574\) 0 0
\(575\) 6.16036e10 0.0235018
\(576\) 0 0
\(577\) 1.87473e11 0.0704120 0.0352060 0.999380i \(-0.488791\pi\)
0.0352060 + 0.999380i \(0.488791\pi\)
\(578\) 0 0
\(579\) 3.29839e12 1.21969
\(580\) 0 0
\(581\) −2.03172e12 −0.739725
\(582\) 0 0
\(583\) −2.58728e12 −0.927543
\(584\) 0 0
\(585\) −1.32390e12 −0.467363
\(586\) 0 0
\(587\) 5.26467e12 1.83021 0.915103 0.403221i \(-0.132109\pi\)
0.915103 + 0.403221i \(0.132109\pi\)
\(588\) 0 0
\(589\) 3.75071e11 0.128409
\(590\) 0 0
\(591\) 7.44208e12 2.50929
\(592\) 0 0
\(593\) 2.68817e12 0.892710 0.446355 0.894856i \(-0.352722\pi\)
0.446355 + 0.894856i \(0.352722\pi\)
\(594\) 0 0
\(595\) 1.46762e12 0.480051
\(596\) 0 0
\(597\) −7.65748e12 −2.46718
\(598\) 0 0
\(599\) −2.11643e12 −0.671713 −0.335857 0.941913i \(-0.609026\pi\)
−0.335857 + 0.941913i \(0.609026\pi\)
\(600\) 0 0
\(601\) 7.22761e11 0.225975 0.112987 0.993596i \(-0.463958\pi\)
0.112987 + 0.993596i \(0.463958\pi\)
\(602\) 0 0
\(603\) 8.80143e12 2.71097
\(604\) 0 0
\(605\) 6.62973e12 2.01186
\(606\) 0 0
\(607\) −3.09373e12 −0.924982 −0.462491 0.886624i \(-0.653044\pi\)
−0.462491 + 0.886624i \(0.653044\pi\)
\(608\) 0 0
\(609\) 2.98274e12 0.878693
\(610\) 0 0
\(611\) 1.11847e12 0.324666
\(612\) 0 0
\(613\) −1.72186e12 −0.492522 −0.246261 0.969204i \(-0.579202\pi\)
−0.246261 + 0.969204i \(0.579202\pi\)
\(614\) 0 0
\(615\) −8.12747e10 −0.0229096
\(616\) 0 0
\(617\) 2.06830e12 0.574554 0.287277 0.957848i \(-0.407250\pi\)
0.287277 + 0.957848i \(0.407250\pi\)
\(618\) 0 0
\(619\) 3.31744e12 0.908228 0.454114 0.890944i \(-0.349956\pi\)
0.454114 + 0.890944i \(0.349956\pi\)
\(620\) 0 0
\(621\) −2.15561e12 −0.581646
\(622\) 0 0
\(623\) −3.41610e12 −0.908521
\(624\) 0 0
\(625\) −3.62050e12 −0.949092
\(626\) 0 0
\(627\) 6.20597e12 1.60364
\(628\) 0 0
\(629\) −1.97465e12 −0.502994
\(630\) 0 0
\(631\) −3.59724e12 −0.903312 −0.451656 0.892192i \(-0.649167\pi\)
−0.451656 + 0.892192i \(0.649167\pi\)
\(632\) 0 0
\(633\) −8.02714e12 −1.98721
\(634\) 0 0
\(635\) 2.98524e12 0.728614
\(636\) 0 0
\(637\) 8.94507e11 0.215257
\(638\) 0 0
\(639\) −7.23968e12 −1.71777
\(640\) 0 0
\(641\) 3.01339e12 0.705008 0.352504 0.935810i \(-0.385330\pi\)
0.352504 + 0.935810i \(0.385330\pi\)
\(642\) 0 0
\(643\) −6.13019e12 −1.41424 −0.707122 0.707091i \(-0.750007\pi\)
−0.707122 + 0.707091i \(0.750007\pi\)
\(644\) 0 0
\(645\) 2.52636e11 0.0574746
\(646\) 0 0
\(647\) 8.79418e12 1.97300 0.986498 0.163773i \(-0.0523663\pi\)
0.986498 + 0.163773i \(0.0523663\pi\)
\(648\) 0 0
\(649\) 1.42317e13 3.14888
\(650\) 0 0
\(651\) 8.28758e11 0.180848
\(652\) 0 0
\(653\) −7.93494e12 −1.70779 −0.853895 0.520446i \(-0.825766\pi\)
−0.853895 + 0.520446i \(0.825766\pi\)
\(654\) 0 0
\(655\) −2.60258e12 −0.552482
\(656\) 0 0
\(657\) 1.08505e13 2.27200
\(658\) 0 0
\(659\) −3.99324e12 −0.824787 −0.412393 0.911006i \(-0.635307\pi\)
−0.412393 + 0.911006i \(0.635307\pi\)
\(660\) 0 0
\(661\) 6.52485e12 1.32942 0.664712 0.747099i \(-0.268554\pi\)
0.664712 + 0.747099i \(0.268554\pi\)
\(662\) 0 0
\(663\) 2.37035e12 0.476433
\(664\) 0 0
\(665\) 1.29144e12 0.256082
\(666\) 0 0
\(667\) 2.78233e12 0.544305
\(668\) 0 0
\(669\) −2.43486e12 −0.469955
\(670\) 0 0
\(671\) −5.82426e12 −1.10915
\(672\) 0 0
\(673\) 8.79096e12 1.65184 0.825921 0.563786i \(-0.190656\pi\)
0.825921 + 0.563786i \(0.190656\pi\)
\(674\) 0 0
\(675\) −3.14647e11 −0.0583387
\(676\) 0 0
\(677\) −1.01870e13 −1.86379 −0.931895 0.362729i \(-0.881845\pi\)
−0.931895 + 0.362729i \(0.881845\pi\)
\(678\) 0 0
\(679\) 1.09962e12 0.198530
\(680\) 0 0
\(681\) 1.16440e13 2.07462
\(682\) 0 0
\(683\) −6.13932e11 −0.107951 −0.0539756 0.998542i \(-0.517189\pi\)
−0.0539756 + 0.998542i \(0.517189\pi\)
\(684\) 0 0
\(685\) −1.63526e12 −0.283779
\(686\) 0 0
\(687\) −1.88730e13 −3.23248
\(688\) 0 0
\(689\) −8.69576e11 −0.147001
\(690\) 0 0
\(691\) −7.98229e12 −1.33191 −0.665957 0.745990i \(-0.731977\pi\)
−0.665957 + 0.745990i \(0.731977\pi\)
\(692\) 0 0
\(693\) 8.68527e12 1.43049
\(694\) 0 0
\(695\) 1.91711e12 0.311684
\(696\) 0 0
\(697\) 9.21660e10 0.0147919
\(698\) 0 0
\(699\) −9.66017e12 −1.53052
\(700\) 0 0
\(701\) 5.04751e12 0.789490 0.394745 0.918791i \(-0.370833\pi\)
0.394745 + 0.918791i \(0.370833\pi\)
\(702\) 0 0
\(703\) −1.73761e12 −0.268321
\(704\) 0 0
\(705\) −1.23692e13 −1.88577
\(706\) 0 0
\(707\) 3.47627e12 0.523270
\(708\) 0 0
\(709\) 1.76603e12 0.262477 0.131238 0.991351i \(-0.458105\pi\)
0.131238 + 0.991351i \(0.458105\pi\)
\(710\) 0 0
\(711\) 9.80607e12 1.43907
\(712\) 0 0
\(713\) 7.73075e11 0.112026
\(714\) 0 0
\(715\) 3.30857e12 0.473437
\(716\) 0 0
\(717\) 6.01338e12 0.849733
\(718\) 0 0
\(719\) −1.34595e12 −0.187823 −0.0939116 0.995581i \(-0.529937\pi\)
−0.0939116 + 0.995581i \(0.529937\pi\)
\(720\) 0 0
\(721\) −6.83143e11 −0.0941462
\(722\) 0 0
\(723\) 5.98046e12 0.813977
\(724\) 0 0
\(725\) 4.06127e11 0.0545935
\(726\) 0 0
\(727\) 1.04449e13 1.38676 0.693379 0.720573i \(-0.256121\pi\)
0.693379 + 0.720573i \(0.256121\pi\)
\(728\) 0 0
\(729\) −1.17483e13 −1.54065
\(730\) 0 0
\(731\) −2.86491e11 −0.0371093
\(732\) 0 0
\(733\) 6.39102e12 0.817716 0.408858 0.912598i \(-0.365927\pi\)
0.408858 + 0.912598i \(0.365927\pi\)
\(734\) 0 0
\(735\) −9.89239e12 −1.25028
\(736\) 0 0
\(737\) −2.19957e13 −2.74621
\(738\) 0 0
\(739\) −3.46900e12 −0.427863 −0.213931 0.976849i \(-0.568627\pi\)
−0.213931 + 0.976849i \(0.568627\pi\)
\(740\) 0 0
\(741\) 2.08581e12 0.254151
\(742\) 0 0
\(743\) 4.84775e12 0.583566 0.291783 0.956485i \(-0.405751\pi\)
0.291783 + 0.956485i \(0.405751\pi\)
\(744\) 0 0
\(745\) −2.45871e12 −0.292418
\(746\) 0 0
\(747\) 2.29847e13 2.70082
\(748\) 0 0
\(749\) 2.90797e12 0.337615
\(750\) 0 0
\(751\) −1.45382e13 −1.66775 −0.833874 0.551955i \(-0.813882\pi\)
−0.833874 + 0.551955i \(0.813882\pi\)
\(752\) 0 0
\(753\) 1.02382e13 1.16051
\(754\) 0 0
\(755\) −1.43694e13 −1.60945
\(756\) 0 0
\(757\) 2.50225e12 0.276948 0.138474 0.990366i \(-0.455780\pi\)
0.138474 + 0.990366i \(0.455780\pi\)
\(758\) 0 0
\(759\) 1.27914e13 1.39904
\(760\) 0 0
\(761\) 1.25772e13 1.35941 0.679707 0.733484i \(-0.262107\pi\)
0.679707 + 0.733484i \(0.262107\pi\)
\(762\) 0 0
\(763\) −7.82736e12 −0.836094
\(764\) 0 0
\(765\) −1.66031e13 −1.75272
\(766\) 0 0
\(767\) 4.78323e12 0.499048
\(768\) 0 0
\(769\) 6.04403e12 0.623244 0.311622 0.950206i \(-0.399128\pi\)
0.311622 + 0.950206i \(0.399128\pi\)
\(770\) 0 0
\(771\) 2.96943e13 3.02641
\(772\) 0 0
\(773\) 6.97559e12 0.702705 0.351352 0.936243i \(-0.385722\pi\)
0.351352 + 0.936243i \(0.385722\pi\)
\(774\) 0 0
\(775\) 1.12843e11 0.0112361
\(776\) 0 0
\(777\) −3.83944e12 −0.377897
\(778\) 0 0
\(779\) 8.11022e10 0.00789068
\(780\) 0 0
\(781\) 1.80927e13 1.74010
\(782\) 0 0
\(783\) −1.42111e13 −1.35113
\(784\) 0 0
\(785\) −1.39785e13 −1.31385
\(786\) 0 0
\(787\) −7.96379e12 −0.740003 −0.370001 0.929031i \(-0.620643\pi\)
−0.370001 + 0.929031i \(0.620643\pi\)
\(788\) 0 0
\(789\) −1.17144e13 −1.07615
\(790\) 0 0
\(791\) −6.58665e12 −0.598233
\(792\) 0 0
\(793\) −1.95752e12 −0.175783
\(794\) 0 0
\(795\) 9.61667e12 0.853833
\(796\) 0 0
\(797\) 1.07855e13 0.946845 0.473422 0.880836i \(-0.343018\pi\)
0.473422 + 0.880836i \(0.343018\pi\)
\(798\) 0 0
\(799\) 1.40267e13 1.21757
\(800\) 0 0
\(801\) 3.86461e13 3.31711
\(802\) 0 0
\(803\) −2.71166e13 −2.30152
\(804\) 0 0
\(805\) 2.66185e12 0.223410
\(806\) 0 0
\(807\) 1.87295e13 1.55452
\(808\) 0 0
\(809\) 5.85843e12 0.480854 0.240427 0.970667i \(-0.422713\pi\)
0.240427 + 0.970667i \(0.422713\pi\)
\(810\) 0 0
\(811\) −1.03329e12 −0.0838744 −0.0419372 0.999120i \(-0.513353\pi\)
−0.0419372 + 0.999120i \(0.513353\pi\)
\(812\) 0 0
\(813\) −7.48228e12 −0.600657
\(814\) 0 0
\(815\) 6.03551e11 0.0479187
\(816\) 0 0
\(817\) −2.52100e11 −0.0197958
\(818\) 0 0
\(819\) 2.91910e12 0.226710
\(820\) 0 0
\(821\) −5.24141e12 −0.402628 −0.201314 0.979527i \(-0.564521\pi\)
−0.201314 + 0.979527i \(0.564521\pi\)
\(822\) 0 0
\(823\) 1.63129e13 1.23946 0.619729 0.784816i \(-0.287243\pi\)
0.619729 + 0.784816i \(0.287243\pi\)
\(824\) 0 0
\(825\) 1.86712e12 0.140323
\(826\) 0 0
\(827\) 1.99959e13 1.48650 0.743252 0.669012i \(-0.233282\pi\)
0.743252 + 0.669012i \(0.233282\pi\)
\(828\) 0 0
\(829\) −6.26388e12 −0.460626 −0.230313 0.973117i \(-0.573975\pi\)
−0.230313 + 0.973117i \(0.573975\pi\)
\(830\) 0 0
\(831\) 2.16860e13 1.57752
\(832\) 0 0
\(833\) 1.12180e13 0.807262
\(834\) 0 0
\(835\) −3.06083e12 −0.217897
\(836\) 0 0
\(837\) −3.94856e12 −0.278083
\(838\) 0 0
\(839\) −1.52462e13 −1.06227 −0.531133 0.847289i \(-0.678233\pi\)
−0.531133 + 0.847289i \(0.678233\pi\)
\(840\) 0 0
\(841\) 3.83559e12 0.264393
\(842\) 0 0
\(843\) 2.77067e13 1.88956
\(844\) 0 0
\(845\) 1.11200e12 0.0750325
\(846\) 0 0
\(847\) −1.46180e13 −0.975917
\(848\) 0 0
\(849\) −4.23981e13 −2.80067
\(850\) 0 0
\(851\) −3.58147e12 −0.234088
\(852\) 0 0
\(853\) 1.61356e13 1.04355 0.521775 0.853083i \(-0.325270\pi\)
0.521775 + 0.853083i \(0.325270\pi\)
\(854\) 0 0
\(855\) −1.46100e13 −0.934982
\(856\) 0 0
\(857\) 2.75401e12 0.174402 0.0872011 0.996191i \(-0.472208\pi\)
0.0872011 + 0.996191i \(0.472208\pi\)
\(858\) 0 0
\(859\) −6.38891e12 −0.400366 −0.200183 0.979758i \(-0.564154\pi\)
−0.200183 + 0.979758i \(0.564154\pi\)
\(860\) 0 0
\(861\) 1.79204e11 0.0111131
\(862\) 0 0
\(863\) −9.56558e11 −0.0587033 −0.0293517 0.999569i \(-0.509344\pi\)
−0.0293517 + 0.999569i \(0.509344\pi\)
\(864\) 0 0
\(865\) 5.20595e12 0.316175
\(866\) 0 0
\(867\) 2.24936e12 0.135199
\(868\) 0 0
\(869\) −2.45063e13 −1.45777
\(870\) 0 0
\(871\) −7.39268e12 −0.435231
\(872\) 0 0
\(873\) −1.24399e13 −0.724856
\(874\) 0 0
\(875\) 8.39126e12 0.483940
\(876\) 0 0
\(877\) 7.09696e12 0.405111 0.202556 0.979271i \(-0.435075\pi\)
0.202556 + 0.979271i \(0.435075\pi\)
\(878\) 0 0
\(879\) −3.63092e13 −2.05148
\(880\) 0 0
\(881\) −2.00749e13 −1.12270 −0.561348 0.827580i \(-0.689717\pi\)
−0.561348 + 0.827580i \(0.689717\pi\)
\(882\) 0 0
\(883\) 7.53737e12 0.417250 0.208625 0.977996i \(-0.433101\pi\)
0.208625 + 0.977996i \(0.433101\pi\)
\(884\) 0 0
\(885\) −5.28980e13 −2.89864
\(886\) 0 0
\(887\) −3.17892e13 −1.72434 −0.862172 0.506616i \(-0.830896\pi\)
−0.862172 + 0.506616i \(0.830896\pi\)
\(888\) 0 0
\(889\) −6.58221e12 −0.353439
\(890\) 0 0
\(891\) −8.45803e12 −0.449593
\(892\) 0 0
\(893\) 1.23429e13 0.649510
\(894\) 0 0
\(895\) −3.61958e13 −1.88562
\(896\) 0 0
\(897\) 4.29915e12 0.221726
\(898\) 0 0
\(899\) 5.09656e12 0.260231
\(900\) 0 0
\(901\) −1.09054e13 −0.551288
\(902\) 0 0
\(903\) −5.57041e11 −0.0278800
\(904\) 0 0
\(905\) −1.67948e13 −0.832253
\(906\) 0 0
\(907\) −1.54349e13 −0.757306 −0.378653 0.925539i \(-0.623613\pi\)
−0.378653 + 0.925539i \(0.623613\pi\)
\(908\) 0 0
\(909\) −3.93268e13 −1.91052
\(910\) 0 0
\(911\) −2.54205e13 −1.22279 −0.611395 0.791326i \(-0.709391\pi\)
−0.611395 + 0.791326i \(0.709391\pi\)
\(912\) 0 0
\(913\) −5.74410e13 −2.73592
\(914\) 0 0
\(915\) 2.16482e13 1.02100
\(916\) 0 0
\(917\) 5.73847e12 0.268000
\(918\) 0 0
\(919\) −1.15892e13 −0.535963 −0.267982 0.963424i \(-0.586357\pi\)
−0.267982 + 0.963424i \(0.586357\pi\)
\(920\) 0 0
\(921\) 3.94159e12 0.180511
\(922\) 0 0
\(923\) 6.08090e12 0.275778
\(924\) 0 0
\(925\) −5.22775e11 −0.0234788
\(926\) 0 0
\(927\) 7.72835e12 0.343738
\(928\) 0 0
\(929\) −3.69726e13 −1.62858 −0.814289 0.580459i \(-0.802873\pi\)
−0.814289 + 0.580459i \(0.802873\pi\)
\(930\) 0 0
\(931\) 9.87140e12 0.430631
\(932\) 0 0
\(933\) 5.11149e13 2.20841
\(934\) 0 0
\(935\) 4.14928e13 1.77550
\(936\) 0 0
\(937\) −2.35152e13 −0.996601 −0.498301 0.867004i \(-0.666042\pi\)
−0.498301 + 0.867004i \(0.666042\pi\)
\(938\) 0 0
\(939\) 4.00472e13 1.68103
\(940\) 0 0
\(941\) −2.49239e13 −1.03625 −0.518123 0.855306i \(-0.673369\pi\)
−0.518123 + 0.855306i \(0.673369\pi\)
\(942\) 0 0
\(943\) 1.67163e11 0.00688397
\(944\) 0 0
\(945\) −1.35957e13 −0.554573
\(946\) 0 0
\(947\) 3.07652e13 1.24304 0.621519 0.783399i \(-0.286516\pi\)
0.621519 + 0.783399i \(0.286516\pi\)
\(948\) 0 0
\(949\) −9.11381e12 −0.364756
\(950\) 0 0
\(951\) −4.33846e13 −1.71998
\(952\) 0 0
\(953\) −1.50639e13 −0.591586 −0.295793 0.955252i \(-0.595584\pi\)
−0.295793 + 0.955252i \(0.595584\pi\)
\(954\) 0 0
\(955\) −4.63149e13 −1.80180
\(956\) 0 0
\(957\) 8.43283e13 3.24990
\(958\) 0 0
\(959\) 3.60562e12 0.137656
\(960\) 0 0
\(961\) −2.50235e13 −0.946441
\(962\) 0 0
\(963\) −3.28976e13 −1.23267
\(964\) 0 0
\(965\) 1.94056e13 0.720367
\(966\) 0 0
\(967\) 5.17914e11 0.0190475 0.00952377 0.999955i \(-0.496968\pi\)
0.00952377 + 0.999955i \(0.496968\pi\)
\(968\) 0 0
\(969\) 2.61582e13 0.953126
\(970\) 0 0
\(971\) 1.97223e13 0.711987 0.355993 0.934488i \(-0.384143\pi\)
0.355993 + 0.934488i \(0.384143\pi\)
\(972\) 0 0
\(973\) −4.22706e12 −0.151193
\(974\) 0 0
\(975\) 6.27532e11 0.0222390
\(976\) 0 0
\(977\) −3.01410e13 −1.05836 −0.529178 0.848511i \(-0.677500\pi\)
−0.529178 + 0.848511i \(0.677500\pi\)
\(978\) 0 0
\(979\) −9.65805e13 −3.36022
\(980\) 0 0
\(981\) 8.85504e13 3.05267
\(982\) 0 0
\(983\) 3.44393e13 1.17642 0.588211 0.808708i \(-0.299833\pi\)
0.588211 + 0.808708i \(0.299833\pi\)
\(984\) 0 0
\(985\) 4.37844e13 1.48203
\(986\) 0 0
\(987\) 2.72730e13 0.914756
\(988\) 0 0
\(989\) −5.19614e11 −0.0172702
\(990\) 0 0
\(991\) −2.44194e13 −0.804273 −0.402137 0.915580i \(-0.631732\pi\)
−0.402137 + 0.915580i \(0.631732\pi\)
\(992\) 0 0
\(993\) −1.67959e13 −0.548192
\(994\) 0 0
\(995\) −4.50516e13 −1.45716
\(996\) 0 0
\(997\) −1.69672e13 −0.543853 −0.271926 0.962318i \(-0.587661\pi\)
−0.271926 + 0.962318i \(0.587661\pi\)
\(998\) 0 0
\(999\) 1.82927e13 0.581078
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.l.1.7 7
4.3 odd 2 104.10.a.c.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.a.c.1.1 7 4.3 odd 2
208.10.a.l.1.7 7 1.1 even 1 trivial