Defining parameters
Level: | \( N \) | \(=\) | \( 1984 = 2^{6} \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1984.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 28 \) | ||
Sturm bound: | \(512\) | ||
Trace bound: | \(19\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(7\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1984))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 268 | 60 | 208 |
Cusp forms | 245 | 60 | 185 |
Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(31\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(61\) | \(14\) | \(47\) | \(56\) | \(14\) | \(42\) | \(5\) | \(0\) | \(5\) | |||
\(+\) | \(-\) | \(-\) | \(73\) | \(17\) | \(56\) | \(67\) | \(17\) | \(50\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(-\) | \(67\) | \(16\) | \(51\) | \(61\) | \(16\) | \(45\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(+\) | \(67\) | \(13\) | \(54\) | \(61\) | \(13\) | \(48\) | \(6\) | \(0\) | \(6\) | |||
Plus space | \(+\) | \(128\) | \(27\) | \(101\) | \(117\) | \(27\) | \(90\) | \(11\) | \(0\) | \(11\) | ||||
Minus space | \(-\) | \(140\) | \(33\) | \(107\) | \(128\) | \(33\) | \(95\) | \(12\) | \(0\) | \(12\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1984))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1984))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1984)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(62))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(124))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(248))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(496))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(992))\)\(^{\oplus 2}\)