Defining parameters
Level: | \( N \) | \(=\) | \( 49 = 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 49.c (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(18\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(49, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 24 | 12 |
Cusp forms | 20 | 16 | 4 |
Eisenstein series | 16 | 8 | 8 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(49, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
49.4.c.a | $2$ | $2.891$ | \(\Q(\sqrt{-3}) \) | None | \(-2\) | \(7\) | \(7\) | \(0\) | \(q-2\zeta_{6}q^{2}+(7-7\zeta_{6})q^{3}+(4-4\zeta_{6})q^{4}+\cdots\) |
49.4.c.b | $2$ | $2.891$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(-2\) | \(16\) | \(0\) | \(q+\zeta_{6}q^{2}+(-2+2\zeta_{6})q^{3}+(7-7\zeta_{6})q^{4}+\cdots\) |
49.4.c.c | $2$ | $2.891$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(2\) | \(-16\) | \(0\) | \(q+\zeta_{6}q^{2}+(2-2\zeta_{6})q^{3}+(7-7\zeta_{6})q^{4}+\cdots\) |
49.4.c.d | $2$ | $2.891$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-7}) \) | \(5\) | \(0\) | \(0\) | \(0\) | \(q+5\zeta_{6}q^{2}+(-17+17\zeta_{6})q^{4}-45q^{8}+\cdots\) |
49.4.c.e | $8$ | $2.891$ | 8.0.\(\cdots\).19 | None | \(-2\) | \(0\) | \(0\) | \(0\) | \(q+(-1+\beta _{2}-\beta _{6})q^{2}+\beta _{3}q^{3}+(-8+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(49, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(49, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 2}\)