Properties

Label 1984.2.a.z.1.4
Level $1984$
Weight $2$
Character 1984.1
Self dual yes
Analytic conductor $15.842$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1984,2,Mod(1,1984)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1984.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1984, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1984 = 2^{6} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1984.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,-2,0,-4,0,4,0,10,0,0,0,-2,0,2,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.8423197610\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.13968.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 7x^{2} + 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 992)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(3.27743\) of defining polynomial
Character \(\chi\) \(=\) 1984.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.73205 q^{3} +2.27743 q^{5} +0.610235 q^{7} +4.46410 q^{9} -0.399243 q^{11} -4.06644 q^{13} +6.22205 q^{15} +4.88766 q^{17} +5.94462 q^{19} +1.66719 q^{21} -1.42356 q^{23} +0.186674 q^{25} +4.00000 q^{27} -3.82280 q^{29} -1.00000 q^{31} -1.09075 q^{33} +1.38977 q^{35} +3.30849 q^{37} -11.1097 q^{39} +0.943042 q^{41} +9.82280 q^{43} +10.1667 q^{45} -3.70773 q^{47} -6.62761 q^{49} +13.3533 q^{51} +12.6618 q^{53} -0.909247 q^{55} +16.2410 q^{57} -7.96358 q^{59} -4.06644 q^{61} +2.72415 q^{63} -9.26101 q^{65} +9.22047 q^{67} -3.88924 q^{69} +11.1651 q^{71} -4.92820 q^{73} +0.510004 q^{75} -0.243632 q^{77} -10.7769 q^{79} -2.46410 q^{81} -11.8665 q^{83} +11.1313 q^{85} -10.4441 q^{87} -8.64403 q^{89} -2.48148 q^{91} -2.73205 q^{93} +13.5384 q^{95} -12.1667 q^{97} -1.78226 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 2 q^{5} - 4 q^{7} + 4 q^{9} + 10 q^{11} - 2 q^{15} + 2 q^{17} + 8 q^{19} + 2 q^{21} - 2 q^{23} - 2 q^{25} + 16 q^{27} - 4 q^{31} + 4 q^{33} + 12 q^{35} + 10 q^{37} + 2 q^{41} + 24 q^{43}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.73205 1.57735 0.788675 0.614810i \(-0.210767\pi\)
0.788675 + 0.614810i \(0.210767\pi\)
\(4\) 0 0
\(5\) 2.27743 1.01850 0.509248 0.860620i \(-0.329924\pi\)
0.509248 + 0.860620i \(0.329924\pi\)
\(6\) 0 0
\(7\) 0.610235 0.230647 0.115324 0.993328i \(-0.463210\pi\)
0.115324 + 0.993328i \(0.463210\pi\)
\(8\) 0 0
\(9\) 4.46410 1.48803
\(10\) 0 0
\(11\) −0.399243 −0.120376 −0.0601882 0.998187i \(-0.519170\pi\)
−0.0601882 + 0.998187i \(0.519170\pi\)
\(12\) 0 0
\(13\) −4.06644 −1.12783 −0.563913 0.825834i \(-0.690705\pi\)
−0.563913 + 0.825834i \(0.690705\pi\)
\(14\) 0 0
\(15\) 6.22205 1.60653
\(16\) 0 0
\(17\) 4.88766 1.18543 0.592716 0.805411i \(-0.298056\pi\)
0.592716 + 0.805411i \(0.298056\pi\)
\(18\) 0 0
\(19\) 5.94462 1.36379 0.681895 0.731450i \(-0.261156\pi\)
0.681895 + 0.731450i \(0.261156\pi\)
\(20\) 0 0
\(21\) 1.66719 0.363811
\(22\) 0 0
\(23\) −1.42356 −0.296833 −0.148416 0.988925i \(-0.547418\pi\)
−0.148416 + 0.988925i \(0.547418\pi\)
\(24\) 0 0
\(25\) 0.186674 0.0373349
\(26\) 0 0
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) −3.82280 −0.709877 −0.354938 0.934890i \(-0.615498\pi\)
−0.354938 + 0.934890i \(0.615498\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 0 0
\(33\) −1.09075 −0.189876
\(34\) 0 0
\(35\) 1.38977 0.234913
\(36\) 0 0
\(37\) 3.30849 0.543912 0.271956 0.962310i \(-0.412329\pi\)
0.271956 + 0.962310i \(0.412329\pi\)
\(38\) 0 0
\(39\) −11.1097 −1.77898
\(40\) 0 0
\(41\) 0.943042 0.147278 0.0736392 0.997285i \(-0.476539\pi\)
0.0736392 + 0.997285i \(0.476539\pi\)
\(42\) 0 0
\(43\) 9.82280 1.49796 0.748982 0.662591i \(-0.230543\pi\)
0.748982 + 0.662591i \(0.230543\pi\)
\(44\) 0 0
\(45\) 10.1667 1.51556
\(46\) 0 0
\(47\) −3.70773 −0.540829 −0.270414 0.962744i \(-0.587161\pi\)
−0.270414 + 0.962744i \(0.587161\pi\)
\(48\) 0 0
\(49\) −6.62761 −0.946802
\(50\) 0 0
\(51\) 13.3533 1.86984
\(52\) 0 0
\(53\) 12.6618 1.73924 0.869618 0.493725i \(-0.164365\pi\)
0.869618 + 0.493725i \(0.164365\pi\)
\(54\) 0 0
\(55\) −0.909247 −0.122603
\(56\) 0 0
\(57\) 16.2410 2.15117
\(58\) 0 0
\(59\) −7.96358 −1.03677 −0.518385 0.855148i \(-0.673466\pi\)
−0.518385 + 0.855148i \(0.673466\pi\)
\(60\) 0 0
\(61\) −4.06644 −0.520654 −0.260327 0.965521i \(-0.583830\pi\)
−0.260327 + 0.965521i \(0.583830\pi\)
\(62\) 0 0
\(63\) 2.72415 0.343211
\(64\) 0 0
\(65\) −9.26101 −1.14869
\(66\) 0 0
\(67\) 9.22047 1.12646 0.563230 0.826300i \(-0.309559\pi\)
0.563230 + 0.826300i \(0.309559\pi\)
\(68\) 0 0
\(69\) −3.88924 −0.468209
\(70\) 0 0
\(71\) 11.1651 1.32505 0.662526 0.749039i \(-0.269484\pi\)
0.662526 + 0.749039i \(0.269484\pi\)
\(72\) 0 0
\(73\) −4.92820 −0.576803 −0.288401 0.957510i \(-0.593124\pi\)
−0.288401 + 0.957510i \(0.593124\pi\)
\(74\) 0 0
\(75\) 0.510004 0.0588902
\(76\) 0 0
\(77\) −0.243632 −0.0277645
\(78\) 0 0
\(79\) −10.7769 −1.21250 −0.606248 0.795276i \(-0.707326\pi\)
−0.606248 + 0.795276i \(0.707326\pi\)
\(80\) 0 0
\(81\) −2.46410 −0.273789
\(82\) 0 0
\(83\) −11.8665 −1.30252 −0.651259 0.758856i \(-0.725759\pi\)
−0.651259 + 0.758856i \(0.725759\pi\)
\(84\) 0 0
\(85\) 11.1313 1.20736
\(86\) 0 0
\(87\) −10.4441 −1.11972
\(88\) 0 0
\(89\) −8.64403 −0.916265 −0.458133 0.888884i \(-0.651482\pi\)
−0.458133 + 0.888884i \(0.651482\pi\)
\(90\) 0 0
\(91\) −2.48148 −0.260130
\(92\) 0 0
\(93\) −2.73205 −0.283300
\(94\) 0 0
\(95\) 13.5384 1.38901
\(96\) 0 0
\(97\) −12.1667 −1.23534 −0.617669 0.786438i \(-0.711923\pi\)
−0.617669 + 0.786438i \(0.711923\pi\)
\(98\) 0 0
\(99\) −1.78226 −0.179124
\(100\) 0 0
\(101\) −6.76469 −0.673112 −0.336556 0.941663i \(-0.609262\pi\)
−0.336556 + 0.941663i \(0.609262\pi\)
\(102\) 0 0
\(103\) 9.42768 0.928937 0.464468 0.885590i \(-0.346245\pi\)
0.464468 + 0.885590i \(0.346245\pi\)
\(104\) 0 0
\(105\) 3.79691 0.370540
\(106\) 0 0
\(107\) 7.34113 0.709694 0.354847 0.934924i \(-0.384533\pi\)
0.354847 + 0.934924i \(0.384533\pi\)
\(108\) 0 0
\(109\) 4.70256 0.450424 0.225212 0.974310i \(-0.427693\pi\)
0.225212 + 0.974310i \(0.427693\pi\)
\(110\) 0 0
\(111\) 9.03896 0.857941
\(112\) 0 0
\(113\) −15.6929 −1.47626 −0.738132 0.674657i \(-0.764292\pi\)
−0.738132 + 0.674657i \(0.764292\pi\)
\(114\) 0 0
\(115\) −3.24205 −0.302323
\(116\) 0 0
\(117\) −18.1530 −1.67824
\(118\) 0 0
\(119\) 2.98262 0.273416
\(120\) 0 0
\(121\) −10.8406 −0.985510
\(122\) 0 0
\(123\) 2.57644 0.232310
\(124\) 0 0
\(125\) −10.9620 −0.980471
\(126\) 0 0
\(127\) 9.75952 0.866018 0.433009 0.901390i \(-0.357452\pi\)
0.433009 + 0.901390i \(0.357452\pi\)
\(128\) 0 0
\(129\) 26.8364 2.36281
\(130\) 0 0
\(131\) −0.259434 −0.0226668 −0.0113334 0.999936i \(-0.503608\pi\)
−0.0113334 + 0.999936i \(0.503608\pi\)
\(132\) 0 0
\(133\) 3.62761 0.314554
\(134\) 0 0
\(135\) 9.10971 0.784039
\(136\) 0 0
\(137\) −0.628228 −0.0536732 −0.0268366 0.999640i \(-0.508543\pi\)
−0.0268366 + 0.999640i \(0.508543\pi\)
\(138\) 0 0
\(139\) 17.7684 1.50709 0.753547 0.657394i \(-0.228341\pi\)
0.753547 + 0.657394i \(0.228341\pi\)
\(140\) 0 0
\(141\) −10.1297 −0.853076
\(142\) 0 0
\(143\) 1.62350 0.135764
\(144\) 0 0
\(145\) −8.70616 −0.723007
\(146\) 0 0
\(147\) −18.1070 −1.49344
\(148\) 0 0
\(149\) −7.35334 −0.602409 −0.301205 0.953560i \(-0.597389\pi\)
−0.301205 + 0.953560i \(0.597389\pi\)
\(150\) 0 0
\(151\) −1.84554 −0.150188 −0.0750941 0.997176i \(-0.523926\pi\)
−0.0750941 + 0.997176i \(0.523926\pi\)
\(152\) 0 0
\(153\) 21.8190 1.76396
\(154\) 0 0
\(155\) −2.27743 −0.182927
\(156\) 0 0
\(157\) −19.8902 −1.58741 −0.793705 0.608302i \(-0.791851\pi\)
−0.793705 + 0.608302i \(0.791851\pi\)
\(158\) 0 0
\(159\) 34.5928 2.74338
\(160\) 0 0
\(161\) −0.868706 −0.0684636
\(162\) 0 0
\(163\) 15.0025 1.17509 0.587545 0.809192i \(-0.300095\pi\)
0.587545 + 0.809192i \(0.300095\pi\)
\(164\) 0 0
\(165\) −2.48411 −0.193388
\(166\) 0 0
\(167\) −22.9661 −1.77717 −0.888586 0.458711i \(-0.848311\pi\)
−0.888586 + 0.458711i \(0.848311\pi\)
\(168\) 0 0
\(169\) 3.53590 0.271992
\(170\) 0 0
\(171\) 26.5374 2.02936
\(172\) 0 0
\(173\) 5.48306 0.416869 0.208435 0.978036i \(-0.433163\pi\)
0.208435 + 0.978036i \(0.433163\pi\)
\(174\) 0 0
\(175\) 0.113915 0.00861118
\(176\) 0 0
\(177\) −21.7569 −1.63535
\(178\) 0 0
\(179\) 3.84176 0.287147 0.143573 0.989640i \(-0.454141\pi\)
0.143573 + 0.989640i \(0.454141\pi\)
\(180\) 0 0
\(181\) −20.0526 −1.49049 −0.745247 0.666788i \(-0.767669\pi\)
−0.745247 + 0.666788i \(0.767669\pi\)
\(182\) 0 0
\(183\) −11.1097 −0.821253
\(184\) 0 0
\(185\) 7.53485 0.553973
\(186\) 0 0
\(187\) −1.95137 −0.142698
\(188\) 0 0
\(189\) 2.44094 0.177552
\(190\) 0 0
\(191\) 10.7242 0.775972 0.387986 0.921665i \(-0.373171\pi\)
0.387986 + 0.921665i \(0.373171\pi\)
\(192\) 0 0
\(193\) 3.63077 0.261348 0.130674 0.991425i \(-0.458286\pi\)
0.130674 + 0.991425i \(0.458286\pi\)
\(194\) 0 0
\(195\) −25.3016 −1.81188
\(196\) 0 0
\(197\) 23.4140 1.66818 0.834089 0.551630i \(-0.185994\pi\)
0.834089 + 0.551630i \(0.185994\pi\)
\(198\) 0 0
\(199\) 0.733205 0.0519756 0.0259878 0.999662i \(-0.491727\pi\)
0.0259878 + 0.999662i \(0.491727\pi\)
\(200\) 0 0
\(201\) 25.1908 1.77682
\(202\) 0 0
\(203\) −2.33281 −0.163731
\(204\) 0 0
\(205\) 2.14771 0.150003
\(206\) 0 0
\(207\) −6.35492 −0.441697
\(208\) 0 0
\(209\) −2.37335 −0.164168
\(210\) 0 0
\(211\) −19.4763 −1.34080 −0.670402 0.741998i \(-0.733878\pi\)
−0.670402 + 0.741998i \(0.733878\pi\)
\(212\) 0 0
\(213\) 30.5036 2.09007
\(214\) 0 0
\(215\) 22.3707 1.52567
\(216\) 0 0
\(217\) −0.610235 −0.0414254
\(218\) 0 0
\(219\) −13.4641 −0.909820
\(220\) 0 0
\(221\) −19.8754 −1.33696
\(222\) 0 0
\(223\) −24.2140 −1.62149 −0.810743 0.585402i \(-0.800937\pi\)
−0.810743 + 0.585402i \(0.800937\pi\)
\(224\) 0 0
\(225\) 0.833334 0.0555556
\(226\) 0 0
\(227\) −16.3923 −1.08800 −0.543998 0.839087i \(-0.683090\pi\)
−0.543998 + 0.839087i \(0.683090\pi\)
\(228\) 0 0
\(229\) 20.4182 1.34927 0.674636 0.738150i \(-0.264300\pi\)
0.674636 + 0.738150i \(0.264300\pi\)
\(230\) 0 0
\(231\) −0.665615 −0.0437943
\(232\) 0 0
\(233\) −20.9810 −1.37451 −0.687254 0.726417i \(-0.741184\pi\)
−0.687254 + 0.726417i \(0.741184\pi\)
\(234\) 0 0
\(235\) −8.44409 −0.550832
\(236\) 0 0
\(237\) −29.4430 −1.91253
\(238\) 0 0
\(239\) 14.8201 0.958631 0.479315 0.877643i \(-0.340885\pi\)
0.479315 + 0.877643i \(0.340885\pi\)
\(240\) 0 0
\(241\) −3.05792 −0.196978 −0.0984890 0.995138i \(-0.531401\pi\)
−0.0984890 + 0.995138i \(0.531401\pi\)
\(242\) 0 0
\(243\) −18.7321 −1.20166
\(244\) 0 0
\(245\) −15.0939 −0.964314
\(246\) 0 0
\(247\) −24.1734 −1.53812
\(248\) 0 0
\(249\) −32.4199 −2.05453
\(250\) 0 0
\(251\) 24.7078 1.55954 0.779772 0.626063i \(-0.215335\pi\)
0.779772 + 0.626063i \(0.215335\pi\)
\(252\) 0 0
\(253\) 0.568347 0.0357317
\(254\) 0 0
\(255\) 30.4113 1.90443
\(256\) 0 0
\(257\) 22.7373 1.41832 0.709158 0.705050i \(-0.249075\pi\)
0.709158 + 0.705050i \(0.249075\pi\)
\(258\) 0 0
\(259\) 2.01896 0.125452
\(260\) 0 0
\(261\) −17.0654 −1.05632
\(262\) 0 0
\(263\) 10.3031 0.635318 0.317659 0.948205i \(-0.397103\pi\)
0.317659 + 0.948205i \(0.397103\pi\)
\(264\) 0 0
\(265\) 28.8364 1.77141
\(266\) 0 0
\(267\) −23.6159 −1.44527
\(268\) 0 0
\(269\) −1.50580 −0.0918101 −0.0459050 0.998946i \(-0.514617\pi\)
−0.0459050 + 0.998946i \(0.514617\pi\)
\(270\) 0 0
\(271\) 25.7862 1.56640 0.783200 0.621770i \(-0.213586\pi\)
0.783200 + 0.621770i \(0.213586\pi\)
\(272\) 0 0
\(273\) −6.77953 −0.410316
\(274\) 0 0
\(275\) −0.0745285 −0.00449424
\(276\) 0 0
\(277\) 3.64445 0.218974 0.109487 0.993988i \(-0.465079\pi\)
0.109487 + 0.993988i \(0.465079\pi\)
\(278\) 0 0
\(279\) −4.46410 −0.267259
\(280\) 0 0
\(281\) −14.7373 −0.879155 −0.439577 0.898205i \(-0.644872\pi\)
−0.439577 + 0.898205i \(0.644872\pi\)
\(282\) 0 0
\(283\) 17.6488 1.04911 0.524555 0.851377i \(-0.324232\pi\)
0.524555 + 0.851377i \(0.324232\pi\)
\(284\) 0 0
\(285\) 36.9877 2.19096
\(286\) 0 0
\(287\) 0.575477 0.0339693
\(288\) 0 0
\(289\) 6.88924 0.405249
\(290\) 0 0
\(291\) −33.2400 −1.94856
\(292\) 0 0
\(293\) 16.8174 0.982485 0.491243 0.871023i \(-0.336543\pi\)
0.491243 + 0.871023i \(0.336543\pi\)
\(294\) 0 0
\(295\) −18.1365 −1.05595
\(296\) 0 0
\(297\) −1.59697 −0.0926658
\(298\) 0 0
\(299\) 5.78882 0.334776
\(300\) 0 0
\(301\) 5.99422 0.345501
\(302\) 0 0
\(303\) −18.4815 −1.06173
\(304\) 0 0
\(305\) −9.26101 −0.530284
\(306\) 0 0
\(307\) −30.9594 −1.76694 −0.883472 0.468483i \(-0.844801\pi\)
−0.883472 + 0.468483i \(0.844801\pi\)
\(308\) 0 0
\(309\) 25.7569 1.46526
\(310\) 0 0
\(311\) −7.42452 −0.421006 −0.210503 0.977593i \(-0.567510\pi\)
−0.210503 + 0.977593i \(0.567510\pi\)
\(312\) 0 0
\(313\) −24.0437 −1.35903 −0.679515 0.733662i \(-0.737810\pi\)
−0.679515 + 0.733662i \(0.737810\pi\)
\(314\) 0 0
\(315\) 6.20405 0.349559
\(316\) 0 0
\(317\) 29.5011 1.65694 0.828472 0.560030i \(-0.189211\pi\)
0.828472 + 0.560030i \(0.189211\pi\)
\(318\) 0 0
\(319\) 1.52623 0.0854524
\(320\) 0 0
\(321\) 20.0563 1.11944
\(322\) 0 0
\(323\) 29.0553 1.61668
\(324\) 0 0
\(325\) −0.759100 −0.0421073
\(326\) 0 0
\(327\) 12.8476 0.710476
\(328\) 0 0
\(329\) −2.26259 −0.124741
\(330\) 0 0
\(331\) 17.7684 0.976639 0.488319 0.872665i \(-0.337610\pi\)
0.488319 + 0.872665i \(0.337610\pi\)
\(332\) 0 0
\(333\) 14.7694 0.809360
\(334\) 0 0
\(335\) 20.9989 1.14730
\(336\) 0 0
\(337\) 8.01633 0.436677 0.218339 0.975873i \(-0.429936\pi\)
0.218339 + 0.975873i \(0.429936\pi\)
\(338\) 0 0
\(339\) −42.8738 −2.32858
\(340\) 0 0
\(341\) 0.399243 0.0216202
\(342\) 0 0
\(343\) −8.31604 −0.449024
\(344\) 0 0
\(345\) −8.85746 −0.476870
\(346\) 0 0
\(347\) 33.6171 1.80466 0.902330 0.431046i \(-0.141855\pi\)
0.902330 + 0.431046i \(0.141855\pi\)
\(348\) 0 0
\(349\) −8.68457 −0.464874 −0.232437 0.972611i \(-0.574670\pi\)
−0.232437 + 0.972611i \(0.574670\pi\)
\(350\) 0 0
\(351\) −16.2657 −0.868201
\(352\) 0 0
\(353\) 0.860613 0.0458058 0.0229029 0.999738i \(-0.492709\pi\)
0.0229029 + 0.999738i \(0.492709\pi\)
\(354\) 0 0
\(355\) 25.4277 1.34956
\(356\) 0 0
\(357\) 8.14867 0.431273
\(358\) 0 0
\(359\) 27.1323 1.43199 0.715993 0.698108i \(-0.245974\pi\)
0.715993 + 0.698108i \(0.245974\pi\)
\(360\) 0 0
\(361\) 16.3385 0.859921
\(362\) 0 0
\(363\) −29.6171 −1.55449
\(364\) 0 0
\(365\) −11.2236 −0.587471
\(366\) 0 0
\(367\) −35.4399 −1.84995 −0.924974 0.380032i \(-0.875913\pi\)
−0.924974 + 0.380032i \(0.875913\pi\)
\(368\) 0 0
\(369\) 4.20984 0.219155
\(370\) 0 0
\(371\) 7.72669 0.401150
\(372\) 0 0
\(373\) 11.9199 0.617188 0.308594 0.951194i \(-0.400142\pi\)
0.308594 + 0.951194i \(0.400142\pi\)
\(374\) 0 0
\(375\) −29.9487 −1.54655
\(376\) 0 0
\(377\) 15.5452 0.800618
\(378\) 0 0
\(379\) −29.9461 −1.53823 −0.769114 0.639112i \(-0.779302\pi\)
−0.769114 + 0.639112i \(0.779302\pi\)
\(380\) 0 0
\(381\) 26.6635 1.36601
\(382\) 0 0
\(383\) −20.4283 −1.04384 −0.521918 0.852995i \(-0.674783\pi\)
−0.521918 + 0.852995i \(0.674783\pi\)
\(384\) 0 0
\(385\) −0.554854 −0.0282780
\(386\) 0 0
\(387\) 43.8500 2.22902
\(388\) 0 0
\(389\) −19.1166 −0.969252 −0.484626 0.874721i \(-0.661044\pi\)
−0.484626 + 0.874721i \(0.661044\pi\)
\(390\) 0 0
\(391\) −6.95788 −0.351875
\(392\) 0 0
\(393\) −0.708786 −0.0357535
\(394\) 0 0
\(395\) −24.5436 −1.23492
\(396\) 0 0
\(397\) 17.7605 0.891373 0.445687 0.895189i \(-0.352960\pi\)
0.445687 + 0.895189i \(0.352960\pi\)
\(398\) 0 0
\(399\) 9.91082 0.496162
\(400\) 0 0
\(401\) 10.5143 0.525060 0.262530 0.964924i \(-0.415443\pi\)
0.262530 + 0.964924i \(0.415443\pi\)
\(402\) 0 0
\(403\) 4.06644 0.202564
\(404\) 0 0
\(405\) −5.61181 −0.278853
\(406\) 0 0
\(407\) −1.32089 −0.0654742
\(408\) 0 0
\(409\) 21.4128 1.05880 0.529398 0.848373i \(-0.322418\pi\)
0.529398 + 0.848373i \(0.322418\pi\)
\(410\) 0 0
\(411\) −1.71635 −0.0846614
\(412\) 0 0
\(413\) −4.85965 −0.239128
\(414\) 0 0
\(415\) −27.0251 −1.32661
\(416\) 0 0
\(417\) 48.5441 2.37722
\(418\) 0 0
\(419\) −16.2590 −0.794304 −0.397152 0.917753i \(-0.630001\pi\)
−0.397152 + 0.917753i \(0.630001\pi\)
\(420\) 0 0
\(421\) −29.3840 −1.43209 −0.716044 0.698055i \(-0.754049\pi\)
−0.716044 + 0.698055i \(0.754049\pi\)
\(422\) 0 0
\(423\) −16.5517 −0.804771
\(424\) 0 0
\(425\) 0.912402 0.0442580
\(426\) 0 0
\(427\) −2.48148 −0.120087
\(428\) 0 0
\(429\) 4.43548 0.214147
\(430\) 0 0
\(431\) −19.1908 −0.924388 −0.462194 0.886779i \(-0.652938\pi\)
−0.462194 + 0.886779i \(0.652938\pi\)
\(432\) 0 0
\(433\) −29.2210 −1.40427 −0.702136 0.712043i \(-0.747770\pi\)
−0.702136 + 0.712043i \(0.747770\pi\)
\(434\) 0 0
\(435\) −23.7857 −1.14044
\(436\) 0 0
\(437\) −8.46252 −0.404817
\(438\) 0 0
\(439\) −27.1682 −1.29667 −0.648335 0.761355i \(-0.724534\pi\)
−0.648335 + 0.761355i \(0.724534\pi\)
\(440\) 0 0
\(441\) −29.5863 −1.40887
\(442\) 0 0
\(443\) −17.7682 −0.844192 −0.422096 0.906551i \(-0.638706\pi\)
−0.422096 + 0.906551i \(0.638706\pi\)
\(444\) 0 0
\(445\) −19.6861 −0.933213
\(446\) 0 0
\(447\) −20.0897 −0.950210
\(448\) 0 0
\(449\) 11.6425 0.549441 0.274721 0.961524i \(-0.411415\pi\)
0.274721 + 0.961524i \(0.411415\pi\)
\(450\) 0 0
\(451\) −0.376503 −0.0177288
\(452\) 0 0
\(453\) −5.04212 −0.236899
\(454\) 0 0
\(455\) −5.65139 −0.264941
\(456\) 0 0
\(457\) −7.93787 −0.371318 −0.185659 0.982614i \(-0.559442\pi\)
−0.185659 + 0.982614i \(0.559442\pi\)
\(458\) 0 0
\(459\) 19.5506 0.912546
\(460\) 0 0
\(461\) 4.74330 0.220917 0.110459 0.993881i \(-0.464768\pi\)
0.110459 + 0.993881i \(0.464768\pi\)
\(462\) 0 0
\(463\) −6.55170 −0.304483 −0.152242 0.988343i \(-0.548649\pi\)
−0.152242 + 0.988343i \(0.548649\pi\)
\(464\) 0 0
\(465\) −6.22205 −0.288541
\(466\) 0 0
\(467\) −18.6755 −0.864200 −0.432100 0.901826i \(-0.642227\pi\)
−0.432100 + 0.901826i \(0.642227\pi\)
\(468\) 0 0
\(469\) 5.62665 0.259815
\(470\) 0 0
\(471\) −54.3410 −2.50390
\(472\) 0 0
\(473\) −3.92169 −0.180319
\(474\) 0 0
\(475\) 1.10971 0.0509169
\(476\) 0 0
\(477\) 56.5237 2.58804
\(478\) 0 0
\(479\) 3.50368 0.160087 0.0800436 0.996791i \(-0.474494\pi\)
0.0800436 + 0.996791i \(0.474494\pi\)
\(480\) 0 0
\(481\) −13.4538 −0.613439
\(482\) 0 0
\(483\) −2.37335 −0.107991
\(484\) 0 0
\(485\) −27.7087 −1.25819
\(486\) 0 0
\(487\) 19.4507 0.881398 0.440699 0.897655i \(-0.354731\pi\)
0.440699 + 0.897655i \(0.354731\pi\)
\(488\) 0 0
\(489\) 40.9877 1.85353
\(490\) 0 0
\(491\) −8.27461 −0.373428 −0.186714 0.982414i \(-0.559784\pi\)
−0.186714 + 0.982414i \(0.559784\pi\)
\(492\) 0 0
\(493\) −18.6846 −0.841511
\(494\) 0 0
\(495\) −4.05897 −0.182437
\(496\) 0 0
\(497\) 6.81333 0.305619
\(498\) 0 0
\(499\) 5.45716 0.244296 0.122148 0.992512i \(-0.461022\pi\)
0.122148 + 0.992512i \(0.461022\pi\)
\(500\) 0 0
\(501\) −62.7446 −2.80322
\(502\) 0 0
\(503\) 13.9446 0.621760 0.310880 0.950449i \(-0.399376\pi\)
0.310880 + 0.950449i \(0.399376\pi\)
\(504\) 0 0
\(505\) −15.4061 −0.685562
\(506\) 0 0
\(507\) 9.66025 0.429027
\(508\) 0 0
\(509\) 11.8205 0.523934 0.261967 0.965077i \(-0.415629\pi\)
0.261967 + 0.965077i \(0.415629\pi\)
\(510\) 0 0
\(511\) −3.00736 −0.133038
\(512\) 0 0
\(513\) 23.7785 1.04985
\(514\) 0 0
\(515\) 21.4708 0.946119
\(516\) 0 0
\(517\) 1.48029 0.0651030
\(518\) 0 0
\(519\) 14.9800 0.657549
\(520\) 0 0
\(521\) −14.5169 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(522\) 0 0
\(523\) 24.3290 1.06383 0.531917 0.846797i \(-0.321472\pi\)
0.531917 + 0.846797i \(0.321472\pi\)
\(524\) 0 0
\(525\) 0.311222 0.0135829
\(526\) 0 0
\(527\) −4.88766 −0.212910
\(528\) 0 0
\(529\) −20.9735 −0.911890
\(530\) 0 0
\(531\) −35.5502 −1.54275
\(532\) 0 0
\(533\) −3.83482 −0.166105
\(534\) 0 0
\(535\) 16.7189 0.722821
\(536\) 0 0
\(537\) 10.4959 0.452931
\(538\) 0 0
\(539\) 2.64603 0.113973
\(540\) 0 0
\(541\) −14.8976 −0.640496 −0.320248 0.947334i \(-0.603766\pi\)
−0.320248 + 0.947334i \(0.603766\pi\)
\(542\) 0 0
\(543\) −54.7846 −2.35103
\(544\) 0 0
\(545\) 10.7097 0.458755
\(546\) 0 0
\(547\) −15.7421 −0.673082 −0.336541 0.941669i \(-0.609257\pi\)
−0.336541 + 0.941669i \(0.609257\pi\)
\(548\) 0 0
\(549\) −18.1530 −0.774750
\(550\) 0 0
\(551\) −22.7251 −0.968122
\(552\) 0 0
\(553\) −6.57644 −0.279659
\(554\) 0 0
\(555\) 20.5856 0.873809
\(556\) 0 0
\(557\) −27.7252 −1.17476 −0.587378 0.809313i \(-0.699840\pi\)
−0.587378 + 0.809313i \(0.699840\pi\)
\(558\) 0 0
\(559\) −39.9438 −1.68944
\(560\) 0 0
\(561\) −5.33123 −0.225085
\(562\) 0 0
\(563\) 26.6616 1.12365 0.561827 0.827255i \(-0.310099\pi\)
0.561827 + 0.827255i \(0.310099\pi\)
\(564\) 0 0
\(565\) −35.7394 −1.50357
\(566\) 0 0
\(567\) −1.50368 −0.0631486
\(568\) 0 0
\(569\) 11.3154 0.474367 0.237184 0.971465i \(-0.423776\pi\)
0.237184 + 0.971465i \(0.423776\pi\)
\(570\) 0 0
\(571\) 45.8742 1.91978 0.959888 0.280384i \(-0.0904618\pi\)
0.959888 + 0.280384i \(0.0904618\pi\)
\(572\) 0 0
\(573\) 29.2989 1.22398
\(574\) 0 0
\(575\) −0.265742 −0.0110822
\(576\) 0 0
\(577\) 46.1739 1.92225 0.961123 0.276120i \(-0.0890488\pi\)
0.961123 + 0.276120i \(0.0890488\pi\)
\(578\) 0 0
\(579\) 9.91944 0.412238
\(580\) 0 0
\(581\) −7.24135 −0.300422
\(582\) 0 0
\(583\) −5.05515 −0.209363
\(584\) 0 0
\(585\) −41.3421 −1.70929
\(586\) 0 0
\(587\) −16.5479 −0.683006 −0.341503 0.939881i \(-0.610936\pi\)
−0.341503 + 0.939881i \(0.610936\pi\)
\(588\) 0 0
\(589\) −5.94462 −0.244944
\(590\) 0 0
\(591\) 63.9682 2.63130
\(592\) 0 0
\(593\) −29.6466 −1.21744 −0.608719 0.793386i \(-0.708316\pi\)
−0.608719 + 0.793386i \(0.708316\pi\)
\(594\) 0 0
\(595\) 6.79270 0.278474
\(596\) 0 0
\(597\) 2.00315 0.0819836
\(598\) 0 0
\(599\) 34.2451 1.39922 0.699609 0.714526i \(-0.253358\pi\)
0.699609 + 0.714526i \(0.253358\pi\)
\(600\) 0 0
\(601\) −11.8811 −0.484642 −0.242321 0.970196i \(-0.577909\pi\)
−0.242321 + 0.970196i \(0.577909\pi\)
\(602\) 0 0
\(603\) 41.1611 1.67621
\(604\) 0 0
\(605\) −24.6887 −1.00374
\(606\) 0 0
\(607\) 38.8257 1.57589 0.787943 0.615748i \(-0.211146\pi\)
0.787943 + 0.615748i \(0.211146\pi\)
\(608\) 0 0
\(609\) −6.37335 −0.258261
\(610\) 0 0
\(611\) 15.0773 0.609961
\(612\) 0 0
\(613\) −14.4961 −0.585493 −0.292747 0.956190i \(-0.594569\pi\)
−0.292747 + 0.956190i \(0.594569\pi\)
\(614\) 0 0
\(615\) 5.86765 0.236607
\(616\) 0 0
\(617\) 12.1950 0.490952 0.245476 0.969403i \(-0.421056\pi\)
0.245476 + 0.969403i \(0.421056\pi\)
\(618\) 0 0
\(619\) −5.82049 −0.233945 −0.116973 0.993135i \(-0.537319\pi\)
−0.116973 + 0.993135i \(0.537319\pi\)
\(620\) 0 0
\(621\) −5.69424 −0.228502
\(622\) 0 0
\(623\) −5.27489 −0.211334
\(624\) 0 0
\(625\) −25.8985 −1.03594
\(626\) 0 0
\(627\) −6.48411 −0.258950
\(628\) 0 0
\(629\) 16.1708 0.644771
\(630\) 0 0
\(631\) −12.4599 −0.496021 −0.248010 0.968757i \(-0.579777\pi\)
−0.248010 + 0.968757i \(0.579777\pi\)
\(632\) 0 0
\(633\) −53.2103 −2.11492
\(634\) 0 0
\(635\) 22.2266 0.882036
\(636\) 0 0
\(637\) 26.9508 1.06783
\(638\) 0 0
\(639\) 49.8421 1.97172
\(640\) 0 0
\(641\) 12.6909 0.501260 0.250630 0.968083i \(-0.419362\pi\)
0.250630 + 0.968083i \(0.419362\pi\)
\(642\) 0 0
\(643\) −28.5205 −1.12474 −0.562370 0.826886i \(-0.690110\pi\)
−0.562370 + 0.826886i \(0.690110\pi\)
\(644\) 0 0
\(645\) 61.1179 2.40652
\(646\) 0 0
\(647\) 21.6425 0.850853 0.425426 0.904993i \(-0.360124\pi\)
0.425426 + 0.904993i \(0.360124\pi\)
\(648\) 0 0
\(649\) 3.17940 0.124802
\(650\) 0 0
\(651\) −1.66719 −0.0653424
\(652\) 0 0
\(653\) 10.6814 0.417996 0.208998 0.977916i \(-0.432980\pi\)
0.208998 + 0.977916i \(0.432980\pi\)
\(654\) 0 0
\(655\) −0.590841 −0.0230861
\(656\) 0 0
\(657\) −22.0000 −0.858302
\(658\) 0 0
\(659\) 36.1344 1.40759 0.703797 0.710401i \(-0.251486\pi\)
0.703797 + 0.710401i \(0.251486\pi\)
\(660\) 0 0
\(661\) −13.8851 −0.540069 −0.270034 0.962851i \(-0.587035\pi\)
−0.270034 + 0.962851i \(0.587035\pi\)
\(662\) 0 0
\(663\) −54.3005 −2.10886
\(664\) 0 0
\(665\) 8.26163 0.320372
\(666\) 0 0
\(667\) 5.44199 0.210715
\(668\) 0 0
\(669\) −66.1538 −2.55765
\(670\) 0 0
\(671\) 1.62350 0.0626744
\(672\) 0 0
\(673\) 38.8990 1.49945 0.749724 0.661751i \(-0.230186\pi\)
0.749724 + 0.661751i \(0.230186\pi\)
\(674\) 0 0
\(675\) 0.746698 0.0287404
\(676\) 0 0
\(677\) 42.3643 1.62819 0.814096 0.580730i \(-0.197233\pi\)
0.814096 + 0.580730i \(0.197233\pi\)
\(678\) 0 0
\(679\) −7.42452 −0.284927
\(680\) 0 0
\(681\) −44.7846 −1.71615
\(682\) 0 0
\(683\) −47.9583 −1.83507 −0.917537 0.397650i \(-0.869826\pi\)
−0.917537 + 0.397650i \(0.869826\pi\)
\(684\) 0 0
\(685\) −1.43074 −0.0546659
\(686\) 0 0
\(687\) 55.7836 2.12828
\(688\) 0 0
\(689\) −51.4885 −1.96156
\(690\) 0 0
\(691\) −26.3211 −1.00130 −0.500651 0.865649i \(-0.666906\pi\)
−0.500651 + 0.865649i \(0.666906\pi\)
\(692\) 0 0
\(693\) −1.08760 −0.0413144
\(694\) 0 0
\(695\) 40.4662 1.53497
\(696\) 0 0
\(697\) 4.60927 0.174589
\(698\) 0 0
\(699\) −57.3210 −2.16808
\(700\) 0 0
\(701\) −2.65624 −0.100325 −0.0501624 0.998741i \(-0.515974\pi\)
−0.0501624 + 0.998741i \(0.515974\pi\)
\(702\) 0 0
\(703\) 19.6677 0.741782
\(704\) 0 0
\(705\) −23.0697 −0.868855
\(706\) 0 0
\(707\) −4.12805 −0.155251
\(708\) 0 0
\(709\) 36.4858 1.37025 0.685126 0.728424i \(-0.259747\pi\)
0.685126 + 0.728424i \(0.259747\pi\)
\(710\) 0 0
\(711\) −48.1092 −1.80424
\(712\) 0 0
\(713\) 1.42356 0.0533128
\(714\) 0 0
\(715\) 3.69740 0.138275
\(716\) 0 0
\(717\) 40.4892 1.51210
\(718\) 0 0
\(719\) 19.3160 0.720364 0.360182 0.932882i \(-0.382715\pi\)
0.360182 + 0.932882i \(0.382715\pi\)
\(720\) 0 0
\(721\) 5.75310 0.214257
\(722\) 0 0
\(723\) −8.35439 −0.310703
\(724\) 0 0
\(725\) −0.713620 −0.0265032
\(726\) 0 0
\(727\) −8.38556 −0.311003 −0.155502 0.987836i \(-0.549699\pi\)
−0.155502 + 0.987836i \(0.549699\pi\)
\(728\) 0 0
\(729\) −43.7846 −1.62165
\(730\) 0 0
\(731\) 48.0105 1.77573
\(732\) 0 0
\(733\) 7.43031 0.274445 0.137222 0.990540i \(-0.456183\pi\)
0.137222 + 0.990540i \(0.456183\pi\)
\(734\) 0 0
\(735\) −41.2373 −1.52106
\(736\) 0 0
\(737\) −3.68121 −0.135599
\(738\) 0 0
\(739\) −2.69606 −0.0991763 −0.0495882 0.998770i \(-0.515791\pi\)
−0.0495882 + 0.998770i \(0.515791\pi\)
\(740\) 0 0
\(741\) −66.0430 −2.42615
\(742\) 0 0
\(743\) −29.5647 −1.08462 −0.542311 0.840178i \(-0.682451\pi\)
−0.542311 + 0.840178i \(0.682451\pi\)
\(744\) 0 0
\(745\) −16.7467 −0.613552
\(746\) 0 0
\(747\) −52.9733 −1.93819
\(748\) 0 0
\(749\) 4.47981 0.163689
\(750\) 0 0
\(751\) −27.3845 −0.999275 −0.499637 0.866235i \(-0.666533\pi\)
−0.499637 + 0.866235i \(0.666533\pi\)
\(752\) 0 0
\(753\) 67.5031 2.45995
\(754\) 0 0
\(755\) −4.20309 −0.152966
\(756\) 0 0
\(757\) −0.849120 −0.0308618 −0.0154309 0.999881i \(-0.504912\pi\)
−0.0154309 + 0.999881i \(0.504912\pi\)
\(758\) 0 0
\(759\) 1.55275 0.0563613
\(760\) 0 0
\(761\) 29.8619 1.08249 0.541246 0.840864i \(-0.317953\pi\)
0.541246 + 0.840864i \(0.317953\pi\)
\(762\) 0 0
\(763\) 2.86967 0.103889
\(764\) 0 0
\(765\) 49.6912 1.79659
\(766\) 0 0
\(767\) 32.3834 1.16930
\(768\) 0 0
\(769\) −13.8365 −0.498957 −0.249478 0.968380i \(-0.580259\pi\)
−0.249478 + 0.968380i \(0.580259\pi\)
\(770\) 0 0
\(771\) 62.1195 2.23718
\(772\) 0 0
\(773\) −36.7921 −1.32332 −0.661659 0.749804i \(-0.730148\pi\)
−0.661659 + 0.749804i \(0.730148\pi\)
\(774\) 0 0
\(775\) −0.186674 −0.00670554
\(776\) 0 0
\(777\) 5.51589 0.197881
\(778\) 0 0
\(779\) 5.60603 0.200857
\(780\) 0 0
\(781\) −4.45759 −0.159505
\(782\) 0 0
\(783\) −15.2912 −0.546463
\(784\) 0 0
\(785\) −45.2985 −1.61677
\(786\) 0 0
\(787\) 1.77963 0.0634371 0.0317185 0.999497i \(-0.489902\pi\)
0.0317185 + 0.999497i \(0.489902\pi\)
\(788\) 0 0
\(789\) 28.1487 1.00212
\(790\) 0 0
\(791\) −9.57635 −0.340496
\(792\) 0 0
\(793\) 16.5359 0.587207
\(794\) 0 0
\(795\) 78.7825 2.79413
\(796\) 0 0
\(797\) −42.2904 −1.49800 −0.749002 0.662568i \(-0.769466\pi\)
−0.749002 + 0.662568i \(0.769466\pi\)
\(798\) 0 0
\(799\) −18.1221 −0.641116
\(800\) 0 0
\(801\) −38.5878 −1.36343
\(802\) 0 0
\(803\) 1.96755 0.0694334
\(804\) 0 0
\(805\) −1.97841 −0.0697300
\(806\) 0 0
\(807\) −4.11392 −0.144817
\(808\) 0 0
\(809\) 47.9543 1.68598 0.842992 0.537925i \(-0.180792\pi\)
0.842992 + 0.537925i \(0.180792\pi\)
\(810\) 0 0
\(811\) 11.9545 0.419780 0.209890 0.977725i \(-0.432689\pi\)
0.209890 + 0.977725i \(0.432689\pi\)
\(812\) 0 0
\(813\) 70.4492 2.47076
\(814\) 0 0
\(815\) 34.1672 1.19682
\(816\) 0 0
\(817\) 58.3928 2.04291
\(818\) 0 0
\(819\) −11.0776 −0.387082
\(820\) 0 0
\(821\) 14.8028 0.516621 0.258311 0.966062i \(-0.416834\pi\)
0.258311 + 0.966062i \(0.416834\pi\)
\(822\) 0 0
\(823\) −53.6259 −1.86928 −0.934641 0.355591i \(-0.884279\pi\)
−0.934641 + 0.355591i \(0.884279\pi\)
\(824\) 0 0
\(825\) −0.203616 −0.00708899
\(826\) 0 0
\(827\) 9.83630 0.342042 0.171021 0.985267i \(-0.445293\pi\)
0.171021 + 0.985267i \(0.445293\pi\)
\(828\) 0 0
\(829\) 5.67361 0.197052 0.0985262 0.995134i \(-0.468587\pi\)
0.0985262 + 0.995134i \(0.468587\pi\)
\(830\) 0 0
\(831\) 9.95683 0.345399
\(832\) 0 0
\(833\) −32.3935 −1.12237
\(834\) 0 0
\(835\) −52.3037 −1.81004
\(836\) 0 0
\(837\) −4.00000 −0.138260
\(838\) 0 0
\(839\) 8.91997 0.307952 0.153976 0.988075i \(-0.450792\pi\)
0.153976 + 0.988075i \(0.450792\pi\)
\(840\) 0 0
\(841\) −14.3862 −0.496075
\(842\) 0 0
\(843\) −40.2631 −1.38674
\(844\) 0 0
\(845\) 8.05275 0.277023
\(846\) 0 0
\(847\) −6.61531 −0.227305
\(848\) 0 0
\(849\) 48.2173 1.65481
\(850\) 0 0
\(851\) −4.70984 −0.161451
\(852\) 0 0
\(853\) −10.7850 −0.369271 −0.184636 0.982807i \(-0.559110\pi\)
−0.184636 + 0.982807i \(0.559110\pi\)
\(854\) 0 0
\(855\) 60.4370 2.06690
\(856\) 0 0
\(857\) 29.3858 1.00380 0.501900 0.864926i \(-0.332635\pi\)
0.501900 + 0.864926i \(0.332635\pi\)
\(858\) 0 0
\(859\) −41.7928 −1.42595 −0.712976 0.701188i \(-0.752653\pi\)
−0.712976 + 0.701188i \(0.752653\pi\)
\(860\) 0 0
\(861\) 1.57223 0.0535816
\(862\) 0 0
\(863\) 14.8148 0.504302 0.252151 0.967688i \(-0.418862\pi\)
0.252151 + 0.967688i \(0.418862\pi\)
\(864\) 0 0
\(865\) 12.4873 0.424580
\(866\) 0 0
\(867\) 18.8218 0.639220
\(868\) 0 0
\(869\) 4.30260 0.145956
\(870\) 0 0
\(871\) −37.4944 −1.27045
\(872\) 0 0
\(873\) −54.3132 −1.83822
\(874\) 0 0
\(875\) −6.68939 −0.226143
\(876\) 0 0
\(877\) −27.2269 −0.919387 −0.459693 0.888078i \(-0.652041\pi\)
−0.459693 + 0.888078i \(0.652041\pi\)
\(878\) 0 0
\(879\) 45.9461 1.54972
\(880\) 0 0
\(881\) 41.7551 1.40677 0.703383 0.710811i \(-0.251672\pi\)
0.703383 + 0.710811i \(0.251672\pi\)
\(882\) 0 0
\(883\) −34.8191 −1.17176 −0.585878 0.810399i \(-0.699250\pi\)
−0.585878 + 0.810399i \(0.699250\pi\)
\(884\) 0 0
\(885\) −49.5497 −1.66560
\(886\) 0 0
\(887\) −22.9783 −0.771537 −0.385768 0.922596i \(-0.626064\pi\)
−0.385768 + 0.922596i \(0.626064\pi\)
\(888\) 0 0
\(889\) 5.95560 0.199744
\(890\) 0 0
\(891\) 0.983776 0.0329577
\(892\) 0 0
\(893\) −22.0411 −0.737576
\(894\) 0 0
\(895\) 8.74933 0.292458
\(896\) 0 0
\(897\) 15.8153 0.528059
\(898\) 0 0
\(899\) 3.82280 0.127498
\(900\) 0 0
\(901\) 61.8868 2.06175
\(902\) 0 0
\(903\) 16.3765 0.544976
\(904\) 0 0
\(905\) −45.6682 −1.51806
\(906\) 0 0
\(907\) 52.5247 1.74406 0.872028 0.489457i \(-0.162805\pi\)
0.872028 + 0.489457i \(0.162805\pi\)
\(908\) 0 0
\(909\) −30.1983 −1.00161
\(910\) 0 0
\(911\) 10.3846 0.344057 0.172029 0.985092i \(-0.444968\pi\)
0.172029 + 0.985092i \(0.444968\pi\)
\(912\) 0 0
\(913\) 4.73762 0.156792
\(914\) 0 0
\(915\) −25.3016 −0.836444
\(916\) 0 0
\(917\) −0.158315 −0.00522804
\(918\) 0 0
\(919\) 36.9630 1.21930 0.609648 0.792672i \(-0.291311\pi\)
0.609648 + 0.792672i \(0.291311\pi\)
\(920\) 0 0
\(921\) −84.5826 −2.78709
\(922\) 0 0
\(923\) −45.4021 −1.49443
\(924\) 0 0
\(925\) 0.617611 0.0203069
\(926\) 0 0
\(927\) 42.0861 1.38229
\(928\) 0 0
\(929\) 23.1634 0.759967 0.379984 0.924993i \(-0.375930\pi\)
0.379984 + 0.924993i \(0.375930\pi\)
\(930\) 0 0
\(931\) −39.3986 −1.29124
\(932\) 0 0
\(933\) −20.2842 −0.664074
\(934\) 0 0
\(935\) −4.44409 −0.145337
\(936\) 0 0
\(937\) 17.6452 0.576444 0.288222 0.957564i \(-0.406936\pi\)
0.288222 + 0.957564i \(0.406936\pi\)
\(938\) 0 0
\(939\) −65.6886 −2.14367
\(940\) 0 0
\(941\) −8.31462 −0.271049 −0.135524 0.990774i \(-0.543272\pi\)
−0.135524 + 0.990774i \(0.543272\pi\)
\(942\) 0 0
\(943\) −1.34248 −0.0437171
\(944\) 0 0
\(945\) 5.55906 0.180836
\(946\) 0 0
\(947\) 51.9107 1.68687 0.843436 0.537230i \(-0.180529\pi\)
0.843436 + 0.537230i \(0.180529\pi\)
\(948\) 0 0
\(949\) 20.0402 0.650533
\(950\) 0 0
\(951\) 80.5984 2.61358
\(952\) 0 0
\(953\) 47.8601 1.55034 0.775170 0.631753i \(-0.217664\pi\)
0.775170 + 0.631753i \(0.217664\pi\)
\(954\) 0 0
\(955\) 24.4235 0.790325
\(956\) 0 0
\(957\) 4.16973 0.134788
\(958\) 0 0
\(959\) −0.383367 −0.0123796
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 32.7716 1.05605
\(964\) 0 0
\(965\) 8.26881 0.266182
\(966\) 0 0
\(967\) 26.4990 0.852152 0.426076 0.904687i \(-0.359896\pi\)
0.426076 + 0.904687i \(0.359896\pi\)
\(968\) 0 0
\(969\) 79.3805 2.55007
\(970\) 0 0
\(971\) −28.8882 −0.927066 −0.463533 0.886080i \(-0.653418\pi\)
−0.463533 + 0.886080i \(0.653418\pi\)
\(972\) 0 0
\(973\) 10.8429 0.347607
\(974\) 0 0
\(975\) −2.07390 −0.0664179
\(976\) 0 0
\(977\) 27.7363 0.887362 0.443681 0.896185i \(-0.353672\pi\)
0.443681 + 0.896185i \(0.353672\pi\)
\(978\) 0 0
\(979\) 3.45107 0.110297
\(980\) 0 0
\(981\) 20.9927 0.670246
\(982\) 0 0
\(983\) 55.7890 1.77939 0.889697 0.456552i \(-0.150916\pi\)
0.889697 + 0.456552i \(0.150916\pi\)
\(984\) 0 0
\(985\) 53.3237 1.69903
\(986\) 0 0
\(987\) −6.18151 −0.196759
\(988\) 0 0
\(989\) −13.9834 −0.444645
\(990\) 0 0
\(991\) 2.80427 0.0890806 0.0445403 0.999008i \(-0.485818\pi\)
0.0445403 + 0.999008i \(0.485818\pi\)
\(992\) 0 0
\(993\) 48.5441 1.54050
\(994\) 0 0
\(995\) 1.66982 0.0529369
\(996\) 0 0
\(997\) −60.3343 −1.91081 −0.955403 0.295305i \(-0.904579\pi\)
−0.955403 + 0.295305i \(0.904579\pi\)
\(998\) 0 0
\(999\) 13.2340 0.418704
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1984.2.a.z.1.4 4
4.3 odd 2 1984.2.a.y.1.2 4
8.3 odd 2 992.2.a.f.1.3 yes 4
8.5 even 2 992.2.a.e.1.1 4
24.5 odd 2 8928.2.a.bm.1.4 4
24.11 even 2 8928.2.a.bn.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
992.2.a.e.1.1 4 8.5 even 2
992.2.a.f.1.3 yes 4 8.3 odd 2
1984.2.a.y.1.2 4 4.3 odd 2
1984.2.a.z.1.4 4 1.1 even 1 trivial
8928.2.a.bm.1.4 4 24.5 odd 2
8928.2.a.bn.1.4 4 24.11 even 2