Properties

Label 208.10
Level 208
Weight 10
Dimension 6674
Nonzero newspaces 14
Sturm bound 26880
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) = \( 10 \)
Nonzero newspaces: \( 14 \)
Sturm bound: \(26880\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(208))\).

Total New Old
Modular forms 12264 6772 5492
Cusp forms 11928 6674 5254
Eisenstein series 336 98 238

Trace form

\( 6674 q - 20 q^{2} + 146 q^{3} - 360 q^{4} + 694 q^{5} + 4360 q^{6} - 2770 q^{7} + 1408 q^{8} - 11630 q^{9} - 9392 q^{10} - 109750 q^{11} - 434336 q^{12} + 43052 q^{13} + 267032 q^{14} - 930906 q^{15} + 1634488 q^{16}+ \cdots - 15380541518 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(208))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
208.10.a \(\chi_{208}(1, \cdot)\) 208.10.a.a 1 1
208.10.a.b 1
208.10.a.c 1
208.10.a.d 3
208.10.a.e 3
208.10.a.f 4
208.10.a.g 4
208.10.a.h 5
208.10.a.i 5
208.10.a.j 6
208.10.a.k 6
208.10.a.l 7
208.10.a.m 8
208.10.b \(\chi_{208}(105, \cdot)\) None 0 1
208.10.e \(\chi_{208}(25, \cdot)\) None 0 1
208.10.f \(\chi_{208}(129, \cdot)\) 208.10.f.a 10 1
208.10.f.b 10
208.10.f.c 10
208.10.f.d 32
208.10.i \(\chi_{208}(81, \cdot)\) n/a 124 2
208.10.k \(\chi_{208}(31, \cdot)\) n/a 126 2
208.10.l \(\chi_{208}(83, \cdot)\) n/a 500 2
208.10.n \(\chi_{208}(53, \cdot)\) n/a 432 2
208.10.p \(\chi_{208}(77, \cdot)\) n/a 500 2
208.10.s \(\chi_{208}(99, \cdot)\) n/a 500 2
208.10.u \(\chi_{208}(135, \cdot)\) None 0 2
208.10.w \(\chi_{208}(17, \cdot)\) n/a 124 2
208.10.z \(\chi_{208}(9, \cdot)\) None 0 2
208.10.ba \(\chi_{208}(121, \cdot)\) None 0 2
208.10.bc \(\chi_{208}(7, \cdot)\) None 0 4
208.10.bf \(\chi_{208}(11, \cdot)\) n/a 1000 4
208.10.bh \(\chi_{208}(69, \cdot)\) n/a 1000 4
208.10.bj \(\chi_{208}(29, \cdot)\) n/a 1000 4
208.10.bk \(\chi_{208}(115, \cdot)\) n/a 1000 4
208.10.bm \(\chi_{208}(15, \cdot)\) n/a 252 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(208))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_1(208)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 5}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 2}\)