Properties

Label 175.4.b
Level $175$
Weight $4$
Character orbit 175.b
Rep. character $\chi_{175}(99,\cdot)$
Character field $\Q$
Dimension $26$
Newform subspaces $6$
Sturm bound $80$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(80\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(175, [\chi])\).

Total New Old
Modular forms 66 26 40
Cusp forms 54 26 28
Eisenstein series 12 0 12

Trace form

\( 26 q - 120 q^{4} - 24 q^{6} - 294 q^{9} - 80 q^{11} + 56 q^{14} + 392 q^{16} - 96 q^{19} - 196 q^{21} - 116 q^{24} + 452 q^{26} + 276 q^{29} - 168 q^{31} - 1328 q^{34} + 2196 q^{36} - 560 q^{39} + 1568 q^{41}+ \cdots - 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(175, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
175.4.b.a 175.b 5.b $2$ $10.325$ \(\Q(\sqrt{-1}) \) None 35.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+8 i q^{3}+7 q^{4}-8 q^{6}+7 i q^{7}+\cdots\)
175.4.b.b 175.b 5.b $2$ $10.325$ \(\Q(\sqrt{-1}) \) None 7.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-2 i q^{3}+7 q^{4}+2 q^{6}+7 i q^{7}+\cdots\)
175.4.b.c 175.b 5.b $4$ $10.325$ \(\Q(\zeta_{8})\) None 35.4.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta_{2}+4\beta_1)q^{2}+(-4\beta_{2}-\beta_1)q^{3}+\cdots\)
175.4.b.d 175.b 5.b $4$ $10.325$ \(\Q(i, \sqrt{41})\) None 175.4.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(\beta _{1}-2\beta _{2})q^{3}+(-3+\beta _{3})q^{4}+\cdots\)
175.4.b.e 175.b 5.b $6$ $10.325$ 6.0.3299353600.1 None 35.4.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}+\beta _{2})q^{2}+(-\beta _{1}+\beta _{2}+\beta _{5})q^{3}+\cdots\)
175.4.b.f 175.b 5.b $8$ $10.325$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 175.4.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}-\beta _{2})q^{2}+(-\beta _{2}-\beta _{5})q^{3}+(-9+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(175, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(175, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)