Properties

Label 2-208-1.1-c9-0-43
Degree $2$
Conductor $208$
Sign $-1$
Analytic cond. $107.127$
Root an. cond. $10.3502$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 208.·3-s − 1.44e3·5-s − 8.05e3·7-s + 2.39e4·9-s + 7.41e4·11-s − 2.85e4·13-s − 3.02e5·15-s − 3.78e5·17-s + 8.40e5·19-s − 1.68e6·21-s + 2.29e6·23-s + 1.40e5·25-s + 8.85e5·27-s + 3.59e6·29-s − 4.11e5·31-s + 1.54e7·33-s + 1.16e7·35-s − 1.48e7·37-s − 5.96e6·39-s − 1.38e7·41-s − 3.28e7·43-s − 3.46e7·45-s − 4.00e7·47-s + 2.44e7·49-s − 7.91e7·51-s − 8.39e7·53-s − 1.07e8·55-s + ⋯
L(s)  = 1  + 1.48·3-s − 1.03·5-s − 1.26·7-s + 1.21·9-s + 1.52·11-s − 0.277·13-s − 1.54·15-s − 1.10·17-s + 1.47·19-s − 1.88·21-s + 1.71·23-s + 0.0717·25-s + 0.320·27-s + 0.943·29-s − 0.0799·31-s + 2.27·33-s + 1.31·35-s − 1.30·37-s − 0.412·39-s − 0.763·41-s − 1.46·43-s − 1.25·45-s − 1.19·47-s + 0.606·49-s − 1.63·51-s − 1.46·53-s − 1.58·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(208\)    =    \(2^{4} \cdot 13\)
Sign: $-1$
Analytic conductor: \(107.127\)
Root analytic conductor: \(10.3502\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 208,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + 2.85e4T \)
good3 \( 1 - 208.T + 1.96e4T^{2} \)
5 \( 1 + 1.44e3T + 1.95e6T^{2} \)
7 \( 1 + 8.05e3T + 4.03e7T^{2} \)
11 \( 1 - 7.41e4T + 2.35e9T^{2} \)
17 \( 1 + 3.78e5T + 1.18e11T^{2} \)
19 \( 1 - 8.40e5T + 3.22e11T^{2} \)
23 \( 1 - 2.29e6T + 1.80e12T^{2} \)
29 \( 1 - 3.59e6T + 1.45e13T^{2} \)
31 \( 1 + 4.11e5T + 2.64e13T^{2} \)
37 \( 1 + 1.48e7T + 1.29e14T^{2} \)
41 \( 1 + 1.38e7T + 3.27e14T^{2} \)
43 \( 1 + 3.28e7T + 5.02e14T^{2} \)
47 \( 1 + 4.00e7T + 1.11e15T^{2} \)
53 \( 1 + 8.39e7T + 3.29e15T^{2} \)
59 \( 1 - 3.39e7T + 8.66e15T^{2} \)
61 \( 1 + 1.87e8T + 1.16e16T^{2} \)
67 \( 1 + 7.39e7T + 2.72e16T^{2} \)
71 \( 1 + 6.87e7T + 4.58e16T^{2} \)
73 \( 1 - 1.04e8T + 5.88e16T^{2} \)
79 \( 1 + 5.67e8T + 1.19e17T^{2} \)
83 \( 1 - 7.75e7T + 1.86e17T^{2} \)
89 \( 1 + 3.54e8T + 3.50e17T^{2} \)
97 \( 1 - 1.17e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.835002930420432044285170927763, −9.155045206748317586005613405169, −8.460066599533881206166362059240, −7.23122058433312549763818148010, −6.63274038404512049936778908660, −4.61558458993928525711181355470, −3.37004361973436265509490251480, −3.16838297667394621656005310768, −1.47549472449350956807436582882, 0, 1.47549472449350956807436582882, 3.16838297667394621656005310768, 3.37004361973436265509490251480, 4.61558458993928525711181355470, 6.63274038404512049936778908660, 7.23122058433312549763818148010, 8.460066599533881206166362059240, 9.155045206748317586005613405169, 9.835002930420432044285170927763

Graph of the $Z$-function along the critical line