Properties

Label 2023.4.a.a
Level $2023$
Weight $4$
Character orbit 2023.a
Self dual yes
Analytic conductor $119.361$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2023,4,Mod(1,2023)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2023.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2023, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2023 = 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2023.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-1,2,-7,-16,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.360863942\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 7)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} + 2 q^{3} - 7 q^{4} - 16 q^{5} - 2 q^{6} + 7 q^{7} + 15 q^{8} - 23 q^{9} + 16 q^{10} + 8 q^{11} - 14 q^{12} + 28 q^{13} - 7 q^{14} - 32 q^{15} + 41 q^{16} + 23 q^{18} - 110 q^{19} + 112 q^{20}+ \cdots - 184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 2.00000 −7.00000 −16.0000 −2.00000 7.00000 15.0000 −23.0000 16.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2023.4.a.a 1
17.b even 2 1 7.4.a.a 1
51.c odd 2 1 63.4.a.b 1
68.d odd 2 1 112.4.a.f 1
85.c even 2 1 175.4.a.b 1
85.g odd 4 2 175.4.b.b 2
119.d odd 2 1 49.4.a.b 1
119.h odd 6 2 49.4.c.b 2
119.j even 6 2 49.4.c.c 2
136.e odd 2 1 448.4.a.e 1
136.h even 2 1 448.4.a.i 1
187.b odd 2 1 847.4.a.b 1
204.h even 2 1 1008.4.a.c 1
221.b even 2 1 1183.4.a.b 1
255.h odd 2 1 1575.4.a.e 1
357.c even 2 1 441.4.a.i 1
357.q odd 6 2 441.4.e.h 2
357.s even 6 2 441.4.e.e 2
476.e even 2 1 784.4.a.g 1
595.b odd 2 1 1225.4.a.j 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.4.a.a 1 17.b even 2 1
49.4.a.b 1 119.d odd 2 1
49.4.c.b 2 119.h odd 6 2
49.4.c.c 2 119.j even 6 2
63.4.a.b 1 51.c odd 2 1
112.4.a.f 1 68.d odd 2 1
175.4.a.b 1 85.c even 2 1
175.4.b.b 2 85.g odd 4 2
441.4.a.i 1 357.c even 2 1
441.4.e.e 2 357.s even 6 2
441.4.e.h 2 357.q odd 6 2
448.4.a.e 1 136.e odd 2 1
448.4.a.i 1 136.h even 2 1
784.4.a.g 1 476.e even 2 1
847.4.a.b 1 187.b odd 2 1
1008.4.a.c 1 204.h even 2 1
1183.4.a.b 1 221.b even 2 1
1225.4.a.j 1 595.b odd 2 1
1575.4.a.e 1 255.h odd 2 1
2023.4.a.a 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2023))\):

\( T_{2} + 1 \) Copy content Toggle raw display
\( T_{3} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T - 2 \) Copy content Toggle raw display
$5$ \( T + 16 \) Copy content Toggle raw display
$7$ \( T - 7 \) Copy content Toggle raw display
$11$ \( T - 8 \) Copy content Toggle raw display
$13$ \( T - 28 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T + 110 \) Copy content Toggle raw display
$23$ \( T + 48 \) Copy content Toggle raw display
$29$ \( T - 110 \) Copy content Toggle raw display
$31$ \( T + 12 \) Copy content Toggle raw display
$37$ \( T - 246 \) Copy content Toggle raw display
$41$ \( T + 182 \) Copy content Toggle raw display
$43$ \( T - 128 \) Copy content Toggle raw display
$47$ \( T - 324 \) Copy content Toggle raw display
$53$ \( T + 162 \) Copy content Toggle raw display
$59$ \( T - 810 \) Copy content Toggle raw display
$61$ \( T - 488 \) Copy content Toggle raw display
$67$ \( T - 244 \) Copy content Toggle raw display
$71$ \( T - 768 \) Copy content Toggle raw display
$73$ \( T - 702 \) Copy content Toggle raw display
$79$ \( T + 440 \) Copy content Toggle raw display
$83$ \( T + 1302 \) Copy content Toggle raw display
$89$ \( T - 730 \) Copy content Toggle raw display
$97$ \( T + 294 \) Copy content Toggle raw display
show more
show less