Properties

Label 175.4.b.b
Level 175175
Weight 44
Character orbit 175.b
Analytic conductor 10.32510.325
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [175,4,Mod(99,175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("175.99"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(175, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Level: N N == 175=527 175 = 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 175.b (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,14,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.325334251010.3253342510
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+iq22iq3+7q4+2q6+7iq7+15iq8+23q98q1114iq12+28iq137q14+41q1654iq17+23iq18+110q19+14q218iq22+184q99+O(q100) q + i q^{2} - 2 i q^{3} + 7 q^{4} + 2 q^{6} + 7 i q^{7} + 15 i q^{8} + 23 q^{9} - 8 q^{11} - 14 i q^{12} + 28 i q^{13} - 7 q^{14} + 41 q^{16} - 54 i q^{17} + 23 i q^{18} + 110 q^{19} + 14 q^{21} - 8 i q^{22} + \cdots - 184 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+14q4+4q6+46q916q1114q14+82q16+220q19+28q21+60q2456q26+220q29+24q31+108q34+322q36+112q39+364q41112q44+368q99+O(q100) 2 q + 14 q^{4} + 4 q^{6} + 46 q^{9} - 16 q^{11} - 14 q^{14} + 82 q^{16} + 220 q^{19} + 28 q^{21} + 60 q^{24} - 56 q^{26} + 220 q^{29} + 24 q^{31} + 108 q^{34} + 322 q^{36} + 112 q^{39} + 364 q^{41} - 112 q^{44}+ \cdots - 368 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/175Z)×\left(\mathbb{Z}/175\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
99.1
1.00000i
1.00000i
1.00000i 2.00000i 7.00000 0 2.00000 7.00000i 15.0000i 23.0000 0
99.2 1.00000i 2.00000i 7.00000 0 2.00000 7.00000i 15.0000i 23.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.4.b.b 2
5.b even 2 1 inner 175.4.b.b 2
5.c odd 4 1 7.4.a.a 1
5.c odd 4 1 175.4.a.b 1
15.e even 4 1 63.4.a.b 1
15.e even 4 1 1575.4.a.e 1
20.e even 4 1 112.4.a.f 1
35.f even 4 1 49.4.a.b 1
35.f even 4 1 1225.4.a.j 1
35.k even 12 2 49.4.c.b 2
35.l odd 12 2 49.4.c.c 2
40.i odd 4 1 448.4.a.i 1
40.k even 4 1 448.4.a.e 1
55.e even 4 1 847.4.a.b 1
60.l odd 4 1 1008.4.a.c 1
65.h odd 4 1 1183.4.a.b 1
85.g odd 4 1 2023.4.a.a 1
105.k odd 4 1 441.4.a.i 1
105.w odd 12 2 441.4.e.e 2
105.x even 12 2 441.4.e.h 2
140.j odd 4 1 784.4.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.4.a.a 1 5.c odd 4 1
49.4.a.b 1 35.f even 4 1
49.4.c.b 2 35.k even 12 2
49.4.c.c 2 35.l odd 12 2
63.4.a.b 1 15.e even 4 1
112.4.a.f 1 20.e even 4 1
175.4.a.b 1 5.c odd 4 1
175.4.b.b 2 1.a even 1 1 trivial
175.4.b.b 2 5.b even 2 1 inner
441.4.a.i 1 105.k odd 4 1
441.4.e.e 2 105.w odd 12 2
441.4.e.h 2 105.x even 12 2
448.4.a.e 1 40.k even 4 1
448.4.a.i 1 40.i odd 4 1
784.4.a.g 1 140.j odd 4 1
847.4.a.b 1 55.e even 4 1
1008.4.a.c 1 60.l odd 4 1
1183.4.a.b 1 65.h odd 4 1
1225.4.a.j 1 35.f even 4 1
1575.4.a.e 1 15.e even 4 1
2023.4.a.a 1 85.g odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(175,[χ])S_{4}^{\mathrm{new}}(175, [\chi]):

T22+1 T_{2}^{2} + 1 Copy content Toggle raw display
T32+4 T_{3}^{2} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+1 T^{2} + 1 Copy content Toggle raw display
33 T2+4 T^{2} + 4 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+49 T^{2} + 49 Copy content Toggle raw display
1111 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
1313 T2+784 T^{2} + 784 Copy content Toggle raw display
1717 T2+2916 T^{2} + 2916 Copy content Toggle raw display
1919 (T110)2 (T - 110)^{2} Copy content Toggle raw display
2323 T2+2304 T^{2} + 2304 Copy content Toggle raw display
2929 (T110)2 (T - 110)^{2} Copy content Toggle raw display
3131 (T12)2 (T - 12)^{2} Copy content Toggle raw display
3737 T2+60516 T^{2} + 60516 Copy content Toggle raw display
4141 (T182)2 (T - 182)^{2} Copy content Toggle raw display
4343 T2+16384 T^{2} + 16384 Copy content Toggle raw display
4747 T2+104976 T^{2} + 104976 Copy content Toggle raw display
5353 T2+26244 T^{2} + 26244 Copy content Toggle raw display
5959 (T+810)2 (T + 810)^{2} Copy content Toggle raw display
6161 (T+488)2 (T + 488)^{2} Copy content Toggle raw display
6767 T2+59536 T^{2} + 59536 Copy content Toggle raw display
7171 (T+768)2 (T + 768)^{2} Copy content Toggle raw display
7373 T2+492804 T^{2} + 492804 Copy content Toggle raw display
7979 (T+440)2 (T + 440)^{2} Copy content Toggle raw display
8383 T2+1695204 T^{2} + 1695204 Copy content Toggle raw display
8989 (T+730)2 (T + 730)^{2} Copy content Toggle raw display
9797 T2+86436 T^{2} + 86436 Copy content Toggle raw display
show more
show less