Properties

Label 49.4.c.c
Level 4949
Weight 44
Character orbit 49.c
Analytic conductor 2.8912.891
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [49,4,Mod(18,49)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(49, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("49.18"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 49=72 49 = 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 49.c (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.891093590282.89109359028
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+ζ6q2+(2ζ6+2)q3+(7ζ6+7)q416ζ6q5+2q6+15q8+23ζ6q9+(16ζ6+16)q10+(8ζ6+8)q11++184q99+O(q100) q + \zeta_{6} q^{2} + ( - 2 \zeta_{6} + 2) q^{3} + ( - 7 \zeta_{6} + 7) q^{4} - 16 \zeta_{6} q^{5} + 2 q^{6} + 15 q^{8} + 23 \zeta_{6} q^{9} + ( - 16 \zeta_{6} + 16) q^{10} + ( - 8 \zeta_{6} + 8) q^{11} + \cdots + 184 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q2+2q3+7q416q5+4q6+30q8+23q9+16q10+8q1114q12+56q1364q1541q1654q1723q18+110q19224q20+16q22++368q99+O(q100) 2 q + q^{2} + 2 q^{3} + 7 q^{4} - 16 q^{5} + 4 q^{6} + 30 q^{8} + 23 q^{9} + 16 q^{10} + 8 q^{11} - 14 q^{12} + 56 q^{13} - 64 q^{15} - 41 q^{16} - 54 q^{17} - 23 q^{18} + 110 q^{19} - 224 q^{20} + 16 q^{22}+ \cdots + 368 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/49Z)×\left(\mathbb{Z}/49\mathbb{Z}\right)^\times.

nn 33
χ(n)\chi(n) ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
18.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 + 0.866025i 1.00000 1.73205i 3.50000 6.06218i −8.00000 13.8564i 2.00000 0 15.0000 11.5000 + 19.9186i 8.00000 13.8564i
30.1 0.500000 0.866025i 1.00000 + 1.73205i 3.50000 + 6.06218i −8.00000 + 13.8564i 2.00000 0 15.0000 11.5000 19.9186i 8.00000 + 13.8564i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 49.4.c.c 2
3.b odd 2 1 441.4.e.h 2
7.b odd 2 1 49.4.c.b 2
7.c even 3 1 7.4.a.a 1
7.c even 3 1 inner 49.4.c.c 2
7.d odd 6 1 49.4.a.b 1
7.d odd 6 1 49.4.c.b 2
21.c even 2 1 441.4.e.e 2
21.g even 6 1 441.4.a.i 1
21.g even 6 1 441.4.e.e 2
21.h odd 6 1 63.4.a.b 1
21.h odd 6 1 441.4.e.h 2
28.f even 6 1 784.4.a.g 1
28.g odd 6 1 112.4.a.f 1
35.i odd 6 1 1225.4.a.j 1
35.j even 6 1 175.4.a.b 1
35.l odd 12 2 175.4.b.b 2
56.k odd 6 1 448.4.a.e 1
56.p even 6 1 448.4.a.i 1
77.h odd 6 1 847.4.a.b 1
84.n even 6 1 1008.4.a.c 1
91.r even 6 1 1183.4.a.b 1
105.o odd 6 1 1575.4.a.e 1
119.j even 6 1 2023.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.4.a.a 1 7.c even 3 1
49.4.a.b 1 7.d odd 6 1
49.4.c.b 2 7.b odd 2 1
49.4.c.b 2 7.d odd 6 1
49.4.c.c 2 1.a even 1 1 trivial
49.4.c.c 2 7.c even 3 1 inner
63.4.a.b 1 21.h odd 6 1
112.4.a.f 1 28.g odd 6 1
175.4.a.b 1 35.j even 6 1
175.4.b.b 2 35.l odd 12 2
441.4.a.i 1 21.g even 6 1
441.4.e.e 2 21.c even 2 1
441.4.e.e 2 21.g even 6 1
441.4.e.h 2 3.b odd 2 1
441.4.e.h 2 21.h odd 6 1
448.4.a.e 1 56.k odd 6 1
448.4.a.i 1 56.p even 6 1
784.4.a.g 1 28.f even 6 1
847.4.a.b 1 77.h odd 6 1
1008.4.a.c 1 84.n even 6 1
1183.4.a.b 1 91.r even 6 1
1225.4.a.j 1 35.i odd 6 1
1575.4.a.e 1 105.o odd 6 1
2023.4.a.a 1 119.j even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(49,[χ])S_{4}^{\mathrm{new}}(49, [\chi]):

T22T2+1 T_{2}^{2} - T_{2} + 1 Copy content Toggle raw display
T322T3+4 T_{3}^{2} - 2T_{3} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
33 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
55 T2+16T+256 T^{2} + 16T + 256 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T28T+64 T^{2} - 8T + 64 Copy content Toggle raw display
1313 (T28)2 (T - 28)^{2} Copy content Toggle raw display
1717 T2+54T+2916 T^{2} + 54T + 2916 Copy content Toggle raw display
1919 T2110T+12100 T^{2} - 110T + 12100 Copy content Toggle raw display
2323 T2+48T+2304 T^{2} + 48T + 2304 Copy content Toggle raw display
2929 (T+110)2 (T + 110)^{2} Copy content Toggle raw display
3131 T2+12T+144 T^{2} + 12T + 144 Copy content Toggle raw display
3737 T2246T+60516 T^{2} - 246T + 60516 Copy content Toggle raw display
4141 (T182)2 (T - 182)^{2} Copy content Toggle raw display
4343 (T128)2 (T - 128)^{2} Copy content Toggle raw display
4747 T2+324T+104976 T^{2} + 324T + 104976 Copy content Toggle raw display
5353 T2162T+26244 T^{2} - 162T + 26244 Copy content Toggle raw display
5959 T2+810T+656100 T^{2} + 810T + 656100 Copy content Toggle raw display
6161 T2488T+238144 T^{2} - 488T + 238144 Copy content Toggle raw display
6767 T2+244T+59536 T^{2} + 244T + 59536 Copy content Toggle raw display
7171 (T+768)2 (T + 768)^{2} Copy content Toggle raw display
7373 T2702T+492804 T^{2} - 702T + 492804 Copy content Toggle raw display
7979 T2+440T+193600 T^{2} + 440T + 193600 Copy content Toggle raw display
8383 (T+1302)2 (T + 1302)^{2} Copy content Toggle raw display
8989 T2+730T+532900 T^{2} + 730T + 532900 Copy content Toggle raw display
9797 (T294)2 (T - 294)^{2} Copy content Toggle raw display
show more
show less