Properties

Label 1984.2.a
Level $1984$
Weight $2$
Character orbit 1984.a
Rep. character $\chi_{1984}(1,\cdot)$
Character field $\Q$
Dimension $60$
Newform subspaces $28$
Sturm bound $512$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1984 = 2^{6} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1984.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 28 \)
Sturm bound: \(512\)
Trace bound: \(19\)
Distinguishing \(T_p\): \(3\), \(5\), \(7\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1984))\).

Total New Old
Modular forms 268 60 208
Cusp forms 245 60 185
Eisenstein series 23 0 23

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(31\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(61\)\(14\)\(47\)\(56\)\(14\)\(42\)\(5\)\(0\)\(5\)
\(+\)\(-\)\(-\)\(73\)\(17\)\(56\)\(67\)\(17\)\(50\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(-\)\(67\)\(16\)\(51\)\(61\)\(16\)\(45\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(+\)\(67\)\(13\)\(54\)\(61\)\(13\)\(48\)\(6\)\(0\)\(6\)
Plus space\(+\)\(128\)\(27\)\(101\)\(117\)\(27\)\(90\)\(11\)\(0\)\(11\)
Minus space\(-\)\(140\)\(33\)\(107\)\(128\)\(33\)\(95\)\(12\)\(0\)\(12\)

Trace form

\( 60 q + 60 q^{9} - 8 q^{17} + 52 q^{25} - 16 q^{29} - 16 q^{33} - 16 q^{37} - 24 q^{41} + 60 q^{49} - 16 q^{53} - 16 q^{57} + 8 q^{73} + 32 q^{77} + 12 q^{81} + 48 q^{85} - 24 q^{89} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1984))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 31
1984.2.a.a 1984.a 1.a $1$ $15.842$ \(\Q\) None 248.2.a.b \(0\) \(-2\) \(-2\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}-2q^{5}+q^{9}+2q^{11}-4q^{13}+\cdots\)
1984.2.a.b 1984.a 1.a $1$ $15.842$ \(\Q\) None 248.2.a.a \(0\) \(-2\) \(-1\) \(3\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}-q^{5}+3q^{7}+q^{9}-2q^{11}+\cdots\)
1984.2.a.c 1984.a 1.a $1$ $15.842$ \(\Q\) None 124.2.a.a \(0\) \(-2\) \(3\) \(1\) $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+3q^{5}+q^{7}+q^{9}-6q^{11}+\cdots\)
1984.2.a.d 1984.a 1.a $1$ $15.842$ \(\Q\) None 124.2.a.b \(0\) \(0\) \(-1\) \(-3\) $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}-3q^{7}-3q^{9}+6q^{11}+4q^{13}+\cdots\)
1984.2.a.e 1984.a 1.a $1$ $15.842$ \(\Q\) None 124.2.a.b \(0\) \(0\) \(-1\) \(3\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}+3q^{7}-3q^{9}-6q^{11}+4q^{13}+\cdots\)
1984.2.a.f 1984.a 1.a $1$ $15.842$ \(\Q\) None 62.2.a.a \(0\) \(0\) \(2\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{5}-3q^{9}-2q^{13}-6q^{17}-4q^{19}+\cdots\)
1984.2.a.g 1984.a 1.a $1$ $15.842$ \(\Q\) None 62.2.a.a \(0\) \(0\) \(2\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}-3q^{9}-2q^{13}-6q^{17}+4q^{19}+\cdots\)
1984.2.a.h 1984.a 1.a $1$ $15.842$ \(\Q\) None 248.2.a.c \(0\) \(0\) \(3\) \(-3\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{5}-3q^{7}-3q^{9}-2q^{11}+4q^{13}+\cdots\)
1984.2.a.i 1984.a 1.a $1$ $15.842$ \(\Q\) None 248.2.a.c \(0\) \(0\) \(3\) \(3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{5}+3q^{7}-3q^{9}+2q^{11}+4q^{13}+\cdots\)
1984.2.a.j 1984.a 1.a $1$ $15.842$ \(\Q\) None 248.2.a.b \(0\) \(2\) \(-2\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}-2q^{5}+q^{9}-2q^{11}-4q^{13}+\cdots\)
1984.2.a.k 1984.a 1.a $1$ $15.842$ \(\Q\) None 248.2.a.a \(0\) \(2\) \(-1\) \(-3\) $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}-q^{5}-3q^{7}+q^{9}+2q^{11}+\cdots\)
1984.2.a.l 1984.a 1.a $1$ $15.842$ \(\Q\) None 124.2.a.a \(0\) \(2\) \(3\) \(-1\) $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+3q^{5}-q^{7}+q^{9}+6q^{11}+\cdots\)
1984.2.a.m 1984.a 1.a $2$ $15.842$ \(\Q(\sqrt{33}) \) None 248.2.a.d \(0\) \(-4\) \(-3\) \(1\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+(-1-\beta )q^{5}+(1-\beta )q^{7}+q^{9}+\cdots\)
1984.2.a.n 1984.a 1.a $2$ $15.842$ \(\Q(\sqrt{5}) \) None 31.2.a.a \(0\) \(-2\) \(-2\) \(4\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{3}-q^{5}+(2-\beta )q^{7}+(3+\cdots)q^{9}+\cdots\)
1984.2.a.o 1984.a 1.a $2$ $15.842$ \(\Q(\sqrt{3}) \) None 62.2.a.b \(0\) \(-2\) \(0\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{3}-2\beta q^{5}+2q^{7}+(1-2\beta )q^{9}+\cdots\)
1984.2.a.p 1984.a 1.a $2$ $15.842$ \(\Q(\sqrt{2}) \) None 992.2.a.a \(0\) \(0\) \(2\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+q^{5}+(-1+\beta )q^{7}-q^{9}+(-2+\cdots)q^{11}+\cdots\)
1984.2.a.q 1984.a 1.a $2$ $15.842$ \(\Q(\sqrt{2}) \) None 992.2.a.a \(0\) \(0\) \(2\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+q^{5}+(1+\beta )q^{7}-q^{9}+(2-2\beta )q^{11}+\cdots\)
1984.2.a.r 1984.a 1.a $2$ $15.842$ \(\Q(\sqrt{5}) \) None 31.2.a.a \(0\) \(2\) \(-2\) \(-4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}-q^{5}+(-2+\beta )q^{7}+(3+\cdots)q^{9}+\cdots\)
1984.2.a.s 1984.a 1.a $2$ $15.842$ \(\Q(\sqrt{3}) \) None 62.2.a.b \(0\) \(2\) \(0\) \(-4\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}+2\beta q^{5}-2q^{7}+(1+2\beta )q^{9}+\cdots\)
1984.2.a.t 1984.a 1.a $2$ $15.842$ \(\Q(\sqrt{33}) \) None 248.2.a.d \(0\) \(4\) \(-3\) \(-1\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+(-2+\beta )q^{5}-\beta q^{7}+q^{9}+\cdots\)
1984.2.a.u 1984.a 1.a $3$ $15.842$ 3.3.316.1 None 992.2.a.c \(0\) \(-2\) \(0\) \(8\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1}-\beta _{2})q^{3}-\beta _{2}q^{5}+(3-\beta _{1}+\cdots)q^{7}+\cdots\)
1984.2.a.v 1984.a 1.a $3$ $15.842$ 3.3.316.1 None 248.2.a.e \(0\) \(-2\) \(3\) \(5\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1}-\beta _{2})q^{3}+(1-\beta _{2})q^{5}+\cdots\)
1984.2.a.w 1984.a 1.a $3$ $15.842$ 3.3.316.1 None 992.2.a.c \(0\) \(2\) \(0\) \(-8\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1}+\beta _{2})q^{3}-\beta _{2}q^{5}+(-3+\beta _{1}+\cdots)q^{7}+\cdots\)
1984.2.a.x 1984.a 1.a $3$ $15.842$ 3.3.316.1 None 248.2.a.e \(0\) \(2\) \(3\) \(-5\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1}+\beta _{2})q^{3}+(1-\beta _{2})q^{5}+(-1+\cdots)q^{7}+\cdots\)
1984.2.a.y 1984.a 1.a $4$ $15.842$ 4.4.13968.1 None 992.2.a.e \(0\) \(-4\) \(-2\) \(4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{2})q^{3}-\beta _{1}q^{5}+(1+\beta _{1}-\beta _{3})q^{7}+\cdots\)
1984.2.a.z 1984.a 1.a $4$ $15.842$ 4.4.13968.1 None 992.2.a.e \(0\) \(4\) \(-2\) \(-4\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{3}+(-1+\beta _{1})q^{5}+(-1+\cdots)q^{7}+\cdots\)
1984.2.a.ba 1984.a 1.a $6$ $15.842$ 6.6.66862976.1 None 992.2.a.g \(0\) \(-2\) \(-2\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{3}+\beta _{3}q^{5}-\beta _{4}q^{7}+(2-\beta _{1}+\cdots)q^{9}+\cdots\)
1984.2.a.bb 1984.a 1.a $6$ $15.842$ 6.6.66862976.1 None 992.2.a.g \(0\) \(2\) \(-2\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{3}+\beta _{3}q^{5}+\beta _{4}q^{7}+(2-\beta _{1}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1984))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1984)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(62))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(124))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(248))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(496))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(992))\)\(^{\oplus 2}\)