gp: [N,k,chi] = [49,4,Mod(18,49)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(49, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("49.18");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,1,2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 49 Z ) × \left(\mathbb{Z}/49\mathbb{Z}\right)^\times ( Z / 4 9 Z ) × .
n n n
3 3 3
χ ( n ) \chi(n) χ ( n )
− ζ 6 -\zeta_{6} − ζ 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 49 , [ χ ] ) S_{4}^{\mathrm{new}}(49, [\chi]) S 4 n e w ( 4 9 , [ χ ] ) :
T 2 2 − T 2 + 1 T_{2}^{2} - T_{2} + 1 T 2 2 − T 2 + 1
T2^2 - T2 + 1
T 3 2 − 2 T 3 + 4 T_{3}^{2} - 2T_{3} + 4 T 3 2 − 2 T 3 + 4
T3^2 - 2*T3 + 4
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 − T + 1 T^{2} - T + 1 T 2 − T + 1
T^2 - T + 1
3 3 3
T 2 − 2 T + 4 T^{2} - 2T + 4 T 2 − 2 T + 4
T^2 - 2*T + 4
5 5 5
T 2 + 16 T + 256 T^{2} + 16T + 256 T 2 + 1 6 T + 2 5 6
T^2 + 16*T + 256
7 7 7
T 2 T^{2} T 2
T^2
11 11 1 1
T 2 − 8 T + 64 T^{2} - 8T + 64 T 2 − 8 T + 6 4
T^2 - 8*T + 64
13 13 1 3
( T − 28 ) 2 (T - 28)^{2} ( T − 2 8 ) 2
(T - 28)^2
17 17 1 7
T 2 + 54 T + 2916 T^{2} + 54T + 2916 T 2 + 5 4 T + 2 9 1 6
T^2 + 54*T + 2916
19 19 1 9
T 2 − 110 T + 12100 T^{2} - 110T + 12100 T 2 − 1 1 0 T + 1 2 1 0 0
T^2 - 110*T + 12100
23 23 2 3
T 2 + 48 T + 2304 T^{2} + 48T + 2304 T 2 + 4 8 T + 2 3 0 4
T^2 + 48*T + 2304
29 29 2 9
( T + 110 ) 2 (T + 110)^{2} ( T + 1 1 0 ) 2
(T + 110)^2
31 31 3 1
T 2 + 12 T + 144 T^{2} + 12T + 144 T 2 + 1 2 T + 1 4 4
T^2 + 12*T + 144
37 37 3 7
T 2 − 246 T + 60516 T^{2} - 246T + 60516 T 2 − 2 4 6 T + 6 0 5 1 6
T^2 - 246*T + 60516
41 41 4 1
( T − 182 ) 2 (T - 182)^{2} ( T − 1 8 2 ) 2
(T - 182)^2
43 43 4 3
( T − 128 ) 2 (T - 128)^{2} ( T − 1 2 8 ) 2
(T - 128)^2
47 47 4 7
T 2 + 324 T + 104976 T^{2} + 324T + 104976 T 2 + 3 2 4 T + 1 0 4 9 7 6
T^2 + 324*T + 104976
53 53 5 3
T 2 − 162 T + 26244 T^{2} - 162T + 26244 T 2 − 1 6 2 T + 2 6 2 4 4
T^2 - 162*T + 26244
59 59 5 9
T 2 + 810 T + 656100 T^{2} + 810T + 656100 T 2 + 8 1 0 T + 6 5 6 1 0 0
T^2 + 810*T + 656100
61 61 6 1
T 2 − 488 T + 238144 T^{2} - 488T + 238144 T 2 − 4 8 8 T + 2 3 8 1 4 4
T^2 - 488*T + 238144
67 67 6 7
T 2 + 244 T + 59536 T^{2} + 244T + 59536 T 2 + 2 4 4 T + 5 9 5 3 6
T^2 + 244*T + 59536
71 71 7 1
( T + 768 ) 2 (T + 768)^{2} ( T + 7 6 8 ) 2
(T + 768)^2
73 73 7 3
T 2 − 702 T + 492804 T^{2} - 702T + 492804 T 2 − 7 0 2 T + 4 9 2 8 0 4
T^2 - 702*T + 492804
79 79 7 9
T 2 + 440 T + 193600 T^{2} + 440T + 193600 T 2 + 4 4 0 T + 1 9 3 6 0 0
T^2 + 440*T + 193600
83 83 8 3
( T + 1302 ) 2 (T + 1302)^{2} ( T + 1 3 0 2 ) 2
(T + 1302)^2
89 89 8 9
T 2 + 730 T + 532900 T^{2} + 730T + 532900 T 2 + 7 3 0 T + 5 3 2 9 0 0
T^2 + 730*T + 532900
97 97 9 7
( T − 294 ) 2 (T - 294)^{2} ( T − 2 9 4 ) 2
(T - 294)^2
show more
show less