gp: [N,k,chi] = [175,4,Mod(99,175)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("175.99");
S:= CuspForms(chi, 4);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(175, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 4, names="a")
Newform invariants
sage: traces = [2,0,0,14,0,4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of i = − 1 i = \sqrt{-1} i = − 1 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 175 Z ) × \left(\mathbb{Z}/175\mathbb{Z}\right)^\times ( Z / 1 7 5 Z ) × .
n n n
101 101 1 0 1
127 127 1 2 7
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 175 , [ χ ] ) S_{4}^{\mathrm{new}}(175, [\chi]) S 4 n e w ( 1 7 5 , [ χ ] ) :
T 2 2 + 1 T_{2}^{2} + 1 T 2 2 + 1
T2^2 + 1
T 3 2 + 4 T_{3}^{2} + 4 T 3 2 + 4
T3^2 + 4
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 + 1 T^{2} + 1 T 2 + 1
T^2 + 1
3 3 3
T 2 + 4 T^{2} + 4 T 2 + 4
T^2 + 4
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
T 2 + 49 T^{2} + 49 T 2 + 4 9
T^2 + 49
11 11 1 1
( T + 8 ) 2 (T + 8)^{2} ( T + 8 ) 2
(T + 8)^2
13 13 1 3
T 2 + 784 T^{2} + 784 T 2 + 7 8 4
T^2 + 784
17 17 1 7
T 2 + 2916 T^{2} + 2916 T 2 + 2 9 1 6
T^2 + 2916
19 19 1 9
( T − 110 ) 2 (T - 110)^{2} ( T − 1 1 0 ) 2
(T - 110)^2
23 23 2 3
T 2 + 2304 T^{2} + 2304 T 2 + 2 3 0 4
T^2 + 2304
29 29 2 9
( T − 110 ) 2 (T - 110)^{2} ( T − 1 1 0 ) 2
(T - 110)^2
31 31 3 1
( T − 12 ) 2 (T - 12)^{2} ( T − 1 2 ) 2
(T - 12)^2
37 37 3 7
T 2 + 60516 T^{2} + 60516 T 2 + 6 0 5 1 6
T^2 + 60516
41 41 4 1
( T − 182 ) 2 (T - 182)^{2} ( T − 1 8 2 ) 2
(T - 182)^2
43 43 4 3
T 2 + 16384 T^{2} + 16384 T 2 + 1 6 3 8 4
T^2 + 16384
47 47 4 7
T 2 + 104976 T^{2} + 104976 T 2 + 1 0 4 9 7 6
T^2 + 104976
53 53 5 3
T 2 + 26244 T^{2} + 26244 T 2 + 2 6 2 4 4
T^2 + 26244
59 59 5 9
( T + 810 ) 2 (T + 810)^{2} ( T + 8 1 0 ) 2
(T + 810)^2
61 61 6 1
( T + 488 ) 2 (T + 488)^{2} ( T + 4 8 8 ) 2
(T + 488)^2
67 67 6 7
T 2 + 59536 T^{2} + 59536 T 2 + 5 9 5 3 6
T^2 + 59536
71 71 7 1
( T + 768 ) 2 (T + 768)^{2} ( T + 7 6 8 ) 2
(T + 768)^2
73 73 7 3
T 2 + 492804 T^{2} + 492804 T 2 + 4 9 2 8 0 4
T^2 + 492804
79 79 7 9
( T + 440 ) 2 (T + 440)^{2} ( T + 4 4 0 ) 2
(T + 440)^2
83 83 8 3
T 2 + 1695204 T^{2} + 1695204 T 2 + 1 6 9 5 2 0 4
T^2 + 1695204
89 89 8 9
( T + 730 ) 2 (T + 730)^{2} ( T + 7 3 0 ) 2
(T + 730)^2
97 97 9 7
T 2 + 86436 T^{2} + 86436 T 2 + 8 6 4 3 6
T^2 + 86436
show more
show less