Dirichlet series
L(s) = 1 | − 13·3-s − 801·5-s + 1.09e3·7-s − 2.48e4·9-s − 3.22e4·11-s − 1.99e5·13-s + 1.04e4·15-s − 8.70e5·17-s + 1.28e5·19-s − 1.41e4·21-s − 2.19e6·23-s − 6.01e6·25-s − 1.40e6·27-s + 6.32e6·29-s + 1.66e6·31-s + 4.18e5·33-s − 8.73e5·35-s + 5.05e6·37-s + 2.59e6·39-s + 1.47e7·41-s − 9.40e6·43-s + 1.99e7·45-s − 1.33e8·47-s − 1.18e8·49-s + 1.13e7·51-s + 4.39e7·53-s + 2.58e7·55-s + ⋯ |
L(s) = 1 | − 0.0926·3-s − 0.573·5-s + 0.171·7-s − 1.26·9-s − 0.663·11-s − 1.94·13-s + 0.0531·15-s − 2.52·17-s + 0.227·19-s − 0.0159·21-s − 1.63·23-s − 3.08·25-s − 0.508·27-s + 1.66·29-s + 0.322·31-s + 0.0614·33-s − 0.0984·35-s + 0.443·37-s + 0.179·39-s + 0.816·41-s − 0.419·43-s + 0.724·45-s − 3.98·47-s − 2.93·49-s + 0.234·51-s + 0.765·53-s + 0.380·55-s + ⋯ |
Functional equation
Invariants
Degree: | \(14\) |
Conductor: | \(2^{28} \cdot 13^{7}\) |
Sign: | $-1$ |
Analytic conductor: | \(1.61921\times 10^{14}\) |
Root analytic conductor: | \(10.3502\) |
Motivic weight: | \(9\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(7\) |
Selberg data: | \((14,\ 2^{28} \cdot 13^{7} ,\ ( \ : [9/2]^{7} ),\ -1 )\) |
Particular Values
\(L(5)\) | \(=\) | \(0\) |
\(L(\frac12)\) | \(=\) | \(0\) |
\(L(\frac{11}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $F_p(T)$ | |
---|---|---|
bad | 2 | \( 1 \) |
13 | \( ( 1 + p^{4} T )^{7} \) | |
good | 3 | \( 1 + 13 T + 25043 T^{2} + 2053328 T^{3} + 20124160 p^{3} T^{4} + 6031003952 p^{2} T^{5} + 182979860038 p^{4} T^{6} + 19312574354462 p^{4} T^{7} + 182979860038 p^{13} T^{8} + 6031003952 p^{20} T^{9} + 20124160 p^{30} T^{10} + 2053328 p^{36} T^{11} + 25043 p^{45} T^{12} + 13 p^{54} T^{13} + p^{63} T^{14} \) |
5 | \( 1 + 801 T + 6660733 T^{2} + 5064355348 T^{3} + 21716297122556 T^{4} + 17062730645508676 T^{5} + 10382801094399988062 p T^{6} + \)\(15\!\cdots\!42\)\( p^{2} T^{7} + 10382801094399988062 p^{10} T^{8} + 17062730645508676 p^{18} T^{9} + 21716297122556 p^{27} T^{10} + 5064355348 p^{36} T^{11} + 6660733 p^{45} T^{12} + 801 p^{54} T^{13} + p^{63} T^{14} \) | |
7 | \( 1 - 1091 T + 119560271 T^{2} - 368744923300 T^{3} + 1014627536780272 p T^{4} - 829089462002051456 p^{2} T^{5} + \)\(92\!\cdots\!30\)\( p^{3} T^{6} - \)\(91\!\cdots\!42\)\( p^{4} T^{7} + \)\(92\!\cdots\!30\)\( p^{12} T^{8} - 829089462002051456 p^{20} T^{9} + 1014627536780272 p^{28} T^{10} - 368744923300 p^{36} T^{11} + 119560271 p^{45} T^{12} - 1091 p^{54} T^{13} + p^{63} T^{14} \) | |
11 | \( 1 + 32218 T + 6772858225 T^{2} + 338396345843676 T^{3} + 25826609872433774457 T^{4} + \)\(12\!\cdots\!22\)\( T^{5} + \)\(85\!\cdots\!61\)\( T^{6} + \)\(28\!\cdots\!80\)\( T^{7} + \)\(85\!\cdots\!61\)\( p^{9} T^{8} + \)\(12\!\cdots\!22\)\( p^{18} T^{9} + 25826609872433774457 p^{27} T^{10} + 338396345843676 p^{36} T^{11} + 6772858225 p^{45} T^{12} + 32218 p^{54} T^{13} + p^{63} T^{14} \) | |
17 | \( 1 + 870531 T + 741608121217 T^{2} + 21051539881489764 p T^{3} + \)\(17\!\cdots\!96\)\( T^{4} + \)\(62\!\cdots\!40\)\( T^{5} + \)\(25\!\cdots\!18\)\( T^{6} + \)\(77\!\cdots\!22\)\( T^{7} + \)\(25\!\cdots\!18\)\( p^{9} T^{8} + \)\(62\!\cdots\!40\)\( p^{18} T^{9} + \)\(17\!\cdots\!96\)\( p^{27} T^{10} + 21051539881489764 p^{37} T^{11} + 741608121217 p^{45} T^{12} + 870531 p^{54} T^{13} + p^{63} T^{14} \) | |
19 | \( 1 - 128950 T + 931518479673 T^{2} - 118566279292598212 T^{3} + \)\(55\!\cdots\!17\)\( T^{4} - \)\(62\!\cdots\!62\)\( T^{5} + \)\(24\!\cdots\!01\)\( T^{6} - \)\(25\!\cdots\!84\)\( T^{7} + \)\(24\!\cdots\!01\)\( p^{9} T^{8} - \)\(62\!\cdots\!62\)\( p^{18} T^{9} + \)\(55\!\cdots\!17\)\( p^{27} T^{10} - 118566279292598212 p^{36} T^{11} + 931518479673 p^{45} T^{12} - 128950 p^{54} T^{13} + p^{63} T^{14} \) | |
23 | \( 1 + 2198844 T + 8784130795521 T^{2} + 12396998084996460760 T^{3} + \)\(25\!\cdots\!77\)\( T^{4} + \)\(23\!\cdots\!48\)\( T^{5} + \)\(38\!\cdots\!61\)\( T^{6} + \)\(31\!\cdots\!72\)\( T^{7} + \)\(38\!\cdots\!61\)\( p^{9} T^{8} + \)\(23\!\cdots\!48\)\( p^{18} T^{9} + \)\(25\!\cdots\!77\)\( p^{27} T^{10} + 12396998084996460760 p^{36} T^{11} + 8784130795521 p^{45} T^{12} + 2198844 p^{54} T^{13} + p^{63} T^{14} \) | |
29 | \( 1 - 6327710 T + 77169838924031 T^{2} - \)\(36\!\cdots\!96\)\( T^{3} + \)\(27\!\cdots\!57\)\( T^{4} - \)\(10\!\cdots\!46\)\( T^{5} + \)\(60\!\cdots\!03\)\( T^{6} - \)\(19\!\cdots\!24\)\( T^{7} + \)\(60\!\cdots\!03\)\( p^{9} T^{8} - \)\(10\!\cdots\!46\)\( p^{18} T^{9} + \)\(27\!\cdots\!57\)\( p^{27} T^{10} - \)\(36\!\cdots\!96\)\( p^{36} T^{11} + 77169838924031 p^{45} T^{12} - 6327710 p^{54} T^{13} + p^{63} T^{14} \) | |
31 | \( 1 - 1660376 T + 82831486974541 T^{2} - \)\(27\!\cdots\!40\)\( T^{3} + \)\(35\!\cdots\!65\)\( T^{4} - \)\(15\!\cdots\!84\)\( T^{5} + \)\(12\!\cdots\!45\)\( T^{6} - \)\(51\!\cdots\!80\)\( T^{7} + \)\(12\!\cdots\!45\)\( p^{9} T^{8} - \)\(15\!\cdots\!84\)\( p^{18} T^{9} + \)\(35\!\cdots\!65\)\( p^{27} T^{10} - \)\(27\!\cdots\!40\)\( p^{36} T^{11} + 82831486974541 p^{45} T^{12} - 1660376 p^{54} T^{13} + p^{63} T^{14} \) | |
37 | \( 1 - 5058787 T + 516659224187757 T^{2} - \)\(22\!\cdots\!04\)\( T^{3} + \)\(14\!\cdots\!44\)\( T^{4} - \)\(54\!\cdots\!16\)\( T^{5} + \)\(26\!\cdots\!62\)\( T^{6} - \)\(84\!\cdots\!42\)\( T^{7} + \)\(26\!\cdots\!62\)\( p^{9} T^{8} - \)\(54\!\cdots\!16\)\( p^{18} T^{9} + \)\(14\!\cdots\!44\)\( p^{27} T^{10} - \)\(22\!\cdots\!04\)\( p^{36} T^{11} + 516659224187757 p^{45} T^{12} - 5058787 p^{54} T^{13} + p^{63} T^{14} \) | |
41 | \( 1 - 14779748 T + 1231265342825987 T^{2} - \)\(18\!\cdots\!60\)\( T^{3} + \)\(78\!\cdots\!45\)\( T^{4} - \)\(10\!\cdots\!64\)\( T^{5} + \)\(33\!\cdots\!47\)\( T^{6} - \)\(40\!\cdots\!96\)\( T^{7} + \)\(33\!\cdots\!47\)\( p^{9} T^{8} - \)\(10\!\cdots\!64\)\( p^{18} T^{9} + \)\(78\!\cdots\!45\)\( p^{27} T^{10} - \)\(18\!\cdots\!60\)\( p^{36} T^{11} + 1231265342825987 p^{45} T^{12} - 14779748 p^{54} T^{13} + p^{63} T^{14} \) | |
43 | \( 1 + 9405075 T + 2440630760951027 T^{2} + \)\(27\!\cdots\!24\)\( T^{3} + \)\(28\!\cdots\!48\)\( T^{4} + \)\(32\!\cdots\!96\)\( T^{5} + \)\(21\!\cdots\!30\)\( T^{6} + \)\(20\!\cdots\!02\)\( T^{7} + \)\(21\!\cdots\!30\)\( p^{9} T^{8} + \)\(32\!\cdots\!96\)\( p^{18} T^{9} + \)\(28\!\cdots\!48\)\( p^{27} T^{10} + \)\(27\!\cdots\!24\)\( p^{36} T^{11} + 2440630760951027 p^{45} T^{12} + 9405075 p^{54} T^{13} + p^{63} T^{14} \) | |
47 | \( 1 + 133415721 T + 11879377207819783 T^{2} + \)\(15\!\cdots\!00\)\( p T^{3} + \)\(37\!\cdots\!12\)\( T^{4} + \)\(15\!\cdots\!96\)\( T^{5} + \)\(61\!\cdots\!10\)\( T^{6} + \)\(21\!\cdots\!54\)\( T^{7} + \)\(61\!\cdots\!10\)\( p^{9} T^{8} + \)\(15\!\cdots\!96\)\( p^{18} T^{9} + \)\(37\!\cdots\!12\)\( p^{27} T^{10} + \)\(15\!\cdots\!00\)\( p^{37} T^{11} + 11879377207819783 p^{45} T^{12} + 133415721 p^{54} T^{13} + p^{63} T^{14} \) | |
53 | \( 1 - 43962424 T + 16195850712298279 T^{2} - \)\(48\!\cdots\!60\)\( T^{3} + \)\(11\!\cdots\!25\)\( T^{4} - \)\(24\!\cdots\!36\)\( T^{5} + \)\(52\!\cdots\!15\)\( T^{6} - \)\(84\!\cdots\!24\)\( T^{7} + \)\(52\!\cdots\!15\)\( p^{9} T^{8} - \)\(24\!\cdots\!36\)\( p^{18} T^{9} + \)\(11\!\cdots\!25\)\( p^{27} T^{10} - \)\(48\!\cdots\!60\)\( p^{36} T^{11} + 16195850712298279 p^{45} T^{12} - 43962424 p^{54} T^{13} + p^{63} T^{14} \) | |
59 | \( 1 + 22370274 T + 251316951725651 p T^{2} + \)\(13\!\cdots\!12\)\( T^{3} + \)\(79\!\cdots\!65\)\( T^{4} - \)\(97\!\cdots\!82\)\( T^{5} - \)\(25\!\cdots\!59\)\( T^{6} - \)\(13\!\cdots\!76\)\( T^{7} - \)\(25\!\cdots\!59\)\( p^{9} T^{8} - \)\(97\!\cdots\!82\)\( p^{18} T^{9} + \)\(79\!\cdots\!65\)\( p^{27} T^{10} + \)\(13\!\cdots\!12\)\( p^{36} T^{11} + 251316951725651 p^{46} T^{12} + 22370274 p^{54} T^{13} + p^{63} T^{14} \) | |
61 | \( 1 - 23851748 T + 32245546204052015 T^{2} - \)\(40\!\cdots\!88\)\( T^{3} + \)\(58\!\cdots\!01\)\( T^{4} + \)\(38\!\cdots\!00\)\( T^{5} + \)\(73\!\cdots\!95\)\( T^{6} + \)\(12\!\cdots\!40\)\( T^{7} + \)\(73\!\cdots\!95\)\( p^{9} T^{8} + \)\(38\!\cdots\!00\)\( p^{18} T^{9} + \)\(58\!\cdots\!01\)\( p^{27} T^{10} - \)\(40\!\cdots\!88\)\( p^{36} T^{11} + 32245546204052015 p^{45} T^{12} - 23851748 p^{54} T^{13} + p^{63} T^{14} \) | |
67 | \( 1 + 12058786 T + 74157677501641385 T^{2} - \)\(16\!\cdots\!68\)\( T^{3} + \)\(25\!\cdots\!89\)\( T^{4} + \)\(25\!\cdots\!86\)\( T^{5} + \)\(81\!\cdots\!61\)\( T^{6} + \)\(43\!\cdots\!60\)\( T^{7} + \)\(81\!\cdots\!61\)\( p^{9} T^{8} + \)\(25\!\cdots\!86\)\( p^{18} T^{9} + \)\(25\!\cdots\!89\)\( p^{27} T^{10} - \)\(16\!\cdots\!68\)\( p^{36} T^{11} + 74157677501641385 p^{45} T^{12} + 12058786 p^{54} T^{13} + p^{63} T^{14} \) | |
71 | \( 1 + 864303791 T + 550539503798348447 T^{2} + \)\(24\!\cdots\!72\)\( T^{3} + \)\(90\!\cdots\!04\)\( T^{4} + \)\(27\!\cdots\!40\)\( T^{5} + \)\(72\!\cdots\!38\)\( T^{6} + \)\(16\!\cdots\!14\)\( T^{7} + \)\(72\!\cdots\!38\)\( p^{9} T^{8} + \)\(27\!\cdots\!40\)\( p^{18} T^{9} + \)\(90\!\cdots\!04\)\( p^{27} T^{10} + \)\(24\!\cdots\!72\)\( p^{36} T^{11} + 550539503798348447 p^{45} T^{12} + 864303791 p^{54} T^{13} + p^{63} T^{14} \) | |
73 | \( 1 - 670491202 T + 446754288562229859 T^{2} - \)\(17\!\cdots\!68\)\( T^{3} + \)\(70\!\cdots\!93\)\( T^{4} - \)\(20\!\cdots\!90\)\( T^{5} + \)\(62\!\cdots\!83\)\( T^{6} - \)\(15\!\cdots\!80\)\( T^{7} + \)\(62\!\cdots\!83\)\( p^{9} T^{8} - \)\(20\!\cdots\!90\)\( p^{18} T^{9} + \)\(70\!\cdots\!93\)\( p^{27} T^{10} - \)\(17\!\cdots\!68\)\( p^{36} T^{11} + 446754288562229859 p^{45} T^{12} - 670491202 p^{54} T^{13} + p^{63} T^{14} \) | |
79 | \( 1 + 1019547572 T + 921853887734368185 T^{2} + \)\(57\!\cdots\!92\)\( T^{3} + \)\(33\!\cdots\!53\)\( T^{4} + \)\(15\!\cdots\!32\)\( T^{5} + \)\(65\!\cdots\!21\)\( T^{6} + \)\(23\!\cdots\!36\)\( T^{7} + \)\(65\!\cdots\!21\)\( p^{9} T^{8} + \)\(15\!\cdots\!32\)\( p^{18} T^{9} + \)\(33\!\cdots\!53\)\( p^{27} T^{10} + \)\(57\!\cdots\!92\)\( p^{36} T^{11} + 921853887734368185 p^{45} T^{12} + 1019547572 p^{54} T^{13} + p^{63} T^{14} \) | |
83 | \( 1 + 1345041700 T + 972355041454952553 T^{2} + \)\(51\!\cdots\!24\)\( T^{3} + \)\(27\!\cdots\!13\)\( T^{4} + \)\(14\!\cdots\!96\)\( T^{5} + \)\(71\!\cdots\!85\)\( T^{6} + \)\(31\!\cdots\!96\)\( T^{7} + \)\(71\!\cdots\!85\)\( p^{9} T^{8} + \)\(14\!\cdots\!96\)\( p^{18} T^{9} + \)\(27\!\cdots\!13\)\( p^{27} T^{10} + \)\(51\!\cdots\!24\)\( p^{36} T^{11} + 972355041454952553 p^{45} T^{12} + 1345041700 p^{54} T^{13} + p^{63} T^{14} \) | |
89 | \( 1 - 1409158546 T + 2328320179174890963 T^{2} - \)\(24\!\cdots\!84\)\( T^{3} + \)\(23\!\cdots\!01\)\( T^{4} - \)\(19\!\cdots\!90\)\( T^{5} + \)\(13\!\cdots\!15\)\( T^{6} - \)\(86\!\cdots\!80\)\( T^{7} + \)\(13\!\cdots\!15\)\( p^{9} T^{8} - \)\(19\!\cdots\!90\)\( p^{18} T^{9} + \)\(23\!\cdots\!01\)\( p^{27} T^{10} - \)\(24\!\cdots\!84\)\( p^{36} T^{11} + 2328320179174890963 p^{45} T^{12} - 1409158546 p^{54} T^{13} + p^{63} T^{14} \) | |
97 | \( 1 - 320206906 T + 1544304231459250411 T^{2} + \)\(87\!\cdots\!92\)\( T^{3} + \)\(11\!\cdots\!69\)\( T^{4} + \)\(14\!\cdots\!62\)\( T^{5} + \)\(10\!\cdots\!15\)\( T^{6} + \)\(16\!\cdots\!76\)\( T^{7} + \)\(10\!\cdots\!15\)\( p^{9} T^{8} + \)\(14\!\cdots\!62\)\( p^{18} T^{9} + \)\(11\!\cdots\!69\)\( p^{27} T^{10} + \)\(87\!\cdots\!92\)\( p^{36} T^{11} + 1544304231459250411 p^{45} T^{12} - 320206906 p^{54} T^{13} + p^{63} T^{14} \) | |
show more | ||
show less |
Imaginary part of the first few zeros on the critical line
−4.93080535678196584369151897101, −4.89361077721631549331823791398, −4.82958869235707139845591414762, −4.61558458993928525711181355470, −4.29330338138925256306848111555, −4.19997785431618932916601146637, −4.02988630012757607064710794012, −4.02726282499298762892637985530, −3.65963355172214707444827945521, −3.54227124432324091289546281913, −3.37004361973436265509490251480, −3.16838297667394621656005310768, −2.81139988661790345231320382059, −2.72336944380752326968360650836, −2.62441303640563966304326121304, −2.42393077355455098959891392874, −2.39101970471462830707125356064, −2.15988341476817239348555501837, −2.00410422293429755484992919432, −1.62186397027378756611550895400, −1.47549472449350956807436582882, −1.39786717804152108589145033049, −1.38281066450342178661232696605, −0.909801047092264806400518312888, −0.73044132105071408208733846015, 0, 0, 0, 0, 0, 0, 0, 0.73044132105071408208733846015, 0.909801047092264806400518312888, 1.38281066450342178661232696605, 1.39786717804152108589145033049, 1.47549472449350956807436582882, 1.62186397027378756611550895400, 2.00410422293429755484992919432, 2.15988341476817239348555501837, 2.39101970471462830707125356064, 2.42393077355455098959891392874, 2.62441303640563966304326121304, 2.72336944380752326968360650836, 2.81139988661790345231320382059, 3.16838297667394621656005310768, 3.37004361973436265509490251480, 3.54227124432324091289546281913, 3.65963355172214707444827945521, 4.02726282499298762892637985530, 4.02988630012757607064710794012, 4.19997785431618932916601146637, 4.29330338138925256306848111555, 4.61558458993928525711181355470, 4.82958869235707139845591414762, 4.89361077721631549331823791398, 4.93080535678196584369151897101