Properties

Label 2023.4.a
Level $2023$
Weight $4$
Character orbit 2023.a
Rep. character $\chi_{2023}(1,\cdot)$
Character field $\Q$
Dimension $407$
Newform subspaces $22$
Sturm bound $816$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2023 = 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2023.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 22 \)
Sturm bound: \(816\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(2023))\).

Total New Old
Modular forms 630 407 223
Cusp forms 594 407 187
Eisenstein series 36 0 36

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(7\)\(17\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(162\)\(104\)\(58\)\(153\)\(104\)\(49\)\(9\)\(0\)\(9\)
\(+\)\(-\)\(-\)\(153\)\(100\)\(53\)\(144\)\(100\)\(44\)\(9\)\(0\)\(9\)
\(-\)\(+\)\(-\)\(153\)\(95\)\(58\)\(144\)\(95\)\(49\)\(9\)\(0\)\(9\)
\(-\)\(-\)\(+\)\(162\)\(108\)\(54\)\(153\)\(108\)\(45\)\(9\)\(0\)\(9\)
Plus space\(+\)\(324\)\(212\)\(112\)\(306\)\(212\)\(94\)\(18\)\(0\)\(18\)
Minus space\(-\)\(306\)\(195\)\(111\)\(288\)\(195\)\(93\)\(18\)\(0\)\(18\)

Trace form

\( 407 q - q^{2} - 6 q^{3} + 1649 q^{4} - 62 q^{6} - 7 q^{7} + 15 q^{8} + 3759 q^{9} - 128 q^{10} - 60 q^{11} - 34 q^{12} - 28 q^{13} + 7 q^{14} + 96 q^{15} + 6561 q^{16} - 233 q^{18} + 110 q^{19} - 320 q^{20}+ \cdots - 6396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(2023))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 7 17
2023.4.a.a 2023.a 1.a $1$ $119.361$ \(\Q\) None 7.4.a.a \(-1\) \(2\) \(-16\) \(7\) $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+2q^{3}-7q^{4}-2^{4}q^{5}-2q^{6}+\cdots\)
2023.4.a.b 2023.a 1.a $1$ $119.361$ \(\Q\) None 119.4.a.a \(-1\) \(6\) \(20\) \(7\) $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+6q^{3}-7q^{4}+20q^{5}-6q^{6}+\cdots\)
2023.4.a.c 2023.a 1.a $1$ $119.361$ \(\Q\) None 2023.4.a.c \(3\) \(-1\) \(6\) \(-7\) $+$ $+$ $\mathrm{SU}(2)$ \(q+3q^{2}-q^{3}+q^{4}+6q^{5}-3q^{6}-7q^{7}+\cdots\)
2023.4.a.d 2023.a 1.a $1$ $119.361$ \(\Q\) None 2023.4.a.c \(3\) \(1\) \(-6\) \(7\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{2}+q^{3}+q^{4}-6q^{5}+3q^{6}+7q^{7}+\cdots\)
2023.4.a.e 2023.a 1.a $3$ $119.361$ 3.3.2429.1 None 119.4.a.b \(-1\) \(-5\) \(19\) \(21\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(-1-\beta _{1}+\beta _{2})q^{3}+(2+\beta _{1}+\cdots)q^{4}+\cdots\)
2023.4.a.f 2023.a 1.a $4$ $119.361$ 4.4.68557.1 None 119.4.a.c \(-2\) \(7\) \(9\) \(-28\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{2})q^{2}+(2+\beta _{1}+\beta _{3})q^{3}+\cdots\)
2023.4.a.g 2023.a 1.a $7$ $119.361$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 119.4.a.d \(4\) \(-5\) \(-35\) \(49\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(-1+\beta _{2}+\beta _{3})q^{3}+\cdots\)
2023.4.a.h 2023.a 1.a $9$ $119.361$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 119.4.a.e \(2\) \(-11\) \(3\) \(-63\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-1-\beta _{5})q^{3}+(4+\beta _{2})q^{4}+\cdots\)
2023.4.a.i 2023.a 1.a $11$ $119.361$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 2023.4.a.i \(-7\) \(-2\) \(2\) \(-77\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}-\beta _{3}q^{3}+(4-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
2023.4.a.j 2023.a 1.a $11$ $119.361$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 2023.4.a.i \(-7\) \(2\) \(-2\) \(77\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+\beta _{3}q^{3}+(4-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
2023.4.a.k 2023.a 1.a $12$ $119.361$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 2023.4.a.k \(3\) \(-3\) \(12\) \(84\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{4}q^{3}+(5+\beta _{1}+\beta _{2})q^{4}+\cdots\)
2023.4.a.l 2023.a 1.a $12$ $119.361$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 2023.4.a.k \(3\) \(3\) \(-12\) \(-84\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{4}q^{3}+(5+\beta _{1}+\beta _{2})q^{4}+\cdots\)
2023.4.a.m 2023.a 1.a $13$ $119.361$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None 119.4.b.a \(0\) \(-14\) \(-20\) \(91\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-1-\beta _{6})q^{3}+(5+\beta _{2})q^{4}+\cdots\)
2023.4.a.n 2023.a 1.a $13$ $119.361$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None 119.4.b.a \(0\) \(14\) \(20\) \(-91\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{6})q^{3}+(5+\beta _{2})q^{4}+\cdots\)
2023.4.a.o 2023.a 1.a $26$ $119.361$ None 119.4.g.a \(-8\) \(-12\) \(-40\) \(182\) $-$ $+$ $\mathrm{SU}(2)$
2023.4.a.p 2023.a 1.a $26$ $119.361$ None 119.4.g.a \(-8\) \(12\) \(40\) \(-182\) $+$ $+$ $\mathrm{SU}(2)$
2023.4.a.q 2023.a 1.a $33$ $119.361$ None 2023.4.a.q \(-12\) \(0\) \(0\) \(-231\) $+$ $-$ $\mathrm{SU}(2)$
2023.4.a.r 2023.a 1.a $33$ $119.361$ None 2023.4.a.q \(-12\) \(0\) \(0\) \(231\) $-$ $+$ $\mathrm{SU}(2)$
2023.4.a.s 2023.a 1.a $39$ $119.361$ None 2023.4.a.s \(12\) \(0\) \(0\) \(273\) $-$ $-$ $\mathrm{SU}(2)$
2023.4.a.t 2023.a 1.a $39$ $119.361$ None 2023.4.a.s \(12\) \(0\) \(0\) \(-273\) $+$ $+$ $\mathrm{SU}(2)$
2023.4.a.u 2023.a 1.a $56$ $119.361$ None 119.4.k.a \(8\) \(-24\) \(-80\) \(-392\) $+$ $-$ $\mathrm{SU}(2)$
2023.4.a.v 2023.a 1.a $56$ $119.361$ None 119.4.k.a \(8\) \(24\) \(80\) \(392\) $-$ $-$ $\mathrm{SU}(2)$

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(2023))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(2023)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(119))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(289))\)\(^{\oplus 2}\)