Defining parameters
Level: | \( N \) | \(=\) | \( 2023 = 7 \cdot 17^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 2023.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 22 \) | ||
Sturm bound: | \(816\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(2023))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 630 | 407 | 223 |
Cusp forms | 594 | 407 | 187 |
Eisenstein series | 36 | 0 | 36 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(7\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(162\) | \(104\) | \(58\) | \(153\) | \(104\) | \(49\) | \(9\) | \(0\) | \(9\) | |||
\(+\) | \(-\) | \(-\) | \(153\) | \(100\) | \(53\) | \(144\) | \(100\) | \(44\) | \(9\) | \(0\) | \(9\) | |||
\(-\) | \(+\) | \(-\) | \(153\) | \(95\) | \(58\) | \(144\) | \(95\) | \(49\) | \(9\) | \(0\) | \(9\) | |||
\(-\) | \(-\) | \(+\) | \(162\) | \(108\) | \(54\) | \(153\) | \(108\) | \(45\) | \(9\) | \(0\) | \(9\) | |||
Plus space | \(+\) | \(324\) | \(212\) | \(112\) | \(306\) | \(212\) | \(94\) | \(18\) | \(0\) | \(18\) | ||||
Minus space | \(-\) | \(306\) | \(195\) | \(111\) | \(288\) | \(195\) | \(93\) | \(18\) | \(0\) | \(18\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(2023))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(2023))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(2023)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(119))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(289))\)\(^{\oplus 2}\)