Properties

Label 1984.bz
Modulus $1984$
Conductor $248$
Order $30$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1984, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([15,15,19])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(415,1984)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1984\)
Conductor: \(248\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 248.bb
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 30.30.624940867704923870335005165628439523412241657929737961472.1

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{1984}(415,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{13}{15}\right)\)
\(\chi_{1984}(735,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{14}{15}\right)\)
\(\chi_{1984}(799,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{15}\right)\)
\(\chi_{1984}(1119,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{7}{15}\right)\)
\(\chi_{1984}(1375,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{11}{15}\right)\)
\(\chi_{1984}(1439,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{2}{15}\right)\)
\(\chi_{1984}(1567,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{4}{15}\right)\)
\(\chi_{1984}(1695,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{8}{15}\right)\)