gp: [N,k,chi] = [2023,4,Mod(1,2023)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2023, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2023.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1,-1,2,-7,-16,-2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
7 7 7
− 1 -1 − 1
17 17 1 7
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 2023 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(2023)) S 4 n e w ( Γ 0 ( 2 0 2 3 ) ) :
T 2 + 1 T_{2} + 1 T 2 + 1
T2 + 1
T 3 − 2 T_{3} - 2 T 3 − 2
T3 - 2
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 1 T + 1 T + 1
T + 1
3 3 3
T − 2 T - 2 T − 2
T - 2
5 5 5
T + 16 T + 16 T + 1 6
T + 16
7 7 7
T − 7 T - 7 T − 7
T - 7
11 11 1 1
T − 8 T - 8 T − 8
T - 8
13 13 1 3
T − 28 T - 28 T − 2 8
T - 28
17 17 1 7
T T T
T
19 19 1 9
T + 110 T + 110 T + 1 1 0
T + 110
23 23 2 3
T + 48 T + 48 T + 4 8
T + 48
29 29 2 9
T − 110 T - 110 T − 1 1 0
T - 110
31 31 3 1
T + 12 T + 12 T + 1 2
T + 12
37 37 3 7
T − 246 T - 246 T − 2 4 6
T - 246
41 41 4 1
T + 182 T + 182 T + 1 8 2
T + 182
43 43 4 3
T − 128 T - 128 T − 1 2 8
T - 128
47 47 4 7
T − 324 T - 324 T − 3 2 4
T - 324
53 53 5 3
T + 162 T + 162 T + 1 6 2
T + 162
59 59 5 9
T − 810 T - 810 T − 8 1 0
T - 810
61 61 6 1
T − 488 T - 488 T − 4 8 8
T - 488
67 67 6 7
T − 244 T - 244 T − 2 4 4
T - 244
71 71 7 1
T − 768 T - 768 T − 7 6 8
T - 768
73 73 7 3
T − 702 T - 702 T − 7 0 2
T - 702
79 79 7 9
T + 440 T + 440 T + 4 4 0
T + 440
83 83 8 3
T + 1302 T + 1302 T + 1 3 0 2
T + 1302
89 89 8 9
T − 730 T - 730 T − 7 3 0
T - 730
97 97 9 7
T + 294 T + 294 T + 2 9 4
T + 294
show more
show less