Properties

Label 208.10.a.l.1.5
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(1,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,0,-13] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 112810 x^{5} + 1645934 x^{4} + 3493976849 x^{3} - 83049726457 x^{2} + \cdots + 864293655586764 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{19}\cdot 3 \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(71.8667\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+69.8667 q^{3} -170.421 q^{5} +12012.7 q^{7} -14801.7 q^{9} +36255.5 q^{11} -28561.0 q^{13} -11906.7 q^{15} -523020. q^{17} -706794. q^{19} +839290. q^{21} +26699.1 q^{23} -1.92408e6 q^{25} -2.40933e6 q^{27} -2.38415e6 q^{29} +6.10212e6 q^{31} +2.53305e6 q^{33} -2.04722e6 q^{35} +3.21358e6 q^{37} -1.99546e6 q^{39} -2.58454e7 q^{41} -1.94597e7 q^{43} +2.52251e6 q^{45} +9.09217e6 q^{47} +1.03952e8 q^{49} -3.65417e7 q^{51} +7.10014e7 q^{53} -6.17869e6 q^{55} -4.93814e7 q^{57} +3.54719e7 q^{59} -8.93209e7 q^{61} -1.77808e8 q^{63} +4.86739e6 q^{65} -1.09614e8 q^{67} +1.86538e6 q^{69} -3.14783e8 q^{71} -3.00502e8 q^{73} -1.34429e8 q^{75} +4.35528e8 q^{77} +1.19919e8 q^{79} +1.23009e8 q^{81} -4.28505e8 q^{83} +8.91336e7 q^{85} -1.66572e8 q^{87} +2.06268e8 q^{89} -3.43096e8 q^{91} +4.26335e8 q^{93} +1.20453e8 q^{95} -4.90604e8 q^{97} -5.36641e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 13 q^{3} - 801 q^{5} + 1091 q^{7} + 87864 q^{9} - 32218 q^{11} - 199927 q^{13} - 58323 q^{15} - 870531 q^{17} + 128950 q^{19} - 719663 q^{21} - 2198844 q^{23} + 992010 q^{25} - 5441383 q^{27} + 6327710 q^{29}+ \cdots - 5204667600 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 69.8667 0.497994 0.248997 0.968504i \(-0.419899\pi\)
0.248997 + 0.968504i \(0.419899\pi\)
\(4\) 0 0
\(5\) −170.421 −0.121943 −0.0609716 0.998140i \(-0.519420\pi\)
−0.0609716 + 0.998140i \(0.519420\pi\)
\(6\) 0 0
\(7\) 12012.7 1.89104 0.945520 0.325564i \(-0.105554\pi\)
0.945520 + 0.325564i \(0.105554\pi\)
\(8\) 0 0
\(9\) −14801.7 −0.752002
\(10\) 0 0
\(11\) 36255.5 0.746632 0.373316 0.927704i \(-0.378221\pi\)
0.373316 + 0.927704i \(0.378221\pi\)
\(12\) 0 0
\(13\) −28561.0 −0.277350
\(14\) 0 0
\(15\) −11906.7 −0.0607270
\(16\) 0 0
\(17\) −523020. −1.51879 −0.759396 0.650628i \(-0.774506\pi\)
−0.759396 + 0.650628i \(0.774506\pi\)
\(18\) 0 0
\(19\) −706794. −1.24423 −0.622117 0.782924i \(-0.713727\pi\)
−0.622117 + 0.782924i \(0.713727\pi\)
\(20\) 0 0
\(21\) 839290. 0.941727
\(22\) 0 0
\(23\) 26699.1 0.0198940 0.00994698 0.999951i \(-0.496834\pi\)
0.00994698 + 0.999951i \(0.496834\pi\)
\(24\) 0 0
\(25\) −1.92408e6 −0.985130
\(26\) 0 0
\(27\) −2.40933e6 −0.872487
\(28\) 0 0
\(29\) −2.38415e6 −0.625953 −0.312977 0.949761i \(-0.601326\pi\)
−0.312977 + 0.949761i \(0.601326\pi\)
\(30\) 0 0
\(31\) 6.10212e6 1.18673 0.593367 0.804932i \(-0.297798\pi\)
0.593367 + 0.804932i \(0.297798\pi\)
\(32\) 0 0
\(33\) 2.53305e6 0.371818
\(34\) 0 0
\(35\) −2.04722e6 −0.230600
\(36\) 0 0
\(37\) 3.21358e6 0.281891 0.140946 0.990017i \(-0.454986\pi\)
0.140946 + 0.990017i \(0.454986\pi\)
\(38\) 0 0
\(39\) −1.99546e6 −0.138119
\(40\) 0 0
\(41\) −2.58454e7 −1.42842 −0.714209 0.699933i \(-0.753213\pi\)
−0.714209 + 0.699933i \(0.753213\pi\)
\(42\) 0 0
\(43\) −1.94597e7 −0.868018 −0.434009 0.900909i \(-0.642901\pi\)
−0.434009 + 0.900909i \(0.642901\pi\)
\(44\) 0 0
\(45\) 2.52251e6 0.0917015
\(46\) 0 0
\(47\) 9.09217e6 0.271786 0.135893 0.990724i \(-0.456610\pi\)
0.135893 + 0.990724i \(0.456610\pi\)
\(48\) 0 0
\(49\) 1.03952e8 2.57603
\(50\) 0 0
\(51\) −3.65417e7 −0.756350
\(52\) 0 0
\(53\) 7.10014e7 1.23602 0.618010 0.786170i \(-0.287939\pi\)
0.618010 + 0.786170i \(0.287939\pi\)
\(54\) 0 0
\(55\) −6.17869e6 −0.0910467
\(56\) 0 0
\(57\) −4.93814e7 −0.619621
\(58\) 0 0
\(59\) 3.54719e7 0.381110 0.190555 0.981677i \(-0.438971\pi\)
0.190555 + 0.981677i \(0.438971\pi\)
\(60\) 0 0
\(61\) −8.93209e7 −0.825978 −0.412989 0.910736i \(-0.635515\pi\)
−0.412989 + 0.910736i \(0.635515\pi\)
\(62\) 0 0
\(63\) −1.77808e8 −1.42207
\(64\) 0 0
\(65\) 4.86739e6 0.0338210
\(66\) 0 0
\(67\) −1.09614e8 −0.664553 −0.332276 0.943182i \(-0.607817\pi\)
−0.332276 + 0.943182i \(0.607817\pi\)
\(68\) 0 0
\(69\) 1.86538e6 0.00990707
\(70\) 0 0
\(71\) −3.14783e8 −1.47010 −0.735052 0.678011i \(-0.762842\pi\)
−0.735052 + 0.678011i \(0.762842\pi\)
\(72\) 0 0
\(73\) −3.00502e8 −1.23850 −0.619248 0.785196i \(-0.712562\pi\)
−0.619248 + 0.785196i \(0.712562\pi\)
\(74\) 0 0
\(75\) −1.34429e8 −0.490589
\(76\) 0 0
\(77\) 4.35528e8 1.41191
\(78\) 0 0
\(79\) 1.19919e8 0.346391 0.173195 0.984887i \(-0.444591\pi\)
0.173195 + 0.984887i \(0.444591\pi\)
\(80\) 0 0
\(81\) 1.23009e8 0.317508
\(82\) 0 0
\(83\) −4.28505e8 −0.991071 −0.495535 0.868588i \(-0.665028\pi\)
−0.495535 + 0.868588i \(0.665028\pi\)
\(84\) 0 0
\(85\) 8.91336e7 0.185206
\(86\) 0 0
\(87\) −1.66572e8 −0.311721
\(88\) 0 0
\(89\) 2.06268e8 0.348479 0.174239 0.984703i \(-0.444253\pi\)
0.174239 + 0.984703i \(0.444253\pi\)
\(90\) 0 0
\(91\) −3.43096e8 −0.524480
\(92\) 0 0
\(93\) 4.26335e8 0.590986
\(94\) 0 0
\(95\) 1.20453e8 0.151726
\(96\) 0 0
\(97\) −4.90604e8 −0.562675 −0.281338 0.959609i \(-0.590778\pi\)
−0.281338 + 0.959609i \(0.590778\pi\)
\(98\) 0 0
\(99\) −5.36641e8 −0.561469
\(100\) 0 0
\(101\) 1.17120e9 1.11992 0.559959 0.828520i \(-0.310817\pi\)
0.559959 + 0.828520i \(0.310817\pi\)
\(102\) 0 0
\(103\) 1.53711e9 1.34567 0.672835 0.739793i \(-0.265077\pi\)
0.672835 + 0.739793i \(0.265077\pi\)
\(104\) 0 0
\(105\) −1.43032e8 −0.114837
\(106\) 0 0
\(107\) 5.35059e8 0.394616 0.197308 0.980342i \(-0.436780\pi\)
0.197308 + 0.980342i \(0.436780\pi\)
\(108\) 0 0
\(109\) 2.09611e9 1.42231 0.711155 0.703036i \(-0.248173\pi\)
0.711155 + 0.703036i \(0.248173\pi\)
\(110\) 0 0
\(111\) 2.24522e8 0.140380
\(112\) 0 0
\(113\) −1.47697e9 −0.852157 −0.426079 0.904686i \(-0.640105\pi\)
−0.426079 + 0.904686i \(0.640105\pi\)
\(114\) 0 0
\(115\) −4.55008e6 −0.00242593
\(116\) 0 0
\(117\) 4.22750e8 0.208568
\(118\) 0 0
\(119\) −6.28291e9 −2.87210
\(120\) 0 0
\(121\) −1.04349e9 −0.442541
\(122\) 0 0
\(123\) −1.80573e9 −0.711344
\(124\) 0 0
\(125\) 6.60757e8 0.242073
\(126\) 0 0
\(127\) −1.53809e9 −0.524645 −0.262323 0.964980i \(-0.584488\pi\)
−0.262323 + 0.964980i \(0.584488\pi\)
\(128\) 0 0
\(129\) −1.35959e9 −0.432268
\(130\) 0 0
\(131\) 1.59728e9 0.473872 0.236936 0.971525i \(-0.423857\pi\)
0.236936 + 0.971525i \(0.423857\pi\)
\(132\) 0 0
\(133\) −8.49054e9 −2.35290
\(134\) 0 0
\(135\) 4.10600e8 0.106394
\(136\) 0 0
\(137\) −7.12908e9 −1.72898 −0.864492 0.502647i \(-0.832360\pi\)
−0.864492 + 0.502647i \(0.832360\pi\)
\(138\) 0 0
\(139\) −6.73230e9 −1.52967 −0.764833 0.644228i \(-0.777179\pi\)
−0.764833 + 0.644228i \(0.777179\pi\)
\(140\) 0 0
\(141\) 6.35240e8 0.135348
\(142\) 0 0
\(143\) −1.03549e9 −0.207078
\(144\) 0 0
\(145\) 4.06308e8 0.0763307
\(146\) 0 0
\(147\) 7.26279e9 1.28285
\(148\) 0 0
\(149\) −1.14876e10 −1.90937 −0.954686 0.297616i \(-0.903808\pi\)
−0.954686 + 0.297616i \(0.903808\pi\)
\(150\) 0 0
\(151\) 7.91167e9 1.23843 0.619216 0.785221i \(-0.287451\pi\)
0.619216 + 0.785221i \(0.287451\pi\)
\(152\) 0 0
\(153\) 7.74156e9 1.14213
\(154\) 0 0
\(155\) −1.03993e9 −0.144714
\(156\) 0 0
\(157\) −1.13340e10 −1.48879 −0.744396 0.667739i \(-0.767262\pi\)
−0.744396 + 0.667739i \(0.767262\pi\)
\(158\) 0 0
\(159\) 4.96063e9 0.615531
\(160\) 0 0
\(161\) 3.20729e8 0.0376203
\(162\) 0 0
\(163\) 1.31887e10 1.46338 0.731692 0.681635i \(-0.238731\pi\)
0.731692 + 0.681635i \(0.238731\pi\)
\(164\) 0 0
\(165\) −4.31684e8 −0.0453407
\(166\) 0 0
\(167\) −1.55218e10 −1.54425 −0.772127 0.635468i \(-0.780807\pi\)
−0.772127 + 0.635468i \(0.780807\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) 1.04617e10 0.935666
\(172\) 0 0
\(173\) −8.60185e9 −0.730104 −0.365052 0.930987i \(-0.618949\pi\)
−0.365052 + 0.930987i \(0.618949\pi\)
\(174\) 0 0
\(175\) −2.31135e10 −1.86292
\(176\) 0 0
\(177\) 2.47830e9 0.189790
\(178\) 0 0
\(179\) −1.40539e10 −1.02320 −0.511598 0.859225i \(-0.670946\pi\)
−0.511598 + 0.859225i \(0.670946\pi\)
\(180\) 0 0
\(181\) −4.83176e9 −0.334620 −0.167310 0.985904i \(-0.553508\pi\)
−0.167310 + 0.985904i \(0.553508\pi\)
\(182\) 0 0
\(183\) −6.24055e9 −0.411332
\(184\) 0 0
\(185\) −5.47661e8 −0.0343747
\(186\) 0 0
\(187\) −1.89624e10 −1.13398
\(188\) 0 0
\(189\) −2.89426e10 −1.64991
\(190\) 0 0
\(191\) 3.32432e10 1.80739 0.903696 0.428174i \(-0.140843\pi\)
0.903696 + 0.428174i \(0.140843\pi\)
\(192\) 0 0
\(193\) −4.50395e9 −0.233660 −0.116830 0.993152i \(-0.537273\pi\)
−0.116830 + 0.993152i \(0.537273\pi\)
\(194\) 0 0
\(195\) 3.40068e8 0.0168426
\(196\) 0 0
\(197\) −2.15891e10 −1.02126 −0.510630 0.859801i \(-0.670588\pi\)
−0.510630 + 0.859801i \(0.670588\pi\)
\(198\) 0 0
\(199\) 2.46171e7 0.00111275 0.000556376 1.00000i \(-0.499823\pi\)
0.000556376 1.00000i \(0.499823\pi\)
\(200\) 0 0
\(201\) −7.65836e9 −0.330943
\(202\) 0 0
\(203\) −2.86401e10 −1.18370
\(204\) 0 0
\(205\) 4.40459e9 0.174186
\(206\) 0 0
\(207\) −3.95191e8 −0.0149603
\(208\) 0 0
\(209\) −2.56252e10 −0.928985
\(210\) 0 0
\(211\) −7.09907e9 −0.246565 −0.123282 0.992372i \(-0.539342\pi\)
−0.123282 + 0.992372i \(0.539342\pi\)
\(212\) 0 0
\(213\) −2.19928e10 −0.732104
\(214\) 0 0
\(215\) 3.31634e9 0.105849
\(216\) 0 0
\(217\) 7.33032e10 2.24416
\(218\) 0 0
\(219\) −2.09951e10 −0.616764
\(220\) 0 0
\(221\) 1.49380e10 0.421237
\(222\) 0 0
\(223\) −4.59128e10 −1.24326 −0.621629 0.783311i \(-0.713529\pi\)
−0.621629 + 0.783311i \(0.713529\pi\)
\(224\) 0 0
\(225\) 2.84796e10 0.740819
\(226\) 0 0
\(227\) 9.67572e7 0.00241861 0.00120931 0.999999i \(-0.499615\pi\)
0.00120931 + 0.999999i \(0.499615\pi\)
\(228\) 0 0
\(229\) 4.53850e10 1.09057 0.545284 0.838252i \(-0.316422\pi\)
0.545284 + 0.838252i \(0.316422\pi\)
\(230\) 0 0
\(231\) 3.04289e10 0.703124
\(232\) 0 0
\(233\) −1.30315e10 −0.289664 −0.144832 0.989456i \(-0.546264\pi\)
−0.144832 + 0.989456i \(0.546264\pi\)
\(234\) 0 0
\(235\) −1.54950e9 −0.0331425
\(236\) 0 0
\(237\) 8.37834e9 0.172501
\(238\) 0 0
\(239\) −8.99182e9 −0.178261 −0.0891306 0.996020i \(-0.528409\pi\)
−0.0891306 + 0.996020i \(0.528409\pi\)
\(240\) 0 0
\(241\) 7.97646e10 1.52312 0.761559 0.648095i \(-0.224434\pi\)
0.761559 + 0.648095i \(0.224434\pi\)
\(242\) 0 0
\(243\) 5.60170e10 1.03060
\(244\) 0 0
\(245\) −1.77156e10 −0.314130
\(246\) 0 0
\(247\) 2.01868e10 0.345088
\(248\) 0 0
\(249\) −2.99382e10 −0.493548
\(250\) 0 0
\(251\) −7.05270e10 −1.12156 −0.560781 0.827964i \(-0.689499\pi\)
−0.560781 + 0.827964i \(0.689499\pi\)
\(252\) 0 0
\(253\) 9.67988e8 0.0148535
\(254\) 0 0
\(255\) 6.22746e9 0.0922318
\(256\) 0 0
\(257\) −3.62085e10 −0.517740 −0.258870 0.965912i \(-0.583350\pi\)
−0.258870 + 0.965912i \(0.583350\pi\)
\(258\) 0 0
\(259\) 3.86039e10 0.533067
\(260\) 0 0
\(261\) 3.52893e10 0.470718
\(262\) 0 0
\(263\) −1.62926e10 −0.209986 −0.104993 0.994473i \(-0.533482\pi\)
−0.104993 + 0.994473i \(0.533482\pi\)
\(264\) 0 0
\(265\) −1.21001e10 −0.150724
\(266\) 0 0
\(267\) 1.44112e10 0.173540
\(268\) 0 0
\(269\) 8.86274e10 1.03201 0.516003 0.856587i \(-0.327419\pi\)
0.516003 + 0.856587i \(0.327419\pi\)
\(270\) 0 0
\(271\) 6.36764e10 0.717161 0.358581 0.933499i \(-0.383261\pi\)
0.358581 + 0.933499i \(0.383261\pi\)
\(272\) 0 0
\(273\) −2.39710e10 −0.261188
\(274\) 0 0
\(275\) −6.97585e10 −0.735529
\(276\) 0 0
\(277\) 1.19356e11 1.21811 0.609054 0.793129i \(-0.291549\pi\)
0.609054 + 0.793129i \(0.291549\pi\)
\(278\) 0 0
\(279\) −9.03215e10 −0.892426
\(280\) 0 0
\(281\) −5.66740e10 −0.542257 −0.271129 0.962543i \(-0.587397\pi\)
−0.271129 + 0.962543i \(0.587397\pi\)
\(282\) 0 0
\(283\) 1.48510e11 1.37631 0.688155 0.725564i \(-0.258421\pi\)
0.688155 + 0.725564i \(0.258421\pi\)
\(284\) 0 0
\(285\) 8.41561e9 0.0755586
\(286\) 0 0
\(287\) −3.10474e11 −2.70120
\(288\) 0 0
\(289\) 1.54962e11 1.30673
\(290\) 0 0
\(291\) −3.42768e10 −0.280209
\(292\) 0 0
\(293\) 1.98296e11 1.57185 0.785924 0.618323i \(-0.212188\pi\)
0.785924 + 0.618323i \(0.212188\pi\)
\(294\) 0 0
\(295\) −6.04515e9 −0.0464738
\(296\) 0 0
\(297\) −8.73513e10 −0.651427
\(298\) 0 0
\(299\) −7.62553e8 −0.00551759
\(300\) 0 0
\(301\) −2.33765e11 −1.64146
\(302\) 0 0
\(303\) 8.18281e10 0.557713
\(304\) 0 0
\(305\) 1.52221e10 0.100722
\(306\) 0 0
\(307\) 2.16742e11 1.39258 0.696289 0.717761i \(-0.254833\pi\)
0.696289 + 0.717761i \(0.254833\pi\)
\(308\) 0 0
\(309\) 1.07393e11 0.670135
\(310\) 0 0
\(311\) 2.50503e11 1.51842 0.759210 0.650846i \(-0.225586\pi\)
0.759210 + 0.650846i \(0.225586\pi\)
\(312\) 0 0
\(313\) −2.73413e11 −1.61017 −0.805083 0.593163i \(-0.797879\pi\)
−0.805083 + 0.593163i \(0.797879\pi\)
\(314\) 0 0
\(315\) 3.03022e10 0.173411
\(316\) 0 0
\(317\) −1.39923e11 −0.778258 −0.389129 0.921183i \(-0.627224\pi\)
−0.389129 + 0.921183i \(0.627224\pi\)
\(318\) 0 0
\(319\) −8.64383e10 −0.467357
\(320\) 0 0
\(321\) 3.73828e10 0.196516
\(322\) 0 0
\(323\) 3.69668e11 1.88973
\(324\) 0 0
\(325\) 5.49537e10 0.273226
\(326\) 0 0
\(327\) 1.46448e11 0.708302
\(328\) 0 0
\(329\) 1.09222e11 0.513959
\(330\) 0 0
\(331\) −3.11665e11 −1.42712 −0.713562 0.700592i \(-0.752919\pi\)
−0.713562 + 0.700592i \(0.752919\pi\)
\(332\) 0 0
\(333\) −4.75663e10 −0.211983
\(334\) 0 0
\(335\) 1.86805e10 0.0810377
\(336\) 0 0
\(337\) 1.02851e11 0.434386 0.217193 0.976129i \(-0.430310\pi\)
0.217193 + 0.976129i \(0.430310\pi\)
\(338\) 0 0
\(339\) −1.03191e11 −0.424370
\(340\) 0 0
\(341\) 2.21235e11 0.886053
\(342\) 0 0
\(343\) 7.63993e11 2.98034
\(344\) 0 0
\(345\) −3.17899e8 −0.00120810
\(346\) 0 0
\(347\) 4.31461e11 1.59757 0.798783 0.601620i \(-0.205478\pi\)
0.798783 + 0.601620i \(0.205478\pi\)
\(348\) 0 0
\(349\) −4.29206e10 −0.154864 −0.0774321 0.996998i \(-0.524672\pi\)
−0.0774321 + 0.996998i \(0.524672\pi\)
\(350\) 0 0
\(351\) 6.88128e10 0.241984
\(352\) 0 0
\(353\) 5.45378e10 0.186944 0.0934719 0.995622i \(-0.470203\pi\)
0.0934719 + 0.995622i \(0.470203\pi\)
\(354\) 0 0
\(355\) 5.36455e10 0.179269
\(356\) 0 0
\(357\) −4.38966e11 −1.43029
\(358\) 0 0
\(359\) −3.00497e11 −0.954807 −0.477404 0.878684i \(-0.658422\pi\)
−0.477404 + 0.878684i \(0.658422\pi\)
\(360\) 0 0
\(361\) 1.76871e11 0.548117
\(362\) 0 0
\(363\) −7.29050e10 −0.220383
\(364\) 0 0
\(365\) 5.12118e10 0.151026
\(366\) 0 0
\(367\) −3.68222e11 −1.05953 −0.529764 0.848145i \(-0.677719\pi\)
−0.529764 + 0.848145i \(0.677719\pi\)
\(368\) 0 0
\(369\) 3.82554e11 1.07417
\(370\) 0 0
\(371\) 8.52921e11 2.33736
\(372\) 0 0
\(373\) −2.21144e11 −0.591543 −0.295771 0.955259i \(-0.595577\pi\)
−0.295771 + 0.955259i \(0.595577\pi\)
\(374\) 0 0
\(375\) 4.61649e10 0.120551
\(376\) 0 0
\(377\) 6.80936e10 0.173608
\(378\) 0 0
\(379\) −3.34937e11 −0.833847 −0.416924 0.908942i \(-0.636892\pi\)
−0.416924 + 0.908942i \(0.636892\pi\)
\(380\) 0 0
\(381\) −1.07461e11 −0.261270
\(382\) 0 0
\(383\) 4.98211e10 0.118309 0.0591546 0.998249i \(-0.481159\pi\)
0.0591546 + 0.998249i \(0.481159\pi\)
\(384\) 0 0
\(385\) −7.42230e10 −0.172173
\(386\) 0 0
\(387\) 2.88036e11 0.652751
\(388\) 0 0
\(389\) −1.47884e11 −0.327452 −0.163726 0.986506i \(-0.552351\pi\)
−0.163726 + 0.986506i \(0.552351\pi\)
\(390\) 0 0
\(391\) −1.39642e10 −0.0302148
\(392\) 0 0
\(393\) 1.11597e11 0.235985
\(394\) 0 0
\(395\) −2.04367e10 −0.0422400
\(396\) 0 0
\(397\) 1.08303e11 0.218818 0.109409 0.993997i \(-0.465104\pi\)
0.109409 + 0.993997i \(0.465104\pi\)
\(398\) 0 0
\(399\) −5.93205e11 −1.17173
\(400\) 0 0
\(401\) −3.59927e11 −0.695127 −0.347564 0.937656i \(-0.612991\pi\)
−0.347564 + 0.937656i \(0.612991\pi\)
\(402\) 0 0
\(403\) −1.74283e11 −0.329141
\(404\) 0 0
\(405\) −2.09633e10 −0.0387180
\(406\) 0 0
\(407\) 1.16510e11 0.210469
\(408\) 0 0
\(409\) −5.97247e10 −0.105536 −0.0527678 0.998607i \(-0.516804\pi\)
−0.0527678 + 0.998607i \(0.516804\pi\)
\(410\) 0 0
\(411\) −4.98085e11 −0.861024
\(412\) 0 0
\(413\) 4.26114e11 0.720694
\(414\) 0 0
\(415\) 7.30262e10 0.120854
\(416\) 0 0
\(417\) −4.70363e11 −0.761765
\(418\) 0 0
\(419\) 1.00231e12 1.58868 0.794341 0.607472i \(-0.207816\pi\)
0.794341 + 0.607472i \(0.207816\pi\)
\(420\) 0 0
\(421\) 5.14253e11 0.797825 0.398912 0.916989i \(-0.369388\pi\)
0.398912 + 0.916989i \(0.369388\pi\)
\(422\) 0 0
\(423\) −1.34579e11 −0.204384
\(424\) 0 0
\(425\) 1.00633e12 1.49621
\(426\) 0 0
\(427\) −1.07299e12 −1.56196
\(428\) 0 0
\(429\) −7.23464e10 −0.103124
\(430\) 0 0
\(431\) −3.67084e11 −0.512411 −0.256205 0.966622i \(-0.582472\pi\)
−0.256205 + 0.966622i \(0.582472\pi\)
\(432\) 0 0
\(433\) 7.24529e11 0.990513 0.495257 0.868747i \(-0.335074\pi\)
0.495257 + 0.868747i \(0.335074\pi\)
\(434\) 0 0
\(435\) 2.83874e10 0.0380123
\(436\) 0 0
\(437\) −1.88708e10 −0.0247527
\(438\) 0 0
\(439\) −9.66365e11 −1.24180 −0.620899 0.783891i \(-0.713232\pi\)
−0.620899 + 0.783891i \(0.713232\pi\)
\(440\) 0 0
\(441\) −1.53866e12 −1.93718
\(442\) 0 0
\(443\) 2.90663e10 0.0358569 0.0179285 0.999839i \(-0.494293\pi\)
0.0179285 + 0.999839i \(0.494293\pi\)
\(444\) 0 0
\(445\) −3.51523e10 −0.0424946
\(446\) 0 0
\(447\) −8.02599e11 −0.950856
\(448\) 0 0
\(449\) −9.14242e11 −1.06158 −0.530790 0.847503i \(-0.678105\pi\)
−0.530790 + 0.847503i \(0.678105\pi\)
\(450\) 0 0
\(451\) −9.37036e11 −1.06650
\(452\) 0 0
\(453\) 5.52762e11 0.616732
\(454\) 0 0
\(455\) 5.84707e10 0.0639568
\(456\) 0 0
\(457\) 1.16186e12 1.24604 0.623021 0.782205i \(-0.285905\pi\)
0.623021 + 0.782205i \(0.285905\pi\)
\(458\) 0 0
\(459\) 1.26013e12 1.32513
\(460\) 0 0
\(461\) 1.63880e12 1.68994 0.844971 0.534812i \(-0.179617\pi\)
0.844971 + 0.534812i \(0.179617\pi\)
\(462\) 0 0
\(463\) −2.10006e11 −0.212382 −0.106191 0.994346i \(-0.533865\pi\)
−0.106191 + 0.994346i \(0.533865\pi\)
\(464\) 0 0
\(465\) −7.26563e10 −0.0720668
\(466\) 0 0
\(467\) 1.25155e11 0.121765 0.0608826 0.998145i \(-0.480608\pi\)
0.0608826 + 0.998145i \(0.480608\pi\)
\(468\) 0 0
\(469\) −1.31676e12 −1.25670
\(470\) 0 0
\(471\) −7.91867e11 −0.741409
\(472\) 0 0
\(473\) −7.05522e11 −0.648090
\(474\) 0 0
\(475\) 1.35993e12 1.22573
\(476\) 0 0
\(477\) −1.05094e12 −0.929489
\(478\) 0 0
\(479\) −5.91390e11 −0.513292 −0.256646 0.966505i \(-0.582617\pi\)
−0.256646 + 0.966505i \(0.582617\pi\)
\(480\) 0 0
\(481\) −9.17830e10 −0.0781825
\(482\) 0 0
\(483\) 2.24083e10 0.0187347
\(484\) 0 0
\(485\) 8.36091e10 0.0686145
\(486\) 0 0
\(487\) −2.27814e11 −0.183527 −0.0917636 0.995781i \(-0.529250\pi\)
−0.0917636 + 0.995781i \(0.529250\pi\)
\(488\) 0 0
\(489\) 9.21452e11 0.728757
\(490\) 0 0
\(491\) −2.15708e12 −1.67494 −0.837471 0.546482i \(-0.815967\pi\)
−0.837471 + 0.546482i \(0.815967\pi\)
\(492\) 0 0
\(493\) 1.24696e12 0.950693
\(494\) 0 0
\(495\) 9.14548e10 0.0684673
\(496\) 0 0
\(497\) −3.78140e12 −2.78003
\(498\) 0 0
\(499\) −9.20820e11 −0.664848 −0.332424 0.943130i \(-0.607867\pi\)
−0.332424 + 0.943130i \(0.607867\pi\)
\(500\) 0 0
\(501\) −1.08446e12 −0.769029
\(502\) 0 0
\(503\) 6.63733e11 0.462314 0.231157 0.972916i \(-0.425749\pi\)
0.231157 + 0.972916i \(0.425749\pi\)
\(504\) 0 0
\(505\) −1.99598e11 −0.136567
\(506\) 0 0
\(507\) 5.69924e10 0.0383072
\(508\) 0 0
\(509\) −6.38733e11 −0.421783 −0.210892 0.977509i \(-0.567637\pi\)
−0.210892 + 0.977509i \(0.567637\pi\)
\(510\) 0 0
\(511\) −3.60985e12 −2.34205
\(512\) 0 0
\(513\) 1.70290e12 1.08558
\(514\) 0 0
\(515\) −2.61956e11 −0.164095
\(516\) 0 0
\(517\) 3.29641e11 0.202924
\(518\) 0 0
\(519\) −6.00983e11 −0.363587
\(520\) 0 0
\(521\) 5.27246e10 0.0313504 0.0156752 0.999877i \(-0.495010\pi\)
0.0156752 + 0.999877i \(0.495010\pi\)
\(522\) 0 0
\(523\) −2.50922e11 −0.146650 −0.0733248 0.997308i \(-0.523361\pi\)
−0.0733248 + 0.997308i \(0.523361\pi\)
\(524\) 0 0
\(525\) −1.61486e12 −0.927723
\(526\) 0 0
\(527\) −3.19153e12 −1.80240
\(528\) 0 0
\(529\) −1.80044e12 −0.999604
\(530\) 0 0
\(531\) −5.25042e11 −0.286595
\(532\) 0 0
\(533\) 7.38169e11 0.396172
\(534\) 0 0
\(535\) −9.11851e10 −0.0481207
\(536\) 0 0
\(537\) −9.81900e11 −0.509545
\(538\) 0 0
\(539\) 3.76884e12 1.92335
\(540\) 0 0
\(541\) 2.07284e11 0.104035 0.0520174 0.998646i \(-0.483435\pi\)
0.0520174 + 0.998646i \(0.483435\pi\)
\(542\) 0 0
\(543\) −3.37579e11 −0.166639
\(544\) 0 0
\(545\) −3.57220e11 −0.173441
\(546\) 0 0
\(547\) 3.26079e12 1.55733 0.778663 0.627443i \(-0.215898\pi\)
0.778663 + 0.627443i \(0.215898\pi\)
\(548\) 0 0
\(549\) 1.32210e12 0.621137
\(550\) 0 0
\(551\) 1.68510e12 0.778832
\(552\) 0 0
\(553\) 1.44056e12 0.655039
\(554\) 0 0
\(555\) −3.82632e10 −0.0171184
\(556\) 0 0
\(557\) 1.18725e12 0.522631 0.261316 0.965253i \(-0.415844\pi\)
0.261316 + 0.965253i \(0.415844\pi\)
\(558\) 0 0
\(559\) 5.55789e11 0.240745
\(560\) 0 0
\(561\) −1.32484e12 −0.564715
\(562\) 0 0
\(563\) 8.57868e11 0.359859 0.179930 0.983679i \(-0.442413\pi\)
0.179930 + 0.983679i \(0.442413\pi\)
\(564\) 0 0
\(565\) 2.51707e11 0.103915
\(566\) 0 0
\(567\) 1.47768e12 0.600421
\(568\) 0 0
\(569\) −3.71806e12 −1.48700 −0.743499 0.668737i \(-0.766835\pi\)
−0.743499 + 0.668737i \(0.766835\pi\)
\(570\) 0 0
\(571\) 3.06036e12 1.20479 0.602394 0.798199i \(-0.294214\pi\)
0.602394 + 0.798199i \(0.294214\pi\)
\(572\) 0 0
\(573\) 2.32259e12 0.900071
\(574\) 0 0
\(575\) −5.13712e10 −0.0195981
\(576\) 0 0
\(577\) −4.36544e11 −0.163959 −0.0819797 0.996634i \(-0.526124\pi\)
−0.0819797 + 0.996634i \(0.526124\pi\)
\(578\) 0 0
\(579\) −3.14676e11 −0.116362
\(580\) 0 0
\(581\) −5.14752e12 −1.87415
\(582\) 0 0
\(583\) 2.57419e12 0.922852
\(584\) 0 0
\(585\) −7.20454e10 −0.0254334
\(586\) 0 0
\(587\) 2.99130e12 1.03989 0.519947 0.854199i \(-0.325952\pi\)
0.519947 + 0.854199i \(0.325952\pi\)
\(588\) 0 0
\(589\) −4.31295e12 −1.47657
\(590\) 0 0
\(591\) −1.50836e12 −0.508582
\(592\) 0 0
\(593\) 2.99710e12 0.995304 0.497652 0.867377i \(-0.334196\pi\)
0.497652 + 0.867377i \(0.334196\pi\)
\(594\) 0 0
\(595\) 1.07074e12 0.350233
\(596\) 0 0
\(597\) 1.71992e9 0.000554144 0
\(598\) 0 0
\(599\) −2.59347e12 −0.823116 −0.411558 0.911384i \(-0.635015\pi\)
−0.411558 + 0.911384i \(0.635015\pi\)
\(600\) 0 0
\(601\) 3.76639e12 1.17758 0.588790 0.808286i \(-0.299605\pi\)
0.588790 + 0.808286i \(0.299605\pi\)
\(602\) 0 0
\(603\) 1.62247e12 0.499745
\(604\) 0 0
\(605\) 1.77832e11 0.0539648
\(606\) 0 0
\(607\) −1.04286e12 −0.311802 −0.155901 0.987773i \(-0.549828\pi\)
−0.155901 + 0.987773i \(0.549828\pi\)
\(608\) 0 0
\(609\) −2.00099e12 −0.589477
\(610\) 0 0
\(611\) −2.59682e11 −0.0753799
\(612\) 0 0
\(613\) 6.63365e12 1.89749 0.948747 0.316035i \(-0.102352\pi\)
0.948747 + 0.316035i \(0.102352\pi\)
\(614\) 0 0
\(615\) 3.07734e11 0.0867436
\(616\) 0 0
\(617\) −2.71392e12 −0.753901 −0.376951 0.926233i \(-0.623027\pi\)
−0.376951 + 0.926233i \(0.623027\pi\)
\(618\) 0 0
\(619\) 3.53713e12 0.968373 0.484187 0.874965i \(-0.339116\pi\)
0.484187 + 0.874965i \(0.339116\pi\)
\(620\) 0 0
\(621\) −6.43268e10 −0.0173572
\(622\) 0 0
\(623\) 2.47784e12 0.658988
\(624\) 0 0
\(625\) 3.64537e12 0.955611
\(626\) 0 0
\(627\) −1.79035e12 −0.462629
\(628\) 0 0
\(629\) −1.68077e12 −0.428134
\(630\) 0 0
\(631\) −7.28172e12 −1.82853 −0.914264 0.405119i \(-0.867230\pi\)
−0.914264 + 0.405119i \(0.867230\pi\)
\(632\) 0 0
\(633\) −4.95989e11 −0.122788
\(634\) 0 0
\(635\) 2.62123e11 0.0639769
\(636\) 0 0
\(637\) −2.96898e12 −0.714463
\(638\) 0 0
\(639\) 4.65930e12 1.10552
\(640\) 0 0
\(641\) 3.26084e12 0.762901 0.381450 0.924389i \(-0.375425\pi\)
0.381450 + 0.924389i \(0.375425\pi\)
\(642\) 0 0
\(643\) 2.90478e12 0.670137 0.335068 0.942194i \(-0.391241\pi\)
0.335068 + 0.942194i \(0.391241\pi\)
\(644\) 0 0
\(645\) 2.31702e11 0.0527121
\(646\) 0 0
\(647\) −3.44395e12 −0.772659 −0.386330 0.922361i \(-0.626257\pi\)
−0.386330 + 0.922361i \(0.626257\pi\)
\(648\) 0 0
\(649\) 1.28605e12 0.284549
\(650\) 0 0
\(651\) 5.12145e12 1.11758
\(652\) 0 0
\(653\) −1.74151e12 −0.374815 −0.187407 0.982282i \(-0.560008\pi\)
−0.187407 + 0.982282i \(0.560008\pi\)
\(654\) 0 0
\(655\) −2.72210e11 −0.0577854
\(656\) 0 0
\(657\) 4.44793e12 0.931351
\(658\) 0 0
\(659\) −4.57973e12 −0.945922 −0.472961 0.881083i \(-0.656815\pi\)
−0.472961 + 0.881083i \(0.656815\pi\)
\(660\) 0 0
\(661\) −6.64788e12 −1.35449 −0.677246 0.735756i \(-0.736827\pi\)
−0.677246 + 0.735756i \(0.736827\pi\)
\(662\) 0 0
\(663\) 1.04367e12 0.209774
\(664\) 0 0
\(665\) 1.44696e12 0.286920
\(666\) 0 0
\(667\) −6.36545e10 −0.0124527
\(668\) 0 0
\(669\) −3.20777e12 −0.619136
\(670\) 0 0
\(671\) −3.23837e12 −0.616702
\(672\) 0 0
\(673\) 5.04803e12 0.948536 0.474268 0.880381i \(-0.342713\pi\)
0.474268 + 0.880381i \(0.342713\pi\)
\(674\) 0 0
\(675\) 4.63574e12 0.859513
\(676\) 0 0
\(677\) 1.60646e12 0.293914 0.146957 0.989143i \(-0.453052\pi\)
0.146957 + 0.989143i \(0.453052\pi\)
\(678\) 0 0
\(679\) −5.89349e12 −1.06404
\(680\) 0 0
\(681\) 6.76010e9 0.00120446
\(682\) 0 0
\(683\) −7.46072e12 −1.31186 −0.655930 0.754821i \(-0.727724\pi\)
−0.655930 + 0.754821i \(0.727724\pi\)
\(684\) 0 0
\(685\) 1.21494e12 0.210838
\(686\) 0 0
\(687\) 3.17090e12 0.543096
\(688\) 0 0
\(689\) −2.02787e12 −0.342810
\(690\) 0 0
\(691\) −5.85828e12 −0.977506 −0.488753 0.872422i \(-0.662548\pi\)
−0.488753 + 0.872422i \(0.662548\pi\)
\(692\) 0 0
\(693\) −6.44653e12 −1.06176
\(694\) 0 0
\(695\) 1.14732e12 0.186532
\(696\) 0 0
\(697\) 1.35177e13 2.16947
\(698\) 0 0
\(699\) −9.10470e11 −0.144251
\(700\) 0 0
\(701\) 6.30209e12 0.985720 0.492860 0.870109i \(-0.335951\pi\)
0.492860 + 0.870109i \(0.335951\pi\)
\(702\) 0 0
\(703\) −2.27134e12 −0.350738
\(704\) 0 0
\(705\) −1.08258e11 −0.0165048
\(706\) 0 0
\(707\) 1.40694e13 2.11781
\(708\) 0 0
\(709\) 9.81972e12 1.45946 0.729728 0.683737i \(-0.239647\pi\)
0.729728 + 0.683737i \(0.239647\pi\)
\(710\) 0 0
\(711\) −1.77500e12 −0.260486
\(712\) 0 0
\(713\) 1.62921e11 0.0236088
\(714\) 0 0
\(715\) 1.76470e11 0.0252518
\(716\) 0 0
\(717\) −6.28228e11 −0.0887731
\(718\) 0 0
\(719\) 6.50102e12 0.907197 0.453599 0.891206i \(-0.350140\pi\)
0.453599 + 0.891206i \(0.350140\pi\)
\(720\) 0 0
\(721\) 1.84649e13 2.54471
\(722\) 0 0
\(723\) 5.57289e12 0.758504
\(724\) 0 0
\(725\) 4.58729e12 0.616645
\(726\) 0 0
\(727\) −1.35766e13 −1.80255 −0.901273 0.433252i \(-0.857366\pi\)
−0.901273 + 0.433252i \(0.857366\pi\)
\(728\) 0 0
\(729\) 1.49253e12 0.195727
\(730\) 0 0
\(731\) 1.01778e13 1.31834
\(732\) 0 0
\(733\) 7.63316e12 0.976644 0.488322 0.872664i \(-0.337609\pi\)
0.488322 + 0.872664i \(0.337609\pi\)
\(734\) 0 0
\(735\) −1.23773e12 −0.156435
\(736\) 0 0
\(737\) −3.97411e12 −0.496176
\(738\) 0 0
\(739\) −8.49835e12 −1.04818 −0.524089 0.851664i \(-0.675594\pi\)
−0.524089 + 0.851664i \(0.675594\pi\)
\(740\) 0 0
\(741\) 1.41038e12 0.171852
\(742\) 0 0
\(743\) −2.39332e12 −0.288105 −0.144053 0.989570i \(-0.546013\pi\)
−0.144053 + 0.989570i \(0.546013\pi\)
\(744\) 0 0
\(745\) 1.95772e12 0.232835
\(746\) 0 0
\(747\) 6.34258e12 0.745287
\(748\) 0 0
\(749\) 6.42752e12 0.746234
\(750\) 0 0
\(751\) −5.80031e12 −0.665383 −0.332691 0.943036i \(-0.607957\pi\)
−0.332691 + 0.943036i \(0.607957\pi\)
\(752\) 0 0
\(753\) −4.92748e12 −0.558532
\(754\) 0 0
\(755\) −1.34831e12 −0.151018
\(756\) 0 0
\(757\) 4.07992e12 0.451565 0.225783 0.974178i \(-0.427506\pi\)
0.225783 + 0.974178i \(0.427506\pi\)
\(758\) 0 0
\(759\) 6.76301e10 0.00739694
\(760\) 0 0
\(761\) −1.34251e13 −1.45107 −0.725534 0.688186i \(-0.758407\pi\)
−0.725534 + 0.688186i \(0.758407\pi\)
\(762\) 0 0
\(763\) 2.51800e13 2.68964
\(764\) 0 0
\(765\) −1.31932e12 −0.139276
\(766\) 0 0
\(767\) −1.01311e12 −0.105701
\(768\) 0 0
\(769\) −1.27465e13 −1.31438 −0.657191 0.753724i \(-0.728255\pi\)
−0.657191 + 0.753724i \(0.728255\pi\)
\(770\) 0 0
\(771\) −2.52977e12 −0.257832
\(772\) 0 0
\(773\) −1.14502e13 −1.15347 −0.576734 0.816932i \(-0.695673\pi\)
−0.576734 + 0.816932i \(0.695673\pi\)
\(774\) 0 0
\(775\) −1.17410e13 −1.16909
\(776\) 0 0
\(777\) 2.69712e12 0.265464
\(778\) 0 0
\(779\) 1.82674e13 1.77729
\(780\) 0 0
\(781\) −1.14126e13 −1.09763
\(782\) 0 0
\(783\) 5.74419e12 0.546136
\(784\) 0 0
\(785\) 1.93155e12 0.181548
\(786\) 0 0
\(787\) −3.80733e12 −0.353781 −0.176890 0.984231i \(-0.556604\pi\)
−0.176890 + 0.984231i \(0.556604\pi\)
\(788\) 0 0
\(789\) −1.13831e12 −0.104572
\(790\) 0 0
\(791\) −1.77425e13 −1.61146
\(792\) 0 0
\(793\) 2.55109e12 0.229085
\(794\) 0 0
\(795\) −8.45395e11 −0.0750598
\(796\) 0 0
\(797\) −3.60696e12 −0.316650 −0.158325 0.987387i \(-0.550609\pi\)
−0.158325 + 0.987387i \(0.550609\pi\)
\(798\) 0 0
\(799\) −4.75539e12 −0.412787
\(800\) 0 0
\(801\) −3.05310e12 −0.262057
\(802\) 0 0
\(803\) −1.08948e13 −0.924701
\(804\) 0 0
\(805\) −5.46589e10 −0.00458754
\(806\) 0 0
\(807\) 6.19210e12 0.513933
\(808\) 0 0
\(809\) 2.73587e12 0.224557 0.112279 0.993677i \(-0.464185\pi\)
0.112279 + 0.993677i \(0.464185\pi\)
\(810\) 0 0
\(811\) 3.38202e12 0.274526 0.137263 0.990535i \(-0.456170\pi\)
0.137263 + 0.990535i \(0.456170\pi\)
\(812\) 0 0
\(813\) 4.44886e12 0.357142
\(814\) 0 0
\(815\) −2.24763e12 −0.178450
\(816\) 0 0
\(817\) 1.37540e13 1.08002
\(818\) 0 0
\(819\) 5.07838e12 0.394410
\(820\) 0 0
\(821\) 2.30840e13 1.77324 0.886620 0.462499i \(-0.153047\pi\)
0.886620 + 0.462499i \(0.153047\pi\)
\(822\) 0 0
\(823\) −2.30292e12 −0.174977 −0.0874883 0.996166i \(-0.527884\pi\)
−0.0874883 + 0.996166i \(0.527884\pi\)
\(824\) 0 0
\(825\) −4.87379e12 −0.366289
\(826\) 0 0
\(827\) −1.25394e13 −0.932188 −0.466094 0.884735i \(-0.654339\pi\)
−0.466094 + 0.884735i \(0.654339\pi\)
\(828\) 0 0
\(829\) 2.52253e13 1.85498 0.927492 0.373843i \(-0.121960\pi\)
0.927492 + 0.373843i \(0.121960\pi\)
\(830\) 0 0
\(831\) 8.33901e12 0.606610
\(832\) 0 0
\(833\) −5.43691e13 −3.91246
\(834\) 0 0
\(835\) 2.64524e12 0.188311
\(836\) 0 0
\(837\) −1.47020e13 −1.03541
\(838\) 0 0
\(839\) 1.03503e13 0.721146 0.360573 0.932731i \(-0.382581\pi\)
0.360573 + 0.932731i \(0.382581\pi\)
\(840\) 0 0
\(841\) −8.82300e12 −0.608183
\(842\) 0 0
\(843\) −3.95962e12 −0.270041
\(844\) 0 0
\(845\) −1.39018e11 −0.00938025
\(846\) 0 0
\(847\) −1.25351e13 −0.836862
\(848\) 0 0
\(849\) 1.03759e13 0.685394
\(850\) 0 0
\(851\) 8.57996e10 0.00560793
\(852\) 0 0
\(853\) 5.58791e12 0.361392 0.180696 0.983539i \(-0.442165\pi\)
0.180696 + 0.983539i \(0.442165\pi\)
\(854\) 0 0
\(855\) −1.78290e12 −0.114098
\(856\) 0 0
\(857\) −2.86481e13 −1.81418 −0.907092 0.420932i \(-0.861703\pi\)
−0.907092 + 0.420932i \(0.861703\pi\)
\(858\) 0 0
\(859\) −1.08878e13 −0.682290 −0.341145 0.940011i \(-0.610815\pi\)
−0.341145 + 0.940011i \(0.610815\pi\)
\(860\) 0 0
\(861\) −2.16917e13 −1.34518
\(862\) 0 0
\(863\) 1.56005e11 0.00957393 0.00478697 0.999989i \(-0.498476\pi\)
0.00478697 + 0.999989i \(0.498476\pi\)
\(864\) 0 0
\(865\) 1.46594e12 0.0890312
\(866\) 0 0
\(867\) 1.08267e13 0.650744
\(868\) 0 0
\(869\) 4.34772e12 0.258626
\(870\) 0 0
\(871\) 3.13069e12 0.184314
\(872\) 0 0
\(873\) 7.26174e12 0.423133
\(874\) 0 0
\(875\) 7.93750e12 0.457770
\(876\) 0 0
\(877\) 4.54034e12 0.259173 0.129587 0.991568i \(-0.458635\pi\)
0.129587 + 0.991568i \(0.458635\pi\)
\(878\) 0 0
\(879\) 1.38543e13 0.782771
\(880\) 0 0
\(881\) 1.22592e13 0.685598 0.342799 0.939409i \(-0.388625\pi\)
0.342799 + 0.939409i \(0.388625\pi\)
\(882\) 0 0
\(883\) 1.15154e13 0.637462 0.318731 0.947845i \(-0.396743\pi\)
0.318731 + 0.947845i \(0.396743\pi\)
\(884\) 0 0
\(885\) −4.22354e11 −0.0231437
\(886\) 0 0
\(887\) 3.41697e13 1.85347 0.926735 0.375716i \(-0.122603\pi\)
0.926735 + 0.375716i \(0.122603\pi\)
\(888\) 0 0
\(889\) −1.84767e13 −0.992125
\(890\) 0 0
\(891\) 4.45976e12 0.237062
\(892\) 0 0
\(893\) −6.42630e12 −0.338165
\(894\) 0 0
\(895\) 2.39508e12 0.124772
\(896\) 0 0
\(897\) −5.32770e10 −0.00274773
\(898\) 0 0
\(899\) −1.45483e13 −0.742839
\(900\) 0 0
\(901\) −3.71352e13 −1.87726
\(902\) 0 0
\(903\) −1.63323e13 −0.817436
\(904\) 0 0
\(905\) 8.23432e11 0.0408046
\(906\) 0 0
\(907\) 1.30313e13 0.639373 0.319687 0.947523i \(-0.396422\pi\)
0.319687 + 0.947523i \(0.396422\pi\)
\(908\) 0 0
\(909\) −1.73358e13 −0.842181
\(910\) 0 0
\(911\) −5.90209e12 −0.283905 −0.141953 0.989873i \(-0.545338\pi\)
−0.141953 + 0.989873i \(0.545338\pi\)
\(912\) 0 0
\(913\) −1.55357e13 −0.739965
\(914\) 0 0
\(915\) 1.06352e12 0.0501592
\(916\) 0 0
\(917\) 1.91877e13 0.896110
\(918\) 0 0
\(919\) −8.87655e11 −0.0410511 −0.0205255 0.999789i \(-0.506534\pi\)
−0.0205255 + 0.999789i \(0.506534\pi\)
\(920\) 0 0
\(921\) 1.51430e13 0.693496
\(922\) 0 0
\(923\) 8.99051e12 0.407734
\(924\) 0 0
\(925\) −6.18319e12 −0.277699
\(926\) 0 0
\(927\) −2.27518e13 −1.01195
\(928\) 0 0
\(929\) −5.69435e12 −0.250826 −0.125413 0.992105i \(-0.540026\pi\)
−0.125413 + 0.992105i \(0.540026\pi\)
\(930\) 0 0
\(931\) −7.34729e13 −3.20519
\(932\) 0 0
\(933\) 1.75018e13 0.756164
\(934\) 0 0
\(935\) 3.23158e12 0.138281
\(936\) 0 0
\(937\) −3.18002e13 −1.34773 −0.673864 0.738856i \(-0.735366\pi\)
−0.673864 + 0.738856i \(0.735366\pi\)
\(938\) 0 0
\(939\) −1.91025e13 −0.801853
\(940\) 0 0
\(941\) 1.56601e12 0.0651090 0.0325545 0.999470i \(-0.489636\pi\)
0.0325545 + 0.999470i \(0.489636\pi\)
\(942\) 0 0
\(943\) −6.90048e11 −0.0284169
\(944\) 0 0
\(945\) 4.93242e12 0.201195
\(946\) 0 0
\(947\) 3.79230e13 1.53224 0.766122 0.642695i \(-0.222184\pi\)
0.766122 + 0.642695i \(0.222184\pi\)
\(948\) 0 0
\(949\) 8.58264e12 0.343497
\(950\) 0 0
\(951\) −9.77598e12 −0.387568
\(952\) 0 0
\(953\) 1.56014e13 0.612698 0.306349 0.951919i \(-0.400893\pi\)
0.306349 + 0.951919i \(0.400893\pi\)
\(954\) 0 0
\(955\) −5.66533e12 −0.220399
\(956\) 0 0
\(957\) −6.03916e12 −0.232741
\(958\) 0 0
\(959\) −8.56397e13 −3.26958
\(960\) 0 0
\(961\) 1.07963e13 0.408336
\(962\) 0 0
\(963\) −7.91975e12 −0.296752
\(964\) 0 0
\(965\) 7.67566e11 0.0284933
\(966\) 0 0
\(967\) 1.70795e13 0.628138 0.314069 0.949400i \(-0.398308\pi\)
0.314069 + 0.949400i \(0.398308\pi\)
\(968\) 0 0
\(969\) 2.58275e13 0.941076
\(970\) 0 0
\(971\) −2.52915e12 −0.0913035 −0.0456517 0.998957i \(-0.514536\pi\)
−0.0456517 + 0.998957i \(0.514536\pi\)
\(972\) 0 0
\(973\) −8.08733e13 −2.89266
\(974\) 0 0
\(975\) 3.83943e12 0.136065
\(976\) 0 0
\(977\) −4.20451e13 −1.47635 −0.738176 0.674609i \(-0.764312\pi\)
−0.738176 + 0.674609i \(0.764312\pi\)
\(978\) 0 0
\(979\) 7.47834e12 0.260186
\(980\) 0 0
\(981\) −3.10258e13 −1.06958
\(982\) 0 0
\(983\) 8.07032e12 0.275677 0.137838 0.990455i \(-0.455985\pi\)
0.137838 + 0.990455i \(0.455985\pi\)
\(984\) 0 0
\(985\) 3.67923e12 0.124536
\(986\) 0 0
\(987\) 7.63097e12 0.255948
\(988\) 0 0
\(989\) −5.19557e11 −0.0172683
\(990\) 0 0
\(991\) −1.93018e13 −0.635721 −0.317861 0.948137i \(-0.602964\pi\)
−0.317861 + 0.948137i \(0.602964\pi\)
\(992\) 0 0
\(993\) −2.17750e13 −0.710700
\(994\) 0 0
\(995\) −4.19527e9 −0.000135693 0
\(996\) 0 0
\(997\) 1.74755e13 0.560145 0.280073 0.959979i \(-0.409641\pi\)
0.280073 + 0.959979i \(0.409641\pi\)
\(998\) 0 0
\(999\) −7.74256e12 −0.245946
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.l.1.5 7
4.3 odd 2 104.10.a.c.1.3 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.a.c.1.3 7 4.3 odd 2
208.10.a.l.1.5 7 1.1 even 1 trivial