Defining parameters
Level: | \( N \) | \(=\) | \( 175 = 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 175.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(80\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(175, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 66 | 26 | 40 |
Cusp forms | 54 | 26 | 28 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(175, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
175.4.b.a | $2$ | $10.325$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+i q^{2}+8 i q^{3}+7 q^{4}-8 q^{6}+7 i q^{7}+\cdots\) |
175.4.b.b | $2$ | $10.325$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+i q^{2}-2 i q^{3}+7 q^{4}+2 q^{6}+7 i q^{7}+\cdots\) |
175.4.b.c | $4$ | $10.325$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\beta_{2}+4\beta_1)q^{2}+(-4\beta_{2}-\beta_1)q^{3}+\cdots\) |
175.4.b.d | $4$ | $10.325$ | \(\Q(i, \sqrt{41})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(\beta _{1}-2\beta _{2})q^{3}+(-3+\beta _{3})q^{4}+\cdots\) |
175.4.b.e | $6$ | $10.325$ | 6.0.3299353600.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{1}+\beta _{2})q^{2}+(-\beta _{1}+\beta _{2}+\beta _{5})q^{3}+\cdots\) |
175.4.b.f | $8$ | $10.325$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{1}-\beta _{2})q^{2}+(-\beta _{2}-\beta _{5})q^{3}+(-9+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(175, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(175, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)