Properties

Label 1984.2.a.y.1.2
Level $1984$
Weight $2$
Character 1984.1
Self dual yes
Analytic conductor $15.842$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1984,2,Mod(1,1984)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1984.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1984, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1984 = 2^{6} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1984.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,-2,0,4,0,4,0,-10,0,0,0,2,0,2,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.8423197610\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.13968.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 7x^{2} + 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 992)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.27743\) of defining polynomial
Character \(\chi\) \(=\) 1984.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.73205 q^{3} +2.27743 q^{5} -0.610235 q^{7} +4.46410 q^{9} +0.399243 q^{11} -4.06644 q^{13} -6.22205 q^{15} +4.88766 q^{17} -5.94462 q^{19} +1.66719 q^{21} +1.42356 q^{23} +0.186674 q^{25} -4.00000 q^{27} -3.82280 q^{29} +1.00000 q^{31} -1.09075 q^{33} -1.38977 q^{35} +3.30849 q^{37} +11.1097 q^{39} +0.943042 q^{41} -9.82280 q^{43} +10.1667 q^{45} +3.70773 q^{47} -6.62761 q^{49} -13.3533 q^{51} +12.6618 q^{53} +0.909247 q^{55} +16.2410 q^{57} +7.96358 q^{59} -4.06644 q^{61} -2.72415 q^{63} -9.26101 q^{65} -9.22047 q^{67} -3.88924 q^{69} -11.1651 q^{71} -4.92820 q^{73} -0.510004 q^{75} -0.243632 q^{77} +10.7769 q^{79} -2.46410 q^{81} +11.8665 q^{83} +11.1313 q^{85} +10.4441 q^{87} -8.64403 q^{89} +2.48148 q^{91} -2.73205 q^{93} -13.5384 q^{95} -12.1667 q^{97} +1.78226 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 2 q^{5} + 4 q^{7} + 4 q^{9} - 10 q^{11} + 2 q^{15} + 2 q^{17} - 8 q^{19} + 2 q^{21} + 2 q^{23} - 2 q^{25} - 16 q^{27} + 4 q^{31} + 4 q^{33} - 12 q^{35} + 10 q^{37} + 2 q^{41} - 24 q^{43}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.73205 −1.57735 −0.788675 0.614810i \(-0.789233\pi\)
−0.788675 + 0.614810i \(0.789233\pi\)
\(4\) 0 0
\(5\) 2.27743 1.01850 0.509248 0.860620i \(-0.329924\pi\)
0.509248 + 0.860620i \(0.329924\pi\)
\(6\) 0 0
\(7\) −0.610235 −0.230647 −0.115324 0.993328i \(-0.536790\pi\)
−0.115324 + 0.993328i \(0.536790\pi\)
\(8\) 0 0
\(9\) 4.46410 1.48803
\(10\) 0 0
\(11\) 0.399243 0.120376 0.0601882 0.998187i \(-0.480830\pi\)
0.0601882 + 0.998187i \(0.480830\pi\)
\(12\) 0 0
\(13\) −4.06644 −1.12783 −0.563913 0.825834i \(-0.690705\pi\)
−0.563913 + 0.825834i \(0.690705\pi\)
\(14\) 0 0
\(15\) −6.22205 −1.60653
\(16\) 0 0
\(17\) 4.88766 1.18543 0.592716 0.805411i \(-0.298056\pi\)
0.592716 + 0.805411i \(0.298056\pi\)
\(18\) 0 0
\(19\) −5.94462 −1.36379 −0.681895 0.731450i \(-0.738844\pi\)
−0.681895 + 0.731450i \(0.738844\pi\)
\(20\) 0 0
\(21\) 1.66719 0.363811
\(22\) 0 0
\(23\) 1.42356 0.296833 0.148416 0.988925i \(-0.452582\pi\)
0.148416 + 0.988925i \(0.452582\pi\)
\(24\) 0 0
\(25\) 0.186674 0.0373349
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) −3.82280 −0.709877 −0.354938 0.934890i \(-0.615498\pi\)
−0.354938 + 0.934890i \(0.615498\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 0 0
\(33\) −1.09075 −0.189876
\(34\) 0 0
\(35\) −1.38977 −0.234913
\(36\) 0 0
\(37\) 3.30849 0.543912 0.271956 0.962310i \(-0.412329\pi\)
0.271956 + 0.962310i \(0.412329\pi\)
\(38\) 0 0
\(39\) 11.1097 1.77898
\(40\) 0 0
\(41\) 0.943042 0.147278 0.0736392 0.997285i \(-0.476539\pi\)
0.0736392 + 0.997285i \(0.476539\pi\)
\(42\) 0 0
\(43\) −9.82280 −1.49796 −0.748982 0.662591i \(-0.769457\pi\)
−0.748982 + 0.662591i \(0.769457\pi\)
\(44\) 0 0
\(45\) 10.1667 1.51556
\(46\) 0 0
\(47\) 3.70773 0.540829 0.270414 0.962744i \(-0.412839\pi\)
0.270414 + 0.962744i \(0.412839\pi\)
\(48\) 0 0
\(49\) −6.62761 −0.946802
\(50\) 0 0
\(51\) −13.3533 −1.86984
\(52\) 0 0
\(53\) 12.6618 1.73924 0.869618 0.493725i \(-0.164365\pi\)
0.869618 + 0.493725i \(0.164365\pi\)
\(54\) 0 0
\(55\) 0.909247 0.122603
\(56\) 0 0
\(57\) 16.2410 2.15117
\(58\) 0 0
\(59\) 7.96358 1.03677 0.518385 0.855148i \(-0.326534\pi\)
0.518385 + 0.855148i \(0.326534\pi\)
\(60\) 0 0
\(61\) −4.06644 −0.520654 −0.260327 0.965521i \(-0.583830\pi\)
−0.260327 + 0.965521i \(0.583830\pi\)
\(62\) 0 0
\(63\) −2.72415 −0.343211
\(64\) 0 0
\(65\) −9.26101 −1.14869
\(66\) 0 0
\(67\) −9.22047 −1.12646 −0.563230 0.826300i \(-0.690441\pi\)
−0.563230 + 0.826300i \(0.690441\pi\)
\(68\) 0 0
\(69\) −3.88924 −0.468209
\(70\) 0 0
\(71\) −11.1651 −1.32505 −0.662526 0.749039i \(-0.730516\pi\)
−0.662526 + 0.749039i \(0.730516\pi\)
\(72\) 0 0
\(73\) −4.92820 −0.576803 −0.288401 0.957510i \(-0.593124\pi\)
−0.288401 + 0.957510i \(0.593124\pi\)
\(74\) 0 0
\(75\) −0.510004 −0.0588902
\(76\) 0 0
\(77\) −0.243632 −0.0277645
\(78\) 0 0
\(79\) 10.7769 1.21250 0.606248 0.795276i \(-0.292674\pi\)
0.606248 + 0.795276i \(0.292674\pi\)
\(80\) 0 0
\(81\) −2.46410 −0.273789
\(82\) 0 0
\(83\) 11.8665 1.30252 0.651259 0.758856i \(-0.274241\pi\)
0.651259 + 0.758856i \(0.274241\pi\)
\(84\) 0 0
\(85\) 11.1313 1.20736
\(86\) 0 0
\(87\) 10.4441 1.11972
\(88\) 0 0
\(89\) −8.64403 −0.916265 −0.458133 0.888884i \(-0.651482\pi\)
−0.458133 + 0.888884i \(0.651482\pi\)
\(90\) 0 0
\(91\) 2.48148 0.260130
\(92\) 0 0
\(93\) −2.73205 −0.283300
\(94\) 0 0
\(95\) −13.5384 −1.38901
\(96\) 0 0
\(97\) −12.1667 −1.23534 −0.617669 0.786438i \(-0.711923\pi\)
−0.617669 + 0.786438i \(0.711923\pi\)
\(98\) 0 0
\(99\) 1.78226 0.179124
\(100\) 0 0
\(101\) −6.76469 −0.673112 −0.336556 0.941663i \(-0.609262\pi\)
−0.336556 + 0.941663i \(0.609262\pi\)
\(102\) 0 0
\(103\) −9.42768 −0.928937 −0.464468 0.885590i \(-0.653755\pi\)
−0.464468 + 0.885590i \(0.653755\pi\)
\(104\) 0 0
\(105\) 3.79691 0.370540
\(106\) 0 0
\(107\) −7.34113 −0.709694 −0.354847 0.934924i \(-0.615467\pi\)
−0.354847 + 0.934924i \(0.615467\pi\)
\(108\) 0 0
\(109\) 4.70256 0.450424 0.225212 0.974310i \(-0.427693\pi\)
0.225212 + 0.974310i \(0.427693\pi\)
\(110\) 0 0
\(111\) −9.03896 −0.857941
\(112\) 0 0
\(113\) −15.6929 −1.47626 −0.738132 0.674657i \(-0.764292\pi\)
−0.738132 + 0.674657i \(0.764292\pi\)
\(114\) 0 0
\(115\) 3.24205 0.302323
\(116\) 0 0
\(117\) −18.1530 −1.67824
\(118\) 0 0
\(119\) −2.98262 −0.273416
\(120\) 0 0
\(121\) −10.8406 −0.985510
\(122\) 0 0
\(123\) −2.57644 −0.232310
\(124\) 0 0
\(125\) −10.9620 −0.980471
\(126\) 0 0
\(127\) −9.75952 −0.866018 −0.433009 0.901390i \(-0.642548\pi\)
−0.433009 + 0.901390i \(0.642548\pi\)
\(128\) 0 0
\(129\) 26.8364 2.36281
\(130\) 0 0
\(131\) 0.259434 0.0226668 0.0113334 0.999936i \(-0.496392\pi\)
0.0113334 + 0.999936i \(0.496392\pi\)
\(132\) 0 0
\(133\) 3.62761 0.314554
\(134\) 0 0
\(135\) −9.10971 −0.784039
\(136\) 0 0
\(137\) −0.628228 −0.0536732 −0.0268366 0.999640i \(-0.508543\pi\)
−0.0268366 + 0.999640i \(0.508543\pi\)
\(138\) 0 0
\(139\) −17.7684 −1.50709 −0.753547 0.657394i \(-0.771659\pi\)
−0.753547 + 0.657394i \(0.771659\pi\)
\(140\) 0 0
\(141\) −10.1297 −0.853076
\(142\) 0 0
\(143\) −1.62350 −0.135764
\(144\) 0 0
\(145\) −8.70616 −0.723007
\(146\) 0 0
\(147\) 18.1070 1.49344
\(148\) 0 0
\(149\) −7.35334 −0.602409 −0.301205 0.953560i \(-0.597389\pi\)
−0.301205 + 0.953560i \(0.597389\pi\)
\(150\) 0 0
\(151\) 1.84554 0.150188 0.0750941 0.997176i \(-0.476074\pi\)
0.0750941 + 0.997176i \(0.476074\pi\)
\(152\) 0 0
\(153\) 21.8190 1.76396
\(154\) 0 0
\(155\) 2.27743 0.182927
\(156\) 0 0
\(157\) −19.8902 −1.58741 −0.793705 0.608302i \(-0.791851\pi\)
−0.793705 + 0.608302i \(0.791851\pi\)
\(158\) 0 0
\(159\) −34.5928 −2.74338
\(160\) 0 0
\(161\) −0.868706 −0.0684636
\(162\) 0 0
\(163\) −15.0025 −1.17509 −0.587545 0.809192i \(-0.699905\pi\)
−0.587545 + 0.809192i \(0.699905\pi\)
\(164\) 0 0
\(165\) −2.48411 −0.193388
\(166\) 0 0
\(167\) 22.9661 1.77717 0.888586 0.458711i \(-0.151689\pi\)
0.888586 + 0.458711i \(0.151689\pi\)
\(168\) 0 0
\(169\) 3.53590 0.271992
\(170\) 0 0
\(171\) −26.5374 −2.02936
\(172\) 0 0
\(173\) 5.48306 0.416869 0.208435 0.978036i \(-0.433163\pi\)
0.208435 + 0.978036i \(0.433163\pi\)
\(174\) 0 0
\(175\) −0.113915 −0.00861118
\(176\) 0 0
\(177\) −21.7569 −1.63535
\(178\) 0 0
\(179\) −3.84176 −0.287147 −0.143573 0.989640i \(-0.545859\pi\)
−0.143573 + 0.989640i \(0.545859\pi\)
\(180\) 0 0
\(181\) −20.0526 −1.49049 −0.745247 0.666788i \(-0.767669\pi\)
−0.745247 + 0.666788i \(0.767669\pi\)
\(182\) 0 0
\(183\) 11.1097 0.821253
\(184\) 0 0
\(185\) 7.53485 0.553973
\(186\) 0 0
\(187\) 1.95137 0.142698
\(188\) 0 0
\(189\) 2.44094 0.177552
\(190\) 0 0
\(191\) −10.7242 −0.775972 −0.387986 0.921665i \(-0.626829\pi\)
−0.387986 + 0.921665i \(0.626829\pi\)
\(192\) 0 0
\(193\) 3.63077 0.261348 0.130674 0.991425i \(-0.458286\pi\)
0.130674 + 0.991425i \(0.458286\pi\)
\(194\) 0 0
\(195\) 25.3016 1.81188
\(196\) 0 0
\(197\) 23.4140 1.66818 0.834089 0.551630i \(-0.185994\pi\)
0.834089 + 0.551630i \(0.185994\pi\)
\(198\) 0 0
\(199\) −0.733205 −0.0519756 −0.0259878 0.999662i \(-0.508273\pi\)
−0.0259878 + 0.999662i \(0.508273\pi\)
\(200\) 0 0
\(201\) 25.1908 1.77682
\(202\) 0 0
\(203\) 2.33281 0.163731
\(204\) 0 0
\(205\) 2.14771 0.150003
\(206\) 0 0
\(207\) 6.35492 0.441697
\(208\) 0 0
\(209\) −2.37335 −0.164168
\(210\) 0 0
\(211\) 19.4763 1.34080 0.670402 0.741998i \(-0.266122\pi\)
0.670402 + 0.741998i \(0.266122\pi\)
\(212\) 0 0
\(213\) 30.5036 2.09007
\(214\) 0 0
\(215\) −22.3707 −1.52567
\(216\) 0 0
\(217\) −0.610235 −0.0414254
\(218\) 0 0
\(219\) 13.4641 0.909820
\(220\) 0 0
\(221\) −19.8754 −1.33696
\(222\) 0 0
\(223\) 24.2140 1.62149 0.810743 0.585402i \(-0.199063\pi\)
0.810743 + 0.585402i \(0.199063\pi\)
\(224\) 0 0
\(225\) 0.833334 0.0555556
\(226\) 0 0
\(227\) 16.3923 1.08800 0.543998 0.839087i \(-0.316910\pi\)
0.543998 + 0.839087i \(0.316910\pi\)
\(228\) 0 0
\(229\) 20.4182 1.34927 0.674636 0.738150i \(-0.264300\pi\)
0.674636 + 0.738150i \(0.264300\pi\)
\(230\) 0 0
\(231\) 0.665615 0.0437943
\(232\) 0 0
\(233\) −20.9810 −1.37451 −0.687254 0.726417i \(-0.741184\pi\)
−0.687254 + 0.726417i \(0.741184\pi\)
\(234\) 0 0
\(235\) 8.44409 0.550832
\(236\) 0 0
\(237\) −29.4430 −1.91253
\(238\) 0 0
\(239\) −14.8201 −0.958631 −0.479315 0.877643i \(-0.659115\pi\)
−0.479315 + 0.877643i \(0.659115\pi\)
\(240\) 0 0
\(241\) −3.05792 −0.196978 −0.0984890 0.995138i \(-0.531401\pi\)
−0.0984890 + 0.995138i \(0.531401\pi\)
\(242\) 0 0
\(243\) 18.7321 1.20166
\(244\) 0 0
\(245\) −15.0939 −0.964314
\(246\) 0 0
\(247\) 24.1734 1.53812
\(248\) 0 0
\(249\) −32.4199 −2.05453
\(250\) 0 0
\(251\) −24.7078 −1.55954 −0.779772 0.626063i \(-0.784665\pi\)
−0.779772 + 0.626063i \(0.784665\pi\)
\(252\) 0 0
\(253\) 0.568347 0.0357317
\(254\) 0 0
\(255\) −30.4113 −1.90443
\(256\) 0 0
\(257\) 22.7373 1.41832 0.709158 0.705050i \(-0.249075\pi\)
0.709158 + 0.705050i \(0.249075\pi\)
\(258\) 0 0
\(259\) −2.01896 −0.125452
\(260\) 0 0
\(261\) −17.0654 −1.05632
\(262\) 0 0
\(263\) −10.3031 −0.635318 −0.317659 0.948205i \(-0.602897\pi\)
−0.317659 + 0.948205i \(0.602897\pi\)
\(264\) 0 0
\(265\) 28.8364 1.77141
\(266\) 0 0
\(267\) 23.6159 1.44527
\(268\) 0 0
\(269\) −1.50580 −0.0918101 −0.0459050 0.998946i \(-0.514617\pi\)
−0.0459050 + 0.998946i \(0.514617\pi\)
\(270\) 0 0
\(271\) −25.7862 −1.56640 −0.783200 0.621770i \(-0.786414\pi\)
−0.783200 + 0.621770i \(0.786414\pi\)
\(272\) 0 0
\(273\) −6.77953 −0.410316
\(274\) 0 0
\(275\) 0.0745285 0.00449424
\(276\) 0 0
\(277\) 3.64445 0.218974 0.109487 0.993988i \(-0.465079\pi\)
0.109487 + 0.993988i \(0.465079\pi\)
\(278\) 0 0
\(279\) 4.46410 0.267259
\(280\) 0 0
\(281\) −14.7373 −0.879155 −0.439577 0.898205i \(-0.644872\pi\)
−0.439577 + 0.898205i \(0.644872\pi\)
\(282\) 0 0
\(283\) −17.6488 −1.04911 −0.524555 0.851377i \(-0.675768\pi\)
−0.524555 + 0.851377i \(0.675768\pi\)
\(284\) 0 0
\(285\) 36.9877 2.19096
\(286\) 0 0
\(287\) −0.575477 −0.0339693
\(288\) 0 0
\(289\) 6.88924 0.405249
\(290\) 0 0
\(291\) 33.2400 1.94856
\(292\) 0 0
\(293\) 16.8174 0.982485 0.491243 0.871023i \(-0.336543\pi\)
0.491243 + 0.871023i \(0.336543\pi\)
\(294\) 0 0
\(295\) 18.1365 1.05595
\(296\) 0 0
\(297\) −1.59697 −0.0926658
\(298\) 0 0
\(299\) −5.78882 −0.334776
\(300\) 0 0
\(301\) 5.99422 0.345501
\(302\) 0 0
\(303\) 18.4815 1.06173
\(304\) 0 0
\(305\) −9.26101 −0.530284
\(306\) 0 0
\(307\) 30.9594 1.76694 0.883472 0.468483i \(-0.155199\pi\)
0.883472 + 0.468483i \(0.155199\pi\)
\(308\) 0 0
\(309\) 25.7569 1.46526
\(310\) 0 0
\(311\) 7.42452 0.421006 0.210503 0.977593i \(-0.432490\pi\)
0.210503 + 0.977593i \(0.432490\pi\)
\(312\) 0 0
\(313\) −24.0437 −1.35903 −0.679515 0.733662i \(-0.737810\pi\)
−0.679515 + 0.733662i \(0.737810\pi\)
\(314\) 0 0
\(315\) −6.20405 −0.349559
\(316\) 0 0
\(317\) 29.5011 1.65694 0.828472 0.560030i \(-0.189211\pi\)
0.828472 + 0.560030i \(0.189211\pi\)
\(318\) 0 0
\(319\) −1.52623 −0.0854524
\(320\) 0 0
\(321\) 20.0563 1.11944
\(322\) 0 0
\(323\) −29.0553 −1.61668
\(324\) 0 0
\(325\) −0.759100 −0.0421073
\(326\) 0 0
\(327\) −12.8476 −0.710476
\(328\) 0 0
\(329\) −2.26259 −0.124741
\(330\) 0 0
\(331\) −17.7684 −0.976639 −0.488319 0.872665i \(-0.662390\pi\)
−0.488319 + 0.872665i \(0.662390\pi\)
\(332\) 0 0
\(333\) 14.7694 0.809360
\(334\) 0 0
\(335\) −20.9989 −1.14730
\(336\) 0 0
\(337\) 8.01633 0.436677 0.218339 0.975873i \(-0.429936\pi\)
0.218339 + 0.975873i \(0.429936\pi\)
\(338\) 0 0
\(339\) 42.8738 2.32858
\(340\) 0 0
\(341\) 0.399243 0.0216202
\(342\) 0 0
\(343\) 8.31604 0.449024
\(344\) 0 0
\(345\) −8.85746 −0.476870
\(346\) 0 0
\(347\) −33.6171 −1.80466 −0.902330 0.431046i \(-0.858145\pi\)
−0.902330 + 0.431046i \(0.858145\pi\)
\(348\) 0 0
\(349\) −8.68457 −0.464874 −0.232437 0.972611i \(-0.574670\pi\)
−0.232437 + 0.972611i \(0.574670\pi\)
\(350\) 0 0
\(351\) 16.2657 0.868201
\(352\) 0 0
\(353\) 0.860613 0.0458058 0.0229029 0.999738i \(-0.492709\pi\)
0.0229029 + 0.999738i \(0.492709\pi\)
\(354\) 0 0
\(355\) −25.4277 −1.34956
\(356\) 0 0
\(357\) 8.14867 0.431273
\(358\) 0 0
\(359\) −27.1323 −1.43199 −0.715993 0.698108i \(-0.754026\pi\)
−0.715993 + 0.698108i \(0.754026\pi\)
\(360\) 0 0
\(361\) 16.3385 0.859921
\(362\) 0 0
\(363\) 29.6171 1.55449
\(364\) 0 0
\(365\) −11.2236 −0.587471
\(366\) 0 0
\(367\) 35.4399 1.84995 0.924974 0.380032i \(-0.124087\pi\)
0.924974 + 0.380032i \(0.124087\pi\)
\(368\) 0 0
\(369\) 4.20984 0.219155
\(370\) 0 0
\(371\) −7.72669 −0.401150
\(372\) 0 0
\(373\) 11.9199 0.617188 0.308594 0.951194i \(-0.400142\pi\)
0.308594 + 0.951194i \(0.400142\pi\)
\(374\) 0 0
\(375\) 29.9487 1.54655
\(376\) 0 0
\(377\) 15.5452 0.800618
\(378\) 0 0
\(379\) 29.9461 1.53823 0.769114 0.639112i \(-0.220698\pi\)
0.769114 + 0.639112i \(0.220698\pi\)
\(380\) 0 0
\(381\) 26.6635 1.36601
\(382\) 0 0
\(383\) 20.4283 1.04384 0.521918 0.852995i \(-0.325217\pi\)
0.521918 + 0.852995i \(0.325217\pi\)
\(384\) 0 0
\(385\) −0.554854 −0.0282780
\(386\) 0 0
\(387\) −43.8500 −2.22902
\(388\) 0 0
\(389\) −19.1166 −0.969252 −0.484626 0.874721i \(-0.661044\pi\)
−0.484626 + 0.874721i \(0.661044\pi\)
\(390\) 0 0
\(391\) 6.95788 0.351875
\(392\) 0 0
\(393\) −0.708786 −0.0357535
\(394\) 0 0
\(395\) 24.5436 1.23492
\(396\) 0 0
\(397\) 17.7605 0.891373 0.445687 0.895189i \(-0.352960\pi\)
0.445687 + 0.895189i \(0.352960\pi\)
\(398\) 0 0
\(399\) −9.91082 −0.496162
\(400\) 0 0
\(401\) 10.5143 0.525060 0.262530 0.964924i \(-0.415443\pi\)
0.262530 + 0.964924i \(0.415443\pi\)
\(402\) 0 0
\(403\) −4.06644 −0.202564
\(404\) 0 0
\(405\) −5.61181 −0.278853
\(406\) 0 0
\(407\) 1.32089 0.0654742
\(408\) 0 0
\(409\) 21.4128 1.05880 0.529398 0.848373i \(-0.322418\pi\)
0.529398 + 0.848373i \(0.322418\pi\)
\(410\) 0 0
\(411\) 1.71635 0.0846614
\(412\) 0 0
\(413\) −4.85965 −0.239128
\(414\) 0 0
\(415\) 27.0251 1.32661
\(416\) 0 0
\(417\) 48.5441 2.37722
\(418\) 0 0
\(419\) 16.2590 0.794304 0.397152 0.917753i \(-0.369999\pi\)
0.397152 + 0.917753i \(0.369999\pi\)
\(420\) 0 0
\(421\) −29.3840 −1.43209 −0.716044 0.698055i \(-0.754049\pi\)
−0.716044 + 0.698055i \(0.754049\pi\)
\(422\) 0 0
\(423\) 16.5517 0.804771
\(424\) 0 0
\(425\) 0.912402 0.0442580
\(426\) 0 0
\(427\) 2.48148 0.120087
\(428\) 0 0
\(429\) 4.43548 0.214147
\(430\) 0 0
\(431\) 19.1908 0.924388 0.462194 0.886779i \(-0.347062\pi\)
0.462194 + 0.886779i \(0.347062\pi\)
\(432\) 0 0
\(433\) −29.2210 −1.40427 −0.702136 0.712043i \(-0.747770\pi\)
−0.702136 + 0.712043i \(0.747770\pi\)
\(434\) 0 0
\(435\) 23.7857 1.14044
\(436\) 0 0
\(437\) −8.46252 −0.404817
\(438\) 0 0
\(439\) 27.1682 1.29667 0.648335 0.761355i \(-0.275466\pi\)
0.648335 + 0.761355i \(0.275466\pi\)
\(440\) 0 0
\(441\) −29.5863 −1.40887
\(442\) 0 0
\(443\) 17.7682 0.844192 0.422096 0.906551i \(-0.361294\pi\)
0.422096 + 0.906551i \(0.361294\pi\)
\(444\) 0 0
\(445\) −19.6861 −0.933213
\(446\) 0 0
\(447\) 20.0897 0.950210
\(448\) 0 0
\(449\) 11.6425 0.549441 0.274721 0.961524i \(-0.411415\pi\)
0.274721 + 0.961524i \(0.411415\pi\)
\(450\) 0 0
\(451\) 0.376503 0.0177288
\(452\) 0 0
\(453\) −5.04212 −0.236899
\(454\) 0 0
\(455\) 5.65139 0.264941
\(456\) 0 0
\(457\) −7.93787 −0.371318 −0.185659 0.982614i \(-0.559442\pi\)
−0.185659 + 0.982614i \(0.559442\pi\)
\(458\) 0 0
\(459\) −19.5506 −0.912546
\(460\) 0 0
\(461\) 4.74330 0.220917 0.110459 0.993881i \(-0.464768\pi\)
0.110459 + 0.993881i \(0.464768\pi\)
\(462\) 0 0
\(463\) 6.55170 0.304483 0.152242 0.988343i \(-0.451351\pi\)
0.152242 + 0.988343i \(0.451351\pi\)
\(464\) 0 0
\(465\) −6.22205 −0.288541
\(466\) 0 0
\(467\) 18.6755 0.864200 0.432100 0.901826i \(-0.357773\pi\)
0.432100 + 0.901826i \(0.357773\pi\)
\(468\) 0 0
\(469\) 5.62665 0.259815
\(470\) 0 0
\(471\) 54.3410 2.50390
\(472\) 0 0
\(473\) −3.92169 −0.180319
\(474\) 0 0
\(475\) −1.10971 −0.0509169
\(476\) 0 0
\(477\) 56.5237 2.58804
\(478\) 0 0
\(479\) −3.50368 −0.160087 −0.0800436 0.996791i \(-0.525506\pi\)
−0.0800436 + 0.996791i \(0.525506\pi\)
\(480\) 0 0
\(481\) −13.4538 −0.613439
\(482\) 0 0
\(483\) 2.37335 0.107991
\(484\) 0 0
\(485\) −27.7087 −1.25819
\(486\) 0 0
\(487\) −19.4507 −0.881398 −0.440699 0.897655i \(-0.645269\pi\)
−0.440699 + 0.897655i \(0.645269\pi\)
\(488\) 0 0
\(489\) 40.9877 1.85353
\(490\) 0 0
\(491\) 8.27461 0.373428 0.186714 0.982414i \(-0.440216\pi\)
0.186714 + 0.982414i \(0.440216\pi\)
\(492\) 0 0
\(493\) −18.6846 −0.841511
\(494\) 0 0
\(495\) 4.05897 0.182437
\(496\) 0 0
\(497\) 6.81333 0.305619
\(498\) 0 0
\(499\) −5.45716 −0.244296 −0.122148 0.992512i \(-0.538978\pi\)
−0.122148 + 0.992512i \(0.538978\pi\)
\(500\) 0 0
\(501\) −62.7446 −2.80322
\(502\) 0 0
\(503\) −13.9446 −0.621760 −0.310880 0.950449i \(-0.600624\pi\)
−0.310880 + 0.950449i \(0.600624\pi\)
\(504\) 0 0
\(505\) −15.4061 −0.685562
\(506\) 0 0
\(507\) −9.66025 −0.429027
\(508\) 0 0
\(509\) 11.8205 0.523934 0.261967 0.965077i \(-0.415629\pi\)
0.261967 + 0.965077i \(0.415629\pi\)
\(510\) 0 0
\(511\) 3.00736 0.133038
\(512\) 0 0
\(513\) 23.7785 1.04985
\(514\) 0 0
\(515\) −21.4708 −0.946119
\(516\) 0 0
\(517\) 1.48029 0.0651030
\(518\) 0 0
\(519\) −14.9800 −0.657549
\(520\) 0 0
\(521\) −14.5169 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(522\) 0 0
\(523\) −24.3290 −1.06383 −0.531917 0.846797i \(-0.678528\pi\)
−0.531917 + 0.846797i \(0.678528\pi\)
\(524\) 0 0
\(525\) 0.311222 0.0135829
\(526\) 0 0
\(527\) 4.88766 0.212910
\(528\) 0 0
\(529\) −20.9735 −0.911890
\(530\) 0 0
\(531\) 35.5502 1.54275
\(532\) 0 0
\(533\) −3.83482 −0.166105
\(534\) 0 0
\(535\) −16.7189 −0.722821
\(536\) 0 0
\(537\) 10.4959 0.452931
\(538\) 0 0
\(539\) −2.64603 −0.113973
\(540\) 0 0
\(541\) −14.8976 −0.640496 −0.320248 0.947334i \(-0.603766\pi\)
−0.320248 + 0.947334i \(0.603766\pi\)
\(542\) 0 0
\(543\) 54.7846 2.35103
\(544\) 0 0
\(545\) 10.7097 0.458755
\(546\) 0 0
\(547\) 15.7421 0.673082 0.336541 0.941669i \(-0.390743\pi\)
0.336541 + 0.941669i \(0.390743\pi\)
\(548\) 0 0
\(549\) −18.1530 −0.774750
\(550\) 0 0
\(551\) 22.7251 0.968122
\(552\) 0 0
\(553\) −6.57644 −0.279659
\(554\) 0 0
\(555\) −20.5856 −0.873809
\(556\) 0 0
\(557\) −27.7252 −1.17476 −0.587378 0.809313i \(-0.699840\pi\)
−0.587378 + 0.809313i \(0.699840\pi\)
\(558\) 0 0
\(559\) 39.9438 1.68944
\(560\) 0 0
\(561\) −5.33123 −0.225085
\(562\) 0 0
\(563\) −26.6616 −1.12365 −0.561827 0.827255i \(-0.689901\pi\)
−0.561827 + 0.827255i \(0.689901\pi\)
\(564\) 0 0
\(565\) −35.7394 −1.50357
\(566\) 0 0
\(567\) 1.50368 0.0631486
\(568\) 0 0
\(569\) 11.3154 0.474367 0.237184 0.971465i \(-0.423776\pi\)
0.237184 + 0.971465i \(0.423776\pi\)
\(570\) 0 0
\(571\) −45.8742 −1.91978 −0.959888 0.280384i \(-0.909538\pi\)
−0.959888 + 0.280384i \(0.909538\pi\)
\(572\) 0 0
\(573\) 29.2989 1.22398
\(574\) 0 0
\(575\) 0.265742 0.0110822
\(576\) 0 0
\(577\) 46.1739 1.92225 0.961123 0.276120i \(-0.0890488\pi\)
0.961123 + 0.276120i \(0.0890488\pi\)
\(578\) 0 0
\(579\) −9.91944 −0.412238
\(580\) 0 0
\(581\) −7.24135 −0.300422
\(582\) 0 0
\(583\) 5.05515 0.209363
\(584\) 0 0
\(585\) −41.3421 −1.70929
\(586\) 0 0
\(587\) 16.5479 0.683006 0.341503 0.939881i \(-0.389064\pi\)
0.341503 + 0.939881i \(0.389064\pi\)
\(588\) 0 0
\(589\) −5.94462 −0.244944
\(590\) 0 0
\(591\) −63.9682 −2.63130
\(592\) 0 0
\(593\) −29.6466 −1.21744 −0.608719 0.793386i \(-0.708316\pi\)
−0.608719 + 0.793386i \(0.708316\pi\)
\(594\) 0 0
\(595\) −6.79270 −0.278474
\(596\) 0 0
\(597\) 2.00315 0.0819836
\(598\) 0 0
\(599\) −34.2451 −1.39922 −0.699609 0.714526i \(-0.746642\pi\)
−0.699609 + 0.714526i \(0.746642\pi\)
\(600\) 0 0
\(601\) −11.8811 −0.484642 −0.242321 0.970196i \(-0.577909\pi\)
−0.242321 + 0.970196i \(0.577909\pi\)
\(602\) 0 0
\(603\) −41.1611 −1.67621
\(604\) 0 0
\(605\) −24.6887 −1.00374
\(606\) 0 0
\(607\) −38.8257 −1.57589 −0.787943 0.615748i \(-0.788854\pi\)
−0.787943 + 0.615748i \(0.788854\pi\)
\(608\) 0 0
\(609\) −6.37335 −0.258261
\(610\) 0 0
\(611\) −15.0773 −0.609961
\(612\) 0 0
\(613\) −14.4961 −0.585493 −0.292747 0.956190i \(-0.594569\pi\)
−0.292747 + 0.956190i \(0.594569\pi\)
\(614\) 0 0
\(615\) −5.86765 −0.236607
\(616\) 0 0
\(617\) 12.1950 0.490952 0.245476 0.969403i \(-0.421056\pi\)
0.245476 + 0.969403i \(0.421056\pi\)
\(618\) 0 0
\(619\) 5.82049 0.233945 0.116973 0.993135i \(-0.462681\pi\)
0.116973 + 0.993135i \(0.462681\pi\)
\(620\) 0 0
\(621\) −5.69424 −0.228502
\(622\) 0 0
\(623\) 5.27489 0.211334
\(624\) 0 0
\(625\) −25.8985 −1.03594
\(626\) 0 0
\(627\) 6.48411 0.258950
\(628\) 0 0
\(629\) 16.1708 0.644771
\(630\) 0 0
\(631\) 12.4599 0.496021 0.248010 0.968757i \(-0.420223\pi\)
0.248010 + 0.968757i \(0.420223\pi\)
\(632\) 0 0
\(633\) −53.2103 −2.11492
\(634\) 0 0
\(635\) −22.2266 −0.882036
\(636\) 0 0
\(637\) 26.9508 1.06783
\(638\) 0 0
\(639\) −49.8421 −1.97172
\(640\) 0 0
\(641\) 12.6909 0.501260 0.250630 0.968083i \(-0.419362\pi\)
0.250630 + 0.968083i \(0.419362\pi\)
\(642\) 0 0
\(643\) 28.5205 1.12474 0.562370 0.826886i \(-0.309890\pi\)
0.562370 + 0.826886i \(0.309890\pi\)
\(644\) 0 0
\(645\) 61.1179 2.40652
\(646\) 0 0
\(647\) −21.6425 −0.850853 −0.425426 0.904993i \(-0.639876\pi\)
−0.425426 + 0.904993i \(0.639876\pi\)
\(648\) 0 0
\(649\) 3.17940 0.124802
\(650\) 0 0
\(651\) 1.66719 0.0653424
\(652\) 0 0
\(653\) 10.6814 0.417996 0.208998 0.977916i \(-0.432980\pi\)
0.208998 + 0.977916i \(0.432980\pi\)
\(654\) 0 0
\(655\) 0.590841 0.0230861
\(656\) 0 0
\(657\) −22.0000 −0.858302
\(658\) 0 0
\(659\) −36.1344 −1.40759 −0.703797 0.710401i \(-0.748514\pi\)
−0.703797 + 0.710401i \(0.748514\pi\)
\(660\) 0 0
\(661\) −13.8851 −0.540069 −0.270034 0.962851i \(-0.587035\pi\)
−0.270034 + 0.962851i \(0.587035\pi\)
\(662\) 0 0
\(663\) 54.3005 2.10886
\(664\) 0 0
\(665\) 8.26163 0.320372
\(666\) 0 0
\(667\) −5.44199 −0.210715
\(668\) 0 0
\(669\) −66.1538 −2.55765
\(670\) 0 0
\(671\) −1.62350 −0.0626744
\(672\) 0 0
\(673\) 38.8990 1.49945 0.749724 0.661751i \(-0.230186\pi\)
0.749724 + 0.661751i \(0.230186\pi\)
\(674\) 0 0
\(675\) −0.746698 −0.0287404
\(676\) 0 0
\(677\) 42.3643 1.62819 0.814096 0.580730i \(-0.197233\pi\)
0.814096 + 0.580730i \(0.197233\pi\)
\(678\) 0 0
\(679\) 7.42452 0.284927
\(680\) 0 0
\(681\) −44.7846 −1.71615
\(682\) 0 0
\(683\) 47.9583 1.83507 0.917537 0.397650i \(-0.130174\pi\)
0.917537 + 0.397650i \(0.130174\pi\)
\(684\) 0 0
\(685\) −1.43074 −0.0546659
\(686\) 0 0
\(687\) −55.7836 −2.12828
\(688\) 0 0
\(689\) −51.4885 −1.96156
\(690\) 0 0
\(691\) 26.3211 1.00130 0.500651 0.865649i \(-0.333094\pi\)
0.500651 + 0.865649i \(0.333094\pi\)
\(692\) 0 0
\(693\) −1.08760 −0.0413144
\(694\) 0 0
\(695\) −40.4662 −1.53497
\(696\) 0 0
\(697\) 4.60927 0.174589
\(698\) 0 0
\(699\) 57.3210 2.16808
\(700\) 0 0
\(701\) −2.65624 −0.100325 −0.0501624 0.998741i \(-0.515974\pi\)
−0.0501624 + 0.998741i \(0.515974\pi\)
\(702\) 0 0
\(703\) −19.6677 −0.741782
\(704\) 0 0
\(705\) −23.0697 −0.868855
\(706\) 0 0
\(707\) 4.12805 0.155251
\(708\) 0 0
\(709\) 36.4858 1.37025 0.685126 0.728424i \(-0.259747\pi\)
0.685126 + 0.728424i \(0.259747\pi\)
\(710\) 0 0
\(711\) 48.1092 1.80424
\(712\) 0 0
\(713\) 1.42356 0.0533128
\(714\) 0 0
\(715\) −3.69740 −0.138275
\(716\) 0 0
\(717\) 40.4892 1.51210
\(718\) 0 0
\(719\) −19.3160 −0.720364 −0.360182 0.932882i \(-0.617285\pi\)
−0.360182 + 0.932882i \(0.617285\pi\)
\(720\) 0 0
\(721\) 5.75310 0.214257
\(722\) 0 0
\(723\) 8.35439 0.310703
\(724\) 0 0
\(725\) −0.713620 −0.0265032
\(726\) 0 0
\(727\) 8.38556 0.311003 0.155502 0.987836i \(-0.450301\pi\)
0.155502 + 0.987836i \(0.450301\pi\)
\(728\) 0 0
\(729\) −43.7846 −1.62165
\(730\) 0 0
\(731\) −48.0105 −1.77573
\(732\) 0 0
\(733\) 7.43031 0.274445 0.137222 0.990540i \(-0.456183\pi\)
0.137222 + 0.990540i \(0.456183\pi\)
\(734\) 0 0
\(735\) 41.2373 1.52106
\(736\) 0 0
\(737\) −3.68121 −0.135599
\(738\) 0 0
\(739\) 2.69606 0.0991763 0.0495882 0.998770i \(-0.484209\pi\)
0.0495882 + 0.998770i \(0.484209\pi\)
\(740\) 0 0
\(741\) −66.0430 −2.42615
\(742\) 0 0
\(743\) 29.5647 1.08462 0.542311 0.840178i \(-0.317549\pi\)
0.542311 + 0.840178i \(0.317549\pi\)
\(744\) 0 0
\(745\) −16.7467 −0.613552
\(746\) 0 0
\(747\) 52.9733 1.93819
\(748\) 0 0
\(749\) 4.47981 0.163689
\(750\) 0 0
\(751\) 27.3845 0.999275 0.499637 0.866235i \(-0.333467\pi\)
0.499637 + 0.866235i \(0.333467\pi\)
\(752\) 0 0
\(753\) 67.5031 2.45995
\(754\) 0 0
\(755\) 4.20309 0.152966
\(756\) 0 0
\(757\) −0.849120 −0.0308618 −0.0154309 0.999881i \(-0.504912\pi\)
−0.0154309 + 0.999881i \(0.504912\pi\)
\(758\) 0 0
\(759\) −1.55275 −0.0563613
\(760\) 0 0
\(761\) 29.8619 1.08249 0.541246 0.840864i \(-0.317953\pi\)
0.541246 + 0.840864i \(0.317953\pi\)
\(762\) 0 0
\(763\) −2.86967 −0.103889
\(764\) 0 0
\(765\) 49.6912 1.79659
\(766\) 0 0
\(767\) −32.3834 −1.16930
\(768\) 0 0
\(769\) −13.8365 −0.498957 −0.249478 0.968380i \(-0.580259\pi\)
−0.249478 + 0.968380i \(0.580259\pi\)
\(770\) 0 0
\(771\) −62.1195 −2.23718
\(772\) 0 0
\(773\) −36.7921 −1.32332 −0.661659 0.749804i \(-0.730148\pi\)
−0.661659 + 0.749804i \(0.730148\pi\)
\(774\) 0 0
\(775\) 0.186674 0.00670554
\(776\) 0 0
\(777\) 5.51589 0.197881
\(778\) 0 0
\(779\) −5.60603 −0.200857
\(780\) 0 0
\(781\) −4.45759 −0.159505
\(782\) 0 0
\(783\) 15.2912 0.546463
\(784\) 0 0
\(785\) −45.2985 −1.61677
\(786\) 0 0
\(787\) −1.77963 −0.0634371 −0.0317185 0.999497i \(-0.510098\pi\)
−0.0317185 + 0.999497i \(0.510098\pi\)
\(788\) 0 0
\(789\) 28.1487 1.00212
\(790\) 0 0
\(791\) 9.57635 0.340496
\(792\) 0 0
\(793\) 16.5359 0.587207
\(794\) 0 0
\(795\) −78.7825 −2.79413
\(796\) 0 0
\(797\) −42.2904 −1.49800 −0.749002 0.662568i \(-0.769466\pi\)
−0.749002 + 0.662568i \(0.769466\pi\)
\(798\) 0 0
\(799\) 18.1221 0.641116
\(800\) 0 0
\(801\) −38.5878 −1.36343
\(802\) 0 0
\(803\) −1.96755 −0.0694334
\(804\) 0 0
\(805\) −1.97841 −0.0697300
\(806\) 0 0
\(807\) 4.11392 0.144817
\(808\) 0 0
\(809\) 47.9543 1.68598 0.842992 0.537925i \(-0.180792\pi\)
0.842992 + 0.537925i \(0.180792\pi\)
\(810\) 0 0
\(811\) −11.9545 −0.419780 −0.209890 0.977725i \(-0.567311\pi\)
−0.209890 + 0.977725i \(0.567311\pi\)
\(812\) 0 0
\(813\) 70.4492 2.47076
\(814\) 0 0
\(815\) −34.1672 −1.19682
\(816\) 0 0
\(817\) 58.3928 2.04291
\(818\) 0 0
\(819\) 11.0776 0.387082
\(820\) 0 0
\(821\) 14.8028 0.516621 0.258311 0.966062i \(-0.416834\pi\)
0.258311 + 0.966062i \(0.416834\pi\)
\(822\) 0 0
\(823\) 53.6259 1.86928 0.934641 0.355591i \(-0.115721\pi\)
0.934641 + 0.355591i \(0.115721\pi\)
\(824\) 0 0
\(825\) −0.203616 −0.00708899
\(826\) 0 0
\(827\) −9.83630 −0.342042 −0.171021 0.985267i \(-0.554707\pi\)
−0.171021 + 0.985267i \(0.554707\pi\)
\(828\) 0 0
\(829\) 5.67361 0.197052 0.0985262 0.995134i \(-0.468587\pi\)
0.0985262 + 0.995134i \(0.468587\pi\)
\(830\) 0 0
\(831\) −9.95683 −0.345399
\(832\) 0 0
\(833\) −32.3935 −1.12237
\(834\) 0 0
\(835\) 52.3037 1.81004
\(836\) 0 0
\(837\) −4.00000 −0.138260
\(838\) 0 0
\(839\) −8.91997 −0.307952 −0.153976 0.988075i \(-0.549208\pi\)
−0.153976 + 0.988075i \(0.549208\pi\)
\(840\) 0 0
\(841\) −14.3862 −0.496075
\(842\) 0 0
\(843\) 40.2631 1.38674
\(844\) 0 0
\(845\) 8.05275 0.277023
\(846\) 0 0
\(847\) 6.61531 0.227305
\(848\) 0 0
\(849\) 48.2173 1.65481
\(850\) 0 0
\(851\) 4.70984 0.161451
\(852\) 0 0
\(853\) −10.7850 −0.369271 −0.184636 0.982807i \(-0.559110\pi\)
−0.184636 + 0.982807i \(0.559110\pi\)
\(854\) 0 0
\(855\) −60.4370 −2.06690
\(856\) 0 0
\(857\) 29.3858 1.00380 0.501900 0.864926i \(-0.332635\pi\)
0.501900 + 0.864926i \(0.332635\pi\)
\(858\) 0 0
\(859\) 41.7928 1.42595 0.712976 0.701188i \(-0.247347\pi\)
0.712976 + 0.701188i \(0.247347\pi\)
\(860\) 0 0
\(861\) 1.57223 0.0535816
\(862\) 0 0
\(863\) −14.8148 −0.504302 −0.252151 0.967688i \(-0.581138\pi\)
−0.252151 + 0.967688i \(0.581138\pi\)
\(864\) 0 0
\(865\) 12.4873 0.424580
\(866\) 0 0
\(867\) −18.8218 −0.639220
\(868\) 0 0
\(869\) 4.30260 0.145956
\(870\) 0 0
\(871\) 37.4944 1.27045
\(872\) 0 0
\(873\) −54.3132 −1.83822
\(874\) 0 0
\(875\) 6.68939 0.226143
\(876\) 0 0
\(877\) −27.2269 −0.919387 −0.459693 0.888078i \(-0.652041\pi\)
−0.459693 + 0.888078i \(0.652041\pi\)
\(878\) 0 0
\(879\) −45.9461 −1.54972
\(880\) 0 0
\(881\) 41.7551 1.40677 0.703383 0.710811i \(-0.251672\pi\)
0.703383 + 0.710811i \(0.251672\pi\)
\(882\) 0 0
\(883\) 34.8191 1.17176 0.585878 0.810399i \(-0.300750\pi\)
0.585878 + 0.810399i \(0.300750\pi\)
\(884\) 0 0
\(885\) −49.5497 −1.66560
\(886\) 0 0
\(887\) 22.9783 0.771537 0.385768 0.922596i \(-0.373936\pi\)
0.385768 + 0.922596i \(0.373936\pi\)
\(888\) 0 0
\(889\) 5.95560 0.199744
\(890\) 0 0
\(891\) −0.983776 −0.0329577
\(892\) 0 0
\(893\) −22.0411 −0.737576
\(894\) 0 0
\(895\) −8.74933 −0.292458
\(896\) 0 0
\(897\) 15.8153 0.528059
\(898\) 0 0
\(899\) −3.82280 −0.127498
\(900\) 0 0
\(901\) 61.8868 2.06175
\(902\) 0 0
\(903\) −16.3765 −0.544976
\(904\) 0 0
\(905\) −45.6682 −1.51806
\(906\) 0 0
\(907\) −52.5247 −1.74406 −0.872028 0.489457i \(-0.837195\pi\)
−0.872028 + 0.489457i \(0.837195\pi\)
\(908\) 0 0
\(909\) −30.1983 −1.00161
\(910\) 0 0
\(911\) −10.3846 −0.344057 −0.172029 0.985092i \(-0.555032\pi\)
−0.172029 + 0.985092i \(0.555032\pi\)
\(912\) 0 0
\(913\) 4.73762 0.156792
\(914\) 0 0
\(915\) 25.3016 0.836444
\(916\) 0 0
\(917\) −0.158315 −0.00522804
\(918\) 0 0
\(919\) −36.9630 −1.21930 −0.609648 0.792672i \(-0.708689\pi\)
−0.609648 + 0.792672i \(0.708689\pi\)
\(920\) 0 0
\(921\) −84.5826 −2.78709
\(922\) 0 0
\(923\) 45.4021 1.49443
\(924\) 0 0
\(925\) 0.617611 0.0203069
\(926\) 0 0
\(927\) −42.0861 −1.38229
\(928\) 0 0
\(929\) 23.1634 0.759967 0.379984 0.924993i \(-0.375930\pi\)
0.379984 + 0.924993i \(0.375930\pi\)
\(930\) 0 0
\(931\) 39.3986 1.29124
\(932\) 0 0
\(933\) −20.2842 −0.664074
\(934\) 0 0
\(935\) 4.44409 0.145337
\(936\) 0 0
\(937\) 17.6452 0.576444 0.288222 0.957564i \(-0.406936\pi\)
0.288222 + 0.957564i \(0.406936\pi\)
\(938\) 0 0
\(939\) 65.6886 2.14367
\(940\) 0 0
\(941\) −8.31462 −0.271049 −0.135524 0.990774i \(-0.543272\pi\)
−0.135524 + 0.990774i \(0.543272\pi\)
\(942\) 0 0
\(943\) 1.34248 0.0437171
\(944\) 0 0
\(945\) 5.55906 0.180836
\(946\) 0 0
\(947\) −51.9107 −1.68687 −0.843436 0.537230i \(-0.819471\pi\)
−0.843436 + 0.537230i \(0.819471\pi\)
\(948\) 0 0
\(949\) 20.0402 0.650533
\(950\) 0 0
\(951\) −80.5984 −2.61358
\(952\) 0 0
\(953\) 47.8601 1.55034 0.775170 0.631753i \(-0.217664\pi\)
0.775170 + 0.631753i \(0.217664\pi\)
\(954\) 0 0
\(955\) −24.4235 −0.790325
\(956\) 0 0
\(957\) 4.16973 0.134788
\(958\) 0 0
\(959\) 0.383367 0.0123796
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −32.7716 −1.05605
\(964\) 0 0
\(965\) 8.26881 0.266182
\(966\) 0 0
\(967\) −26.4990 −0.852152 −0.426076 0.904687i \(-0.640104\pi\)
−0.426076 + 0.904687i \(0.640104\pi\)
\(968\) 0 0
\(969\) 79.3805 2.55007
\(970\) 0 0
\(971\) 28.8882 0.927066 0.463533 0.886080i \(-0.346582\pi\)
0.463533 + 0.886080i \(0.346582\pi\)
\(972\) 0 0
\(973\) 10.8429 0.347607
\(974\) 0 0
\(975\) 2.07390 0.0664179
\(976\) 0 0
\(977\) 27.7363 0.887362 0.443681 0.896185i \(-0.353672\pi\)
0.443681 + 0.896185i \(0.353672\pi\)
\(978\) 0 0
\(979\) −3.45107 −0.110297
\(980\) 0 0
\(981\) 20.9927 0.670246
\(982\) 0 0
\(983\) −55.7890 −1.77939 −0.889697 0.456552i \(-0.849084\pi\)
−0.889697 + 0.456552i \(0.849084\pi\)
\(984\) 0 0
\(985\) 53.3237 1.69903
\(986\) 0 0
\(987\) 6.18151 0.196759
\(988\) 0 0
\(989\) −13.9834 −0.444645
\(990\) 0 0
\(991\) −2.80427 −0.0890806 −0.0445403 0.999008i \(-0.514182\pi\)
−0.0445403 + 0.999008i \(0.514182\pi\)
\(992\) 0 0
\(993\) 48.5441 1.54050
\(994\) 0 0
\(995\) −1.66982 −0.0529369
\(996\) 0 0
\(997\) −60.3343 −1.91081 −0.955403 0.295305i \(-0.904579\pi\)
−0.955403 + 0.295305i \(0.904579\pi\)
\(998\) 0 0
\(999\) −13.2340 −0.418704
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1984.2.a.y.1.2 4
4.3 odd 2 1984.2.a.z.1.4 4
8.3 odd 2 992.2.a.e.1.1 4
8.5 even 2 992.2.a.f.1.3 yes 4
24.5 odd 2 8928.2.a.bn.1.4 4
24.11 even 2 8928.2.a.bm.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
992.2.a.e.1.1 4 8.3 odd 2
992.2.a.f.1.3 yes 4 8.5 even 2
1984.2.a.y.1.2 4 1.1 even 1 trivial
1984.2.a.z.1.4 4 4.3 odd 2
8928.2.a.bm.1.4 4 24.11 even 2
8928.2.a.bn.1.4 4 24.5 odd 2