Properties

Label 1984.373
Modulus $1984$
Conductor $64$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1984, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([0,5,0]))
 
Copy content pari:[g,chi] = znchar(Mod(373,1984))
 

Basic properties

Modulus: \(1984\)
Conductor: \(64\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{64}(53,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1984.bo

\(\chi_{1984}(125,\cdot)\) \(\chi_{1984}(373,\cdot)\) \(\chi_{1984}(621,\cdot)\) \(\chi_{1984}(869,\cdot)\) \(\chi_{1984}(1117,\cdot)\) \(\chi_{1984}(1365,\cdot)\) \(\chi_{1984}(1613,\cdot)\) \(\chi_{1984}(1861,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: \(\Q(\zeta_{64})^+\)

Values on generators

\((63,1861,65)\) → \((1,e\left(\frac{5}{16}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 1984 }(373, a) \) \(1\)\(1\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{11}{16}\right)\)\(i\)\(-i\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{1}{16}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1984 }(373,a) \;\) at \(\;a = \) e.g. 2