Properties

Label 2023.4.a.a
Level 20232023
Weight 44
Character orbit 2023.a
Self dual yes
Analytic conductor 119.361119.361
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2023,4,Mod(1,2023)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2023, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2023.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 2023=7172 2023 = 7 \cdot 17^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2023.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-1,2,-7,-16,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 119.360863942119.360863942
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 7)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == qq2+2q37q416q52q6+7q7+15q823q9+16q10+8q1114q12+28q137q1432q15+41q16+23q18110q19+112q20+184q99+O(q100) q - q^{2} + 2 q^{3} - 7 q^{4} - 16 q^{5} - 2 q^{6} + 7 q^{7} + 15 q^{8} - 23 q^{9} + 16 q^{10} + 8 q^{11} - 14 q^{12} + 28 q^{13} - 7 q^{14} - 32 q^{15} + 41 q^{16} + 23 q^{18} - 110 q^{19} + 112 q^{20}+ \cdots - 184 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−1.00000 2.00000 −7.00000 −16.0000 −2.00000 7.00000 15.0000 −23.0000 16.0000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
77 1 -1
1717 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2023.4.a.a 1
17.b even 2 1 7.4.a.a 1
51.c odd 2 1 63.4.a.b 1
68.d odd 2 1 112.4.a.f 1
85.c even 2 1 175.4.a.b 1
85.g odd 4 2 175.4.b.b 2
119.d odd 2 1 49.4.a.b 1
119.h odd 6 2 49.4.c.b 2
119.j even 6 2 49.4.c.c 2
136.e odd 2 1 448.4.a.e 1
136.h even 2 1 448.4.a.i 1
187.b odd 2 1 847.4.a.b 1
204.h even 2 1 1008.4.a.c 1
221.b even 2 1 1183.4.a.b 1
255.h odd 2 1 1575.4.a.e 1
357.c even 2 1 441.4.a.i 1
357.q odd 6 2 441.4.e.h 2
357.s even 6 2 441.4.e.e 2
476.e even 2 1 784.4.a.g 1
595.b odd 2 1 1225.4.a.j 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.4.a.a 1 17.b even 2 1
49.4.a.b 1 119.d odd 2 1
49.4.c.b 2 119.h odd 6 2
49.4.c.c 2 119.j even 6 2
63.4.a.b 1 51.c odd 2 1
112.4.a.f 1 68.d odd 2 1
175.4.a.b 1 85.c even 2 1
175.4.b.b 2 85.g odd 4 2
441.4.a.i 1 357.c even 2 1
441.4.e.e 2 357.s even 6 2
441.4.e.h 2 357.q odd 6 2
448.4.a.e 1 136.e odd 2 1
448.4.a.i 1 136.h even 2 1
784.4.a.g 1 476.e even 2 1
847.4.a.b 1 187.b odd 2 1
1008.4.a.c 1 204.h even 2 1
1183.4.a.b 1 221.b even 2 1
1225.4.a.j 1 595.b odd 2 1
1575.4.a.e 1 255.h odd 2 1
2023.4.a.a 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(2023))S_{4}^{\mathrm{new}}(\Gamma_0(2023)):

T2+1 T_{2} + 1 Copy content Toggle raw display
T32 T_{3} - 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+1 T + 1 Copy content Toggle raw display
33 T2 T - 2 Copy content Toggle raw display
55 T+16 T + 16 Copy content Toggle raw display
77 T7 T - 7 Copy content Toggle raw display
1111 T8 T - 8 Copy content Toggle raw display
1313 T28 T - 28 Copy content Toggle raw display
1717 T T Copy content Toggle raw display
1919 T+110 T + 110 Copy content Toggle raw display
2323 T+48 T + 48 Copy content Toggle raw display
2929 T110 T - 110 Copy content Toggle raw display
3131 T+12 T + 12 Copy content Toggle raw display
3737 T246 T - 246 Copy content Toggle raw display
4141 T+182 T + 182 Copy content Toggle raw display
4343 T128 T - 128 Copy content Toggle raw display
4747 T324 T - 324 Copy content Toggle raw display
5353 T+162 T + 162 Copy content Toggle raw display
5959 T810 T - 810 Copy content Toggle raw display
6161 T488 T - 488 Copy content Toggle raw display
6767 T244 T - 244 Copy content Toggle raw display
7171 T768 T - 768 Copy content Toggle raw display
7373 T702 T - 702 Copy content Toggle raw display
7979 T+440 T + 440 Copy content Toggle raw display
8383 T+1302 T + 1302 Copy content Toggle raw display
8989 T730 T - 730 Copy content Toggle raw display
9797 T+294 T + 294 Copy content Toggle raw display
show more
show less