Defining parameters
Level: | \( N \) | = | \( 1984 = 2^{6} \cdot 31 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 32 \) | ||
Sturm bound: | \(491520\) | ||
Trace bound: | \(49\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1984))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 125040 | 69614 | 55426 |
Cusp forms | 120721 | 68338 | 52383 |
Eisenstein series | 4319 | 1276 | 3043 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1984))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1984))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(1984)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(31))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(62))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(124))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(248))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(496))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(992))\)\(^{\oplus 2}\)