Properties

Label 1984.2
Level 1984
Weight 2
Dimension 68338
Nonzero newspaces 32
Sturm bound 491520
Trace bound 49

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1984 = 2^{6} \cdot 31 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 32 \)
Sturm bound: \(491520\)
Trace bound: \(49\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1984))\).

Total New Old
Modular forms 125040 69614 55426
Cusp forms 120721 68338 52383
Eisenstein series 4319 1276 3043

Trace form

\( 68338 q - 224 q^{2} - 168 q^{3} - 224 q^{4} - 224 q^{5} - 224 q^{6} - 164 q^{7} - 224 q^{8} - 274 q^{9} - 224 q^{10} - 160 q^{11} - 224 q^{12} - 208 q^{13} - 224 q^{14} - 156 q^{15} - 224 q^{16} - 376 q^{17}+ \cdots - 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1984))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1984.2.a \(\chi_{1984}(1, \cdot)\) 1984.2.a.a 1 1
1984.2.a.b 1
1984.2.a.c 1
1984.2.a.d 1
1984.2.a.e 1
1984.2.a.f 1
1984.2.a.g 1
1984.2.a.h 1
1984.2.a.i 1
1984.2.a.j 1
1984.2.a.k 1
1984.2.a.l 1
1984.2.a.m 2
1984.2.a.n 2
1984.2.a.o 2
1984.2.a.p 2
1984.2.a.q 2
1984.2.a.r 2
1984.2.a.s 2
1984.2.a.t 2
1984.2.a.u 3
1984.2.a.v 3
1984.2.a.w 3
1984.2.a.x 3
1984.2.a.y 4
1984.2.a.z 4
1984.2.a.ba 6
1984.2.a.bb 6
1984.2.b \(\chi_{1984}(991, \cdot)\) 1984.2.b.a 8 1
1984.2.b.b 16
1984.2.b.c 40
1984.2.c \(\chi_{1984}(993, \cdot)\) 1984.2.c.a 4 1
1984.2.c.b 4
1984.2.c.c 6
1984.2.c.d 6
1984.2.c.e 20
1984.2.c.f 20
1984.2.h \(\chi_{1984}(1983, \cdot)\) 1984.2.h.a 2 1
1984.2.h.b 2
1984.2.h.c 4
1984.2.h.d 4
1984.2.h.e 4
1984.2.h.f 6
1984.2.h.g 8
1984.2.h.h 32
1984.2.i \(\chi_{1984}(129, \cdot)\) n/a 124 2
1984.2.k \(\chi_{1984}(497, \cdot)\) n/a 120 2
1984.2.m \(\chi_{1984}(495, \cdot)\) n/a 124 2
1984.2.n \(\chi_{1984}(1025, \cdot)\) n/a 248 4
1984.2.o \(\chi_{1984}(1215, \cdot)\) n/a 124 2
1984.2.t \(\chi_{1984}(1121, \cdot)\) n/a 128 2
1984.2.u \(\chi_{1984}(223, \cdot)\) n/a 128 2
1984.2.v \(\chi_{1984}(249, \cdot)\) None 0 4
1984.2.w \(\chi_{1984}(247, \cdot)\) None 0 4
1984.2.bb \(\chi_{1984}(511, \cdot)\) n/a 248 4
1984.2.bc \(\chi_{1984}(33, \cdot)\) n/a 256 4
1984.2.bd \(\chi_{1984}(1503, \cdot)\) n/a 256 4
1984.2.bh \(\chi_{1984}(367, \cdot)\) n/a 248 4
1984.2.bj \(\chi_{1984}(273, \cdot)\) n/a 248 4
1984.2.bk \(\chi_{1984}(193, \cdot)\) n/a 496 8
1984.2.bl \(\chi_{1984}(123, \cdot)\) n/a 2032 8
1984.2.bo \(\chi_{1984}(125, \cdot)\) n/a 1920 8
1984.2.bp \(\chi_{1984}(15, \cdot)\) n/a 496 8
1984.2.br \(\chi_{1984}(529, \cdot)\) n/a 496 8
1984.2.bt \(\chi_{1984}(119, \cdot)\) None 0 8
1984.2.bu \(\chi_{1984}(25, \cdot)\) None 0 8
1984.2.bz \(\chi_{1984}(415, \cdot)\) n/a 512 8
1984.2.ca \(\chi_{1984}(289, \cdot)\) n/a 512 8
1984.2.cb \(\chi_{1984}(127, \cdot)\) n/a 496 8
1984.2.cg \(\chi_{1984}(23, \cdot)\) None 0 16
1984.2.ch \(\chi_{1984}(233, \cdot)\) None 0 16
1984.2.cj \(\chi_{1984}(99, \cdot)\) n/a 4064 16
1984.2.ck \(\chi_{1984}(5, \cdot)\) n/a 4064 16
1984.2.cm \(\chi_{1984}(49, \cdot)\) n/a 992 16
1984.2.co \(\chi_{1984}(79, \cdot)\) n/a 992 16
1984.2.cr \(\chi_{1984}(27, \cdot)\) n/a 8128 32
1984.2.cs \(\chi_{1984}(101, \cdot)\) n/a 8128 32
1984.2.cw \(\chi_{1984}(9, \cdot)\) None 0 32
1984.2.cx \(\chi_{1984}(55, \cdot)\) None 0 32
1984.2.cy \(\chi_{1984}(3, \cdot)\) n/a 16256 64
1984.2.db \(\chi_{1984}(45, \cdot)\) n/a 16256 64

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1984))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1984)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(31))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(62))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(124))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(248))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(496))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(992))\)\(^{\oplus 2}\)