Properties

Label 1984.2.a.z
Level $1984$
Weight $2$
Character orbit 1984.a
Self dual yes
Analytic conductor $15.842$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1984,2,Mod(1,1984)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1984.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1984, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1984 = 2^{6} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1984.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,-2,0,-4,0,4,0,10,0,0,0,-2,0,2,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.8423197610\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.13968.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 7x^{2} + 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 992)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 1) q^{3} + (\beta_1 - 1) q^{5} + ( - \beta_{3} + \beta_{2} + \beta_1 - 1) q^{7} + (2 \beta_{2} + 1) q^{9} + ( - \beta_{3} + 3) q^{11} + ( - 2 \beta_{3} + \beta_{2} + 1) q^{13} + (\beta_{3} - \beta_{2} + 2 \beta_1 - 2) q^{15}+ \cdots + (\beta_{3} + 4 \beta_{2} - 4 \beta_1 + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 2 q^{5} - 4 q^{7} + 4 q^{9} + 10 q^{11} - 2 q^{15} + 2 q^{17} + 8 q^{19} + 2 q^{21} - 2 q^{23} - 2 q^{25} + 16 q^{27} - 4 q^{31} + 4 q^{33} + 12 q^{35} + 10 q^{37} + 2 q^{41} + 24 q^{43}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 7x^{2} + 8x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - \nu - 4 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - \nu^{2} - 6\nu + 2 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} + 2\beta_{2} + 7\beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.386509
1.38651
−2.27743
3.27743
0 −0.732051 0 −1.38651 0 −5.17452 0 −2.46410 0
1.2 0 −0.732051 0 0.386509 0 1.44247 0 −2.46410 0
1.3 0 2.73205 0 −3.27743 0 −0.878184 0 4.46410 0
1.4 0 2.73205 0 2.27743 0 0.610235 0 4.46410 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1984.2.a.z 4
4.b odd 2 1 1984.2.a.y 4
8.b even 2 1 992.2.a.e 4
8.d odd 2 1 992.2.a.f yes 4
24.f even 2 1 8928.2.a.bn 4
24.h odd 2 1 8928.2.a.bm 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
992.2.a.e 4 8.b even 2 1
992.2.a.f yes 4 8.d odd 2 1
1984.2.a.y 4 4.b odd 2 1
1984.2.a.z 4 1.a even 1 1 trivial
8928.2.a.bm 4 24.h odd 2 1
8928.2.a.bn 4 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1984))\):

\( T_{3}^{2} - 2T_{3} - 2 \) Copy content Toggle raw display
\( T_{5}^{4} + 2T_{5}^{3} - 7T_{5}^{2} - 8T_{5} + 4 \) Copy content Toggle raw display
\( T_{7}^{4} + 4T_{7}^{3} - 7T_{7}^{2} - 4T_{7} + 4 \) Copy content Toggle raw display
\( T_{19}^{4} - 8T_{19}^{3} - 3T_{19}^{2} + 112T_{19} - 128 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - 2 T - 2)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$7$ \( T^{4} + 4 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$11$ \( T^{4} - 10 T^{3} + \cdots - 8 \) Copy content Toggle raw display
$13$ \( T^{4} - 40T^{2} + 388 \) Copy content Toggle raw display
$17$ \( T^{4} - 2 T^{3} + \cdots + 184 \) Copy content Toggle raw display
$19$ \( T^{4} - 8 T^{3} + \cdots - 128 \) Copy content Toggle raw display
$23$ \( T^{4} + 2 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$29$ \( T^{4} - 40 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$31$ \( (T + 1)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} - 10 T^{3} + \cdots - 488 \) Copy content Toggle raw display
$41$ \( T^{4} - 2 T^{3} + \cdots - 104 \) Copy content Toggle raw display
$43$ \( T^{4} - 24 T^{3} + \cdots - 716 \) Copy content Toggle raw display
$47$ \( T^{4} - 100 T^{2} + \cdots - 416 \) Copy content Toggle raw display
$53$ \( T^{4} - 2 T^{3} + \cdots - 128 \) Copy content Toggle raw display
$59$ \( T^{4} - 20 T^{3} + \cdots - 5864 \) Copy content Toggle raw display
$61$ \( T^{4} - 40T^{2} + 388 \) Copy content Toggle raw display
$67$ \( T^{4} - 24 T^{3} + \cdots - 1472 \) Copy content Toggle raw display
$71$ \( T^{4} - 16 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$73$ \( (T^{2} - 4 T - 44)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} - 6 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$83$ \( T^{4} - 6 T^{3} + \cdots + 56536 \) Copy content Toggle raw display
$89$ \( T^{4} + 18 T^{3} + \cdots + 1048 \) Copy content Toggle raw display
$97$ \( T^{4} + 6 T^{3} + \cdots - 872 \) Copy content Toggle raw display
show more
show less