Properties

Label 1984.bo
Modulus $1984$
Conductor $64$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1984, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([0,3,0])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(125,1984)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1984\)
Conductor: \(64\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 64.i
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: \(\Q(\zeta_{64})^+\)

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{1984}(125,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(-i\) \(i\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{1984}(373,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(i\) \(-i\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{1}{16}\right)\)
\(\chi_{1984}(621,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(-i\) \(i\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{11}{16}\right)\)
\(\chi_{1984}(869,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(i\) \(-i\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{5}{16}\right)\)
\(\chi_{1984}(1117,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(-i\) \(i\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{15}{16}\right)\)
\(\chi_{1984}(1365,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(i\) \(-i\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{9}{16}\right)\)
\(\chi_{1984}(1613,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(-i\) \(i\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{3}{16}\right)\)
\(\chi_{1984}(1861,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(i\) \(-i\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{13}{16}\right)\)