Properties

Label 195.2.k.a.148.1
Level $195$
Weight $2$
Character 195.148
Analytic conductor $1.557$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [195,2,Mod(112,195)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("195.112"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(195, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 195.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.55708283941\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 148.1
Character \(\chi\) \(=\) 195.148
Dual form 195.2.k.a.112.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.48675i q^{2} +(-0.707107 - 0.707107i) q^{3} -4.18390 q^{4} +(-2.00040 + 0.999208i) q^{5} +(-1.75839 + 1.75839i) q^{6} -0.242414 q^{7} +5.43081i q^{8} +1.00000i q^{9} +(2.48478 + 4.97448i) q^{10} +(-4.24054 - 4.24054i) q^{11} +(2.95847 + 2.95847i) q^{12} +(2.81694 + 2.25052i) q^{13} +0.602823i q^{14} +(2.12104 + 0.707947i) q^{15} +5.13724 q^{16} +(-1.37194 - 1.37194i) q^{17} +2.48675 q^{18} +(-3.91462 - 3.91462i) q^{19} +(8.36946 - 4.18059i) q^{20} +(0.171413 + 0.171413i) q^{21} +(-10.5451 + 10.5451i) q^{22} +(1.90471 - 1.90471i) q^{23} +(3.84016 - 3.84016i) q^{24} +(3.00317 - 3.99762i) q^{25} +(5.59648 - 7.00501i) q^{26} +(0.707107 - 0.707107i) q^{27} +1.01424 q^{28} -5.76992i q^{29} +(1.76048 - 5.27449i) q^{30} +(-5.69411 + 5.69411i) q^{31} -1.91338i q^{32} +5.99703i q^{33} +(-3.41167 + 3.41167i) q^{34} +(0.484925 - 0.242222i) q^{35} -4.18390i q^{36} +3.31881 q^{37} +(-9.73467 + 9.73467i) q^{38} +(-0.400516 - 3.58324i) q^{39} +(-5.42651 - 10.8638i) q^{40} +(-1.51472 + 1.51472i) q^{41} +(0.426260 - 0.426260i) q^{42} +(3.88596 - 3.88596i) q^{43} +(17.7420 + 17.7420i) q^{44} +(-0.999208 - 2.00040i) q^{45} +(-4.73652 - 4.73652i) q^{46} -1.68447 q^{47} +(-3.63258 - 3.63258i) q^{48} -6.94124 q^{49} +(-9.94107 - 7.46811i) q^{50} +1.94022i q^{51} +(-11.7858 - 9.41597i) q^{52} +(-2.22339 - 2.22339i) q^{53} +(-1.75839 - 1.75839i) q^{54} +(12.7199 + 4.24558i) q^{55} -1.31651i q^{56} +5.53612i q^{57} -14.3483 q^{58} +(5.27843 - 5.27843i) q^{59} +(-8.87423 - 2.96198i) q^{60} +10.2486 q^{61} +(14.1598 + 14.1598i) q^{62} -0.242414i q^{63} +5.51638 q^{64} +(-7.88373 - 1.68723i) q^{65} +14.9131 q^{66} -15.3086i q^{67} +(5.74007 + 5.74007i) q^{68} -2.69366 q^{69} +(-0.602346 - 1.20588i) q^{70} +(-0.0780456 + 0.0780456i) q^{71} -5.43081 q^{72} -1.45403i q^{73} -8.25304i q^{74} +(-4.95031 + 0.703187i) q^{75} +(16.3784 + 16.3784i) q^{76} +(1.02797 + 1.02797i) q^{77} +(-8.91060 + 0.995982i) q^{78} +7.60135i q^{79} +(-10.2765 + 5.13317i) q^{80} -1.00000 q^{81} +(3.76672 + 3.76672i) q^{82} +2.71964 q^{83} +(-0.717175 - 0.717175i) q^{84} +(4.11528 + 1.37357i) q^{85} +(-9.66338 - 9.66338i) q^{86} +(-4.07995 + 4.07995i) q^{87} +(23.0296 - 23.0296i) q^{88} +(0.887120 - 0.887120i) q^{89} +(-4.97448 + 2.48478i) q^{90} +(-0.682867 - 0.545559i) q^{91} +(-7.96910 + 7.96910i) q^{92} +8.05269 q^{93} +4.18886i q^{94} +(11.7423 + 3.91927i) q^{95} +(-1.35296 + 1.35296i) q^{96} +4.76021i q^{97} +17.2611i q^{98} +(4.24054 - 4.24054i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 28 q^{4} + 8 q^{5} - 8 q^{11} + 8 q^{12} - 12 q^{13} + 4 q^{15} + 28 q^{16} - 28 q^{17} - 4 q^{18} + 8 q^{21} - 32 q^{22} + 8 q^{23} - 4 q^{25} - 16 q^{31} + 28 q^{34} + 32 q^{37} + 8 q^{39} - 48 q^{40}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/195\mathbb{Z}\right)^\times\).

\(n\) \(106\) \(131\) \(157\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.48675i 1.75839i −0.476458 0.879197i \(-0.658080\pi\)
0.476458 0.879197i \(-0.341920\pi\)
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) −4.18390 −2.09195
\(5\) −2.00040 + 0.999208i −0.894604 + 0.446859i
\(6\) −1.75839 + 1.75839i −0.717862 + 0.717862i
\(7\) −0.242414 −0.0916240 −0.0458120 0.998950i \(-0.514588\pi\)
−0.0458120 + 0.998950i \(0.514588\pi\)
\(8\) 5.43081i 1.92008i
\(9\) 1.00000i 0.333333i
\(10\) 2.48478 + 4.97448i 0.785755 + 1.57307i
\(11\) −4.24054 4.24054i −1.27857 1.27857i −0.941467 0.337104i \(-0.890553\pi\)
−0.337104 0.941467i \(-0.609447\pi\)
\(12\) 2.95847 + 2.95847i 0.854036 + 0.854036i
\(13\) 2.81694 + 2.25052i 0.781278 + 0.624183i
\(14\) 0.602823i 0.161111i
\(15\) 2.12104 + 0.707947i 0.547650 + 0.182791i
\(16\) 5.13724 1.28431
\(17\) −1.37194 1.37194i −0.332745 0.332745i 0.520883 0.853628i \(-0.325603\pi\)
−0.853628 + 0.520883i \(0.825603\pi\)
\(18\) 2.48675 0.586132
\(19\) −3.91462 3.91462i −0.898076 0.898076i 0.0971894 0.995266i \(-0.469015\pi\)
−0.995266 + 0.0971894i \(0.969015\pi\)
\(20\) 8.36946 4.18059i 1.87147 0.934808i
\(21\) 0.171413 + 0.171413i 0.0374054 + 0.0374054i
\(22\) −10.5451 + 10.5451i −2.24823 + 2.24823i
\(23\) 1.90471 1.90471i 0.397159 0.397159i −0.480071 0.877230i \(-0.659389\pi\)
0.877230 + 0.480071i \(0.159389\pi\)
\(24\) 3.84016 3.84016i 0.783870 0.783870i
\(25\) 3.00317 3.99762i 0.600633 0.799525i
\(26\) 5.59648 7.00501i 1.09756 1.37380i
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 1.01424 0.191673
\(29\) 5.76992i 1.07145i −0.844393 0.535724i \(-0.820039\pi\)
0.844393 0.535724i \(-0.179961\pi\)
\(30\) 1.76048 5.27449i 0.321419 0.962985i
\(31\) −5.69411 + 5.69411i −1.02269 + 1.02269i −0.0229561 + 0.999736i \(0.507308\pi\)
−0.999736 + 0.0229561i \(0.992692\pi\)
\(32\) 1.91338i 0.338241i
\(33\) 5.99703i 1.04395i
\(34\) −3.41167 + 3.41167i −0.585096 + 0.585096i
\(35\) 0.484925 0.242222i 0.0819673 0.0409431i
\(36\) 4.18390i 0.697317i
\(37\) 3.31881 0.545609 0.272805 0.962069i \(-0.412049\pi\)
0.272805 + 0.962069i \(0.412049\pi\)
\(38\) −9.73467 + 9.73467i −1.57917 + 1.57917i
\(39\) −0.400516 3.58324i −0.0641339 0.573777i
\(40\) −5.42651 10.8638i −0.858007 1.71771i
\(41\) −1.51472 + 1.51472i −0.236559 + 0.236559i −0.815424 0.578865i \(-0.803496\pi\)
0.578865 + 0.815424i \(0.303496\pi\)
\(42\) 0.426260 0.426260i 0.0657734 0.0657734i
\(43\) 3.88596 3.88596i 0.592603 0.592603i −0.345731 0.938334i \(-0.612369\pi\)
0.938334 + 0.345731i \(0.112369\pi\)
\(44\) 17.7420 + 17.7420i 2.67471 + 2.67471i
\(45\) −0.999208 2.00040i −0.148953 0.298201i
\(46\) −4.73652 4.73652i −0.698362 0.698362i
\(47\) −1.68447 −0.245706 −0.122853 0.992425i \(-0.539204\pi\)
−0.122853 + 0.992425i \(0.539204\pi\)
\(48\) −3.63258 3.63258i −0.524317 0.524317i
\(49\) −6.94124 −0.991605
\(50\) −9.94107 7.46811i −1.40588 1.05615i
\(51\) 1.94022i 0.271685i
\(52\) −11.7858 9.41597i −1.63440 1.30576i
\(53\) −2.22339 2.22339i −0.305406 0.305406i 0.537718 0.843125i \(-0.319286\pi\)
−0.843125 + 0.537718i \(0.819286\pi\)
\(54\) −1.75839 1.75839i −0.239287 0.239287i
\(55\) 12.7199 + 4.24558i 1.71516 + 0.572474i
\(56\) 1.31651i 0.175926i
\(57\) 5.53612i 0.733276i
\(58\) −14.3483 −1.88403
\(59\) 5.27843 5.27843i 0.687193 0.687193i −0.274418 0.961611i \(-0.588485\pi\)
0.961611 + 0.274418i \(0.0884852\pi\)
\(60\) −8.87423 2.96198i −1.14566 0.382390i
\(61\) 10.2486 1.31220 0.656101 0.754673i \(-0.272204\pi\)
0.656101 + 0.754673i \(0.272204\pi\)
\(62\) 14.1598 + 14.1598i 1.79830 + 1.79830i
\(63\) 0.242414i 0.0305413i
\(64\) 5.51638 0.689548
\(65\) −7.88373 1.68723i −0.977857 0.209275i
\(66\) 14.9131 1.83567
\(67\) 15.3086i 1.87024i −0.354328 0.935121i \(-0.615290\pi\)
0.354328 0.935121i \(-0.384710\pi\)
\(68\) 5.74007 + 5.74007i 0.696086 + 0.696086i
\(69\) −2.69366 −0.324279
\(70\) −0.602346 1.20588i −0.0719941 0.144131i
\(71\) −0.0780456 + 0.0780456i −0.00926231 + 0.00926231i −0.711723 0.702460i \(-0.752085\pi\)
0.702460 + 0.711723i \(0.252085\pi\)
\(72\) −5.43081 −0.640027
\(73\) 1.45403i 0.170181i −0.996373 0.0850905i \(-0.972882\pi\)
0.996373 0.0850905i \(-0.0271179\pi\)
\(74\) 8.25304i 0.959397i
\(75\) −4.95031 + 0.703187i −0.571612 + 0.0811971i
\(76\) 16.3784 + 16.3784i 1.87873 + 1.87873i
\(77\) 1.02797 + 1.02797i 0.117148 + 0.117148i
\(78\) −8.91060 + 0.995982i −1.00893 + 0.112773i
\(79\) 7.60135i 0.855219i 0.903964 + 0.427609i \(0.140644\pi\)
−0.903964 + 0.427609i \(0.859356\pi\)
\(80\) −10.2765 + 5.13317i −1.14895 + 0.573906i
\(81\) −1.00000 −0.111111
\(82\) 3.76672 + 3.76672i 0.415964 + 0.415964i
\(83\) 2.71964 0.298520 0.149260 0.988798i \(-0.452311\pi\)
0.149260 + 0.988798i \(0.452311\pi\)
\(84\) −0.717175 0.717175i −0.0782502 0.0782502i
\(85\) 4.11528 + 1.37357i 0.446365 + 0.148985i
\(86\) −9.66338 9.66338i −1.04203 1.04203i
\(87\) −4.07995 + 4.07995i −0.437416 + 0.437416i
\(88\) 23.0296 23.0296i 2.45496 2.45496i
\(89\) 0.887120 0.887120i 0.0940345 0.0940345i −0.658525 0.752559i \(-0.728819\pi\)
0.752559 + 0.658525i \(0.228819\pi\)
\(90\) −4.97448 + 2.48478i −0.524356 + 0.261918i
\(91\) −0.682867 0.545559i −0.0715839 0.0571902i
\(92\) −7.96910 + 7.96910i −0.830837 + 0.830837i
\(93\) 8.05269 0.835025
\(94\) 4.18886i 0.432048i
\(95\) 11.7423 + 3.91927i 1.20474 + 0.402109i
\(96\) −1.35296 + 1.35296i −0.138086 + 0.138086i
\(97\) 4.76021i 0.483326i 0.970360 + 0.241663i \(0.0776929\pi\)
−0.970360 + 0.241663i \(0.922307\pi\)
\(98\) 17.2611i 1.74363i
\(99\) 4.24054 4.24054i 0.426190 0.426190i
\(100\) −12.5650 + 16.7257i −1.25650 + 1.67257i
\(101\) 11.2837i 1.12277i 0.827553 + 0.561387i \(0.189732\pi\)
−0.827553 + 0.561387i \(0.810268\pi\)
\(102\) 4.82483 0.477729
\(103\) 9.85776 9.85776i 0.971314 0.971314i −0.0282861 0.999600i \(-0.509005\pi\)
0.999600 + 0.0282861i \(0.00900494\pi\)
\(104\) −12.2222 + 15.2983i −1.19848 + 1.50012i
\(105\) −0.514171 0.171616i −0.0501779 0.0167481i
\(106\) −5.52901 + 5.52901i −0.537025 + 0.537025i
\(107\) −4.00248 + 4.00248i −0.386934 + 0.386934i −0.873592 0.486658i \(-0.838216\pi\)
0.486658 + 0.873592i \(0.338216\pi\)
\(108\) −2.95847 + 2.95847i −0.284679 + 0.284679i
\(109\) −4.59552 4.59552i −0.440171 0.440171i 0.451899 0.892069i \(-0.350747\pi\)
−0.892069 + 0.451899i \(0.850747\pi\)
\(110\) 10.5577 31.6313i 1.00663 3.01592i
\(111\) −2.34675 2.34675i −0.222744 0.222744i
\(112\) −1.24534 −0.117674
\(113\) 12.3277 + 12.3277i 1.15969 + 1.15969i 0.984542 + 0.175149i \(0.0560409\pi\)
0.175149 + 0.984542i \(0.443959\pi\)
\(114\) 13.7669 1.28939
\(115\) −1.90697 + 5.71336i −0.177826 + 0.532774i
\(116\) 24.1408i 2.24142i
\(117\) −2.25052 + 2.81694i −0.208061 + 0.260426i
\(118\) −13.1261 13.1261i −1.20836 1.20836i
\(119\) 0.332578 + 0.332578i 0.0304874 + 0.0304874i
\(120\) −3.84472 + 11.5190i −0.350974 + 1.05153i
\(121\) 24.9644i 2.26949i
\(122\) 25.4857i 2.30737i
\(123\) 2.14213 0.193150
\(124\) 23.8236 23.8236i 2.13942 2.13942i
\(125\) −2.01306 + 10.9976i −0.180054 + 0.983657i
\(126\) −0.602823 −0.0537037
\(127\) −3.83744 3.83744i −0.340518 0.340518i 0.516044 0.856562i \(-0.327404\pi\)
−0.856562 + 0.516044i \(0.827404\pi\)
\(128\) 17.5446i 1.55074i
\(129\) −5.49557 −0.483858
\(130\) −4.19571 + 19.6048i −0.367988 + 1.71946i
\(131\) −5.03941 −0.440295 −0.220148 0.975467i \(-0.570654\pi\)
−0.220148 + 0.975467i \(0.570654\pi\)
\(132\) 25.0910i 2.18389i
\(133\) 0.948961 + 0.948961i 0.0822854 + 0.0822854i
\(134\) −38.0686 −3.28862
\(135\) −0.707947 + 2.12104i −0.0609303 + 0.182550i
\(136\) 7.45075 7.45075i 0.638897 0.638897i
\(137\) −13.3951 −1.14442 −0.572209 0.820108i \(-0.693913\pi\)
−0.572209 + 0.820108i \(0.693913\pi\)
\(138\) 6.69845i 0.570210i
\(139\) 6.03788i 0.512126i −0.966660 0.256063i \(-0.917575\pi\)
0.966660 0.256063i \(-0.0824255\pi\)
\(140\) −2.02888 + 1.01344i −0.171472 + 0.0856509i
\(141\) 1.19110 + 1.19110i 0.100309 + 0.100309i
\(142\) 0.194080 + 0.194080i 0.0162868 + 0.0162868i
\(143\) −2.40191 21.4888i −0.200858 1.79698i
\(144\) 5.13724i 0.428103i
\(145\) 5.76535 + 11.5421i 0.478786 + 0.958521i
\(146\) −3.61579 −0.299245
\(147\) 4.90819 + 4.90819i 0.404821 + 0.404821i
\(148\) −13.8856 −1.14139
\(149\) −14.7948 14.7948i −1.21203 1.21203i −0.970356 0.241678i \(-0.922302\pi\)
−0.241678 0.970356i \(-0.577698\pi\)
\(150\) 1.74865 + 12.3102i 0.142776 + 1.00512i
\(151\) −14.6792 14.6792i −1.19458 1.19458i −0.975768 0.218808i \(-0.929783\pi\)
−0.218808 0.975768i \(-0.570217\pi\)
\(152\) 21.2596 21.2596i 1.72438 1.72438i
\(153\) 1.37194 1.37194i 0.110915 0.110915i
\(154\) 2.55630 2.55630i 0.205992 0.205992i
\(155\) 5.70087 17.0801i 0.457905 1.37190i
\(156\) 1.67572 + 14.9919i 0.134165 + 1.20031i
\(157\) 4.26691 4.26691i 0.340537 0.340537i −0.516032 0.856569i \(-0.672592\pi\)
0.856569 + 0.516032i \(0.172592\pi\)
\(158\) 18.9026 1.50381
\(159\) 3.14435i 0.249363i
\(160\) 1.91187 + 3.82752i 0.151146 + 0.302592i
\(161\) −0.461728 + 0.461728i −0.0363893 + 0.0363893i
\(162\) 2.48675i 0.195377i
\(163\) 14.7233i 1.15322i 0.817019 + 0.576611i \(0.195625\pi\)
−0.817019 + 0.576611i \(0.804375\pi\)
\(164\) 6.33743 6.33743i 0.494870 0.494870i
\(165\) −5.99228 11.9964i −0.466499 0.933921i
\(166\) 6.76306i 0.524915i
\(167\) 6.08556 0.470915 0.235457 0.971885i \(-0.424341\pi\)
0.235457 + 0.971885i \(0.424341\pi\)
\(168\) −0.930911 + 0.930911i −0.0718213 + 0.0718213i
\(169\) 2.87029 + 12.6792i 0.220791 + 0.975321i
\(170\) 3.41572 10.2337i 0.261974 0.784886i
\(171\) 3.91462 3.91462i 0.299359 0.299359i
\(172\) −16.2585 + 16.2585i −1.23970 + 1.23970i
\(173\) −11.3322 + 11.3322i −0.861570 + 0.861570i −0.991520 0.129951i \(-0.958518\pi\)
0.129951 + 0.991520i \(0.458518\pi\)
\(174\) 10.1458 + 10.1458i 0.769151 + 0.769151i
\(175\) −0.728011 + 0.969082i −0.0550324 + 0.0732557i
\(176\) −21.7847 21.7847i −1.64208 1.64208i
\(177\) −7.46482 −0.561090
\(178\) −2.20604 2.20604i −0.165350 0.165350i
\(179\) 3.99730 0.298772 0.149386 0.988779i \(-0.452270\pi\)
0.149386 + 0.988779i \(0.452270\pi\)
\(180\) 4.18059 + 8.36946i 0.311603 + 0.623823i
\(181\) 16.5433i 1.22966i −0.788661 0.614828i \(-0.789226\pi\)
0.788661 0.614828i \(-0.210774\pi\)
\(182\) −1.35667 + 1.69812i −0.100563 + 0.125873i
\(183\) −7.24688 7.24688i −0.535705 0.535705i
\(184\) 10.3441 + 10.3441i 0.762577 + 0.762577i
\(185\) −6.63894 + 3.31618i −0.488104 + 0.243811i
\(186\) 20.0250i 1.46830i
\(187\) 11.6355i 0.850876i
\(188\) 7.04768 0.514005
\(189\) −0.171413 + 0.171413i −0.0124685 + 0.0124685i
\(190\) 9.74624 29.2002i 0.707066 2.11840i
\(191\) 13.0425 0.943721 0.471860 0.881673i \(-0.343583\pi\)
0.471860 + 0.881673i \(0.343583\pi\)
\(192\) −3.90067 3.90067i −0.281507 0.281507i
\(193\) 9.28317i 0.668217i −0.942535 0.334109i \(-0.891565\pi\)
0.942535 0.334109i \(-0.108435\pi\)
\(194\) 11.8374 0.849879
\(195\) 4.38159 + 6.76769i 0.313772 + 0.484645i
\(196\) 29.0415 2.07439
\(197\) 12.9124i 0.919967i 0.887927 + 0.459983i \(0.152145\pi\)
−0.887927 + 0.459983i \(0.847855\pi\)
\(198\) −10.5451 10.5451i −0.749411 0.749411i
\(199\) 2.35534 0.166966 0.0834830 0.996509i \(-0.473396\pi\)
0.0834830 + 0.996509i \(0.473396\pi\)
\(200\) 21.7103 + 16.3096i 1.53515 + 1.15326i
\(201\) −10.8248 + 10.8248i −0.763523 + 0.763523i
\(202\) 28.0598 1.97428
\(203\) 1.39871i 0.0981703i
\(204\) 8.11768i 0.568352i
\(205\) 1.51652 4.54355i 0.105918 0.317336i
\(206\) −24.5137 24.5137i −1.70795 1.70795i
\(207\) 1.90471 + 1.90471i 0.132386 + 0.132386i
\(208\) 14.4713 + 11.5615i 1.00340 + 0.801644i
\(209\) 33.2003i 2.29651i
\(210\) −0.426766 + 1.27861i −0.0294497 + 0.0882326i
\(211\) −21.9810 −1.51323 −0.756617 0.653858i \(-0.773149\pi\)
−0.756617 + 0.653858i \(0.773149\pi\)
\(212\) 9.30245 + 9.30245i 0.638895 + 0.638895i
\(213\) 0.110373 0.00756264
\(214\) 9.95315 + 9.95315i 0.680383 + 0.680383i
\(215\) −3.89057 + 11.6563i −0.265335 + 0.794955i
\(216\) 3.84016 + 3.84016i 0.261290 + 0.261290i
\(217\) 1.38033 1.38033i 0.0937032 0.0937032i
\(218\) −11.4279 + 11.4279i −0.773993 + 0.773993i
\(219\) −1.02815 + 1.02815i −0.0694761 + 0.0694761i
\(220\) −53.2190 17.7631i −3.58802 1.19759i
\(221\) −0.777089 6.95226i −0.0522727 0.467660i
\(222\) −5.83578 + 5.83578i −0.391672 + 0.391672i
\(223\) −8.72020 −0.583948 −0.291974 0.956426i \(-0.594312\pi\)
−0.291974 + 0.956426i \(0.594312\pi\)
\(224\) 0.463831i 0.0309910i
\(225\) 3.99762 + 3.00317i 0.266508 + 0.200211i
\(226\) 30.6558 30.6558i 2.03919 2.03919i
\(227\) 18.3913i 1.22068i 0.792141 + 0.610338i \(0.208966\pi\)
−0.792141 + 0.610338i \(0.791034\pi\)
\(228\) 23.1626i 1.53398i
\(229\) 16.7151 16.7151i 1.10456 1.10456i 0.110712 0.993852i \(-0.464687\pi\)
0.993852 0.110712i \(-0.0353133\pi\)
\(230\) 14.2077 + 4.74214i 0.936827 + 0.312688i
\(231\) 1.45377i 0.0956508i
\(232\) 31.3353 2.05727
\(233\) 0.600932 0.600932i 0.0393684 0.0393684i −0.687149 0.726517i \(-0.741138\pi\)
0.726517 + 0.687149i \(0.241138\pi\)
\(234\) 7.00501 + 5.59648i 0.457932 + 0.365853i
\(235\) 3.36962 1.68314i 0.219809 0.109796i
\(236\) −22.0844 + 22.0844i −1.43757 + 1.43757i
\(237\) 5.37497 5.37497i 0.349141 0.349141i
\(238\) 0.827038 0.827038i 0.0536089 0.0536089i
\(239\) −8.71291 8.71291i −0.563591 0.563591i 0.366735 0.930326i \(-0.380476\pi\)
−0.930326 + 0.366735i \(0.880476\pi\)
\(240\) 10.8963 + 3.63689i 0.703352 + 0.234760i
\(241\) −6.37606 6.37606i −0.410718 0.410718i 0.471271 0.881989i \(-0.343796\pi\)
−0.881989 + 0.471271i \(0.843796\pi\)
\(242\) 62.0801 3.99066
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) −42.8793 −2.74506
\(245\) 13.8852 6.93574i 0.887094 0.443108i
\(246\) 5.32694i 0.339633i
\(247\) −2.21730 19.8372i −0.141084 1.26221i
\(248\) −30.9236 30.9236i −1.96365 1.96365i
\(249\) −1.92308 1.92308i −0.121870 0.121870i
\(250\) 27.3483 + 5.00598i 1.72966 + 0.316606i
\(251\) 8.17534i 0.516023i −0.966142 0.258011i \(-0.916933\pi\)
0.966142 0.258011i \(-0.0830672\pi\)
\(252\) 1.01424i 0.0638910i
\(253\) −16.1540 −1.01559
\(254\) −9.54274 + 9.54274i −0.598765 + 0.598765i
\(255\) −1.93868 3.88120i −0.121405 0.243050i
\(256\) −32.5962 −2.03726
\(257\) −9.97233 9.97233i −0.622057 0.622057i 0.324000 0.946057i \(-0.394972\pi\)
−0.946057 + 0.324000i \(0.894972\pi\)
\(258\) 13.6661i 0.850813i
\(259\) −0.804528 −0.0499909
\(260\) 32.9848 + 7.05920i 2.04563 + 0.437793i
\(261\) 5.76992 0.357149
\(262\) 12.5317i 0.774212i
\(263\) 16.5535 + 16.5535i 1.02073 + 1.02073i 0.999780 + 0.0209533i \(0.00667013\pi\)
0.0209533 + 0.999780i \(0.493330\pi\)
\(264\) −32.5687 −2.00447
\(265\) 6.66929 + 2.22603i 0.409691 + 0.136744i
\(266\) 2.35983 2.35983i 0.144690 0.144690i
\(267\) −1.25458 −0.0767789
\(268\) 64.0497i 3.91246i
\(269\) 16.7169i 1.01925i 0.860397 + 0.509625i \(0.170216\pi\)
−0.860397 + 0.509625i \(0.829784\pi\)
\(270\) 5.27449 + 1.76048i 0.320995 + 0.107140i
\(271\) 12.5904 + 12.5904i 0.764814 + 0.764814i 0.977188 0.212374i \(-0.0681195\pi\)
−0.212374 + 0.977188i \(0.568120\pi\)
\(272\) −7.04799 7.04799i −0.427347 0.427347i
\(273\) 0.0970909 + 0.868628i 0.00587621 + 0.0525718i
\(274\) 33.3101i 2.01234i
\(275\) −29.6871 + 4.21704i −1.79020 + 0.254297i
\(276\) 11.2700 0.678375
\(277\) −17.8939 17.8939i −1.07514 1.07514i −0.996937 0.0782056i \(-0.975081\pi\)
−0.0782056 0.996937i \(-0.524919\pi\)
\(278\) −15.0147 −0.900520
\(279\) −5.69411 5.69411i −0.340898 0.340898i
\(280\) 1.31546 + 2.63353i 0.0786140 + 0.157384i
\(281\) −2.64673 2.64673i −0.157891 0.157891i 0.623741 0.781631i \(-0.285612\pi\)
−0.781631 + 0.623741i \(0.785612\pi\)
\(282\) 2.96197 2.96197i 0.176383 0.176383i
\(283\) 2.64156 2.64156i 0.157025 0.157025i −0.624222 0.781247i \(-0.714584\pi\)
0.781247 + 0.624222i \(0.214584\pi\)
\(284\) 0.326535 0.326535i 0.0193763 0.0193763i
\(285\) −5.53173 11.0744i −0.327671 0.655992i
\(286\) −53.4371 + 5.97293i −3.15980 + 0.353187i
\(287\) 0.367189 0.367189i 0.0216745 0.0216745i
\(288\) 1.91338 0.112747
\(289\) 13.2356i 0.778562i
\(290\) 28.7023 14.3370i 1.68546 0.841895i
\(291\) 3.36598 3.36598i 0.197317 0.197317i
\(292\) 6.08351i 0.356010i
\(293\) 8.87232i 0.518327i −0.965834 0.259163i \(-0.916553\pi\)
0.965834 0.259163i \(-0.0834468\pi\)
\(294\) 12.2054 12.2054i 0.711835 0.711835i
\(295\) −5.28469 + 15.8332i −0.307687 + 0.921844i
\(296\) 18.0238i 1.04761i
\(297\) −5.99703 −0.347983
\(298\) −36.7908 + 36.7908i −2.13124 + 2.13124i
\(299\) 9.65203 1.07885i 0.558191 0.0623918i
\(300\) 20.7116 2.94207i 1.19578 0.169860i
\(301\) −0.942012 + 0.942012i −0.0542966 + 0.0542966i
\(302\) −36.5034 + 36.5034i −2.10054 + 2.10054i
\(303\) 7.97881 7.97881i 0.458370 0.458370i
\(304\) −20.1104 20.1104i −1.15341 1.15341i
\(305\) −20.5013 + 10.2405i −1.17390 + 0.586370i
\(306\) −3.41167 3.41167i −0.195032 0.195032i
\(307\) 25.1833 1.43729 0.718644 0.695378i \(-0.244763\pi\)
0.718644 + 0.695378i \(0.244763\pi\)
\(308\) −4.30092 4.30092i −0.245068 0.245068i
\(309\) −13.9410 −0.793074
\(310\) −42.4738 14.1766i −2.41235 0.805178i
\(311\) 7.05837i 0.400243i −0.979771 0.200122i \(-0.935866\pi\)
0.979771 0.200122i \(-0.0641337\pi\)
\(312\) 19.4599 2.17513i 1.10170 0.123142i
\(313\) −3.85568 3.85568i −0.217936 0.217936i 0.589692 0.807628i \(-0.299249\pi\)
−0.807628 + 0.589692i \(0.799249\pi\)
\(314\) −10.6107 10.6107i −0.598798 0.598798i
\(315\) 0.242222 + 0.484925i 0.0136477 + 0.0273224i
\(316\) 31.8033i 1.78908i
\(317\) 13.9177i 0.781695i −0.920456 0.390847i \(-0.872182\pi\)
0.920456 0.390847i \(-0.127818\pi\)
\(318\) 7.81920 0.438479
\(319\) −24.4676 + 24.4676i −1.36992 + 1.36992i
\(320\) −11.0350 + 5.51202i −0.616873 + 0.308131i
\(321\) 5.66036 0.315931
\(322\) 1.14820 + 1.14820i 0.0639867 + 0.0639867i
\(323\) 10.7413i 0.597660i
\(324\) 4.18390 0.232439
\(325\) 17.4565 4.50236i 0.968311 0.249746i
\(326\) 36.6132 2.02782
\(327\) 6.49904i 0.359398i
\(328\) −8.22614 8.22614i −0.454213 0.454213i
\(329\) 0.408341 0.0225126
\(330\) −29.8321 + 14.9013i −1.64220 + 0.820288i
\(331\) −6.88277 + 6.88277i −0.378311 + 0.378311i −0.870493 0.492181i \(-0.836200\pi\)
0.492181 + 0.870493i \(0.336200\pi\)
\(332\) −11.3787 −0.624489
\(333\) 3.31881i 0.181870i
\(334\) 15.1332i 0.828054i
\(335\) 15.2965 + 30.6232i 0.835736 + 1.67313i
\(336\) 0.880589 + 0.880589i 0.0480400 + 0.0480400i
\(337\) 0.812119 + 0.812119i 0.0442389 + 0.0442389i 0.728880 0.684641i \(-0.240041\pi\)
−0.684641 + 0.728880i \(0.740041\pi\)
\(338\) 31.5299 7.13768i 1.71500 0.388238i
\(339\) 17.4340i 0.946884i
\(340\) −17.2179 5.74689i −0.933774 0.311669i
\(341\) 48.2922 2.61517
\(342\) −9.73467 9.73467i −0.526391 0.526391i
\(343\) 3.37956 0.182479
\(344\) 21.1039 + 21.1039i 1.13785 + 1.13785i
\(345\) 5.38839 2.69153i 0.290101 0.144907i
\(346\) 28.1803 + 28.1803i 1.51498 + 1.51498i
\(347\) 25.2146 25.2146i 1.35359 1.35359i 0.471983 0.881608i \(-0.343538\pi\)
0.881608 0.471983i \(-0.156462\pi\)
\(348\) 17.0701 17.0701i 0.915054 0.915054i
\(349\) 4.85536 4.85536i 0.259902 0.259902i −0.565112 0.825014i \(-0.691167\pi\)
0.825014 + 0.565112i \(0.191167\pi\)
\(350\) 2.40986 + 1.81038i 0.128812 + 0.0967688i
\(351\) 3.58324 0.400516i 0.191259 0.0213780i
\(352\) −8.11377 + 8.11377i −0.432465 + 0.432465i
\(353\) 25.9459 1.38096 0.690480 0.723351i \(-0.257399\pi\)
0.690480 + 0.723351i \(0.257399\pi\)
\(354\) 18.5631i 0.986618i
\(355\) 0.0781383 0.234106i 0.00414715 0.0124250i
\(356\) −3.71162 + 3.71162i −0.196716 + 0.196716i
\(357\) 0.470337i 0.0248929i
\(358\) 9.94027i 0.525359i
\(359\) −2.31461 + 2.31461i −0.122160 + 0.122160i −0.765544 0.643384i \(-0.777530\pi\)
0.643384 + 0.765544i \(0.277530\pi\)
\(360\) 10.8638 5.42651i 0.572571 0.286002i
\(361\) 11.6486i 0.613083i
\(362\) −41.1390 −2.16222
\(363\) 17.6525 17.6525i 0.926515 0.926515i
\(364\) 2.85705 + 2.28257i 0.149750 + 0.119639i
\(365\) 1.45287 + 2.90863i 0.0760470 + 0.152245i
\(366\) −18.0211 + 18.0211i −0.941980 + 0.941980i
\(367\) 10.2557 10.2557i 0.535346 0.535346i −0.386813 0.922158i \(-0.626424\pi\)
0.922158 + 0.386813i \(0.126424\pi\)
\(368\) 9.78493 9.78493i 0.510075 0.510075i
\(369\) −1.51472 1.51472i −0.0788531 0.0788531i
\(370\) 8.24651 + 16.5094i 0.428715 + 0.858280i
\(371\) 0.538982 + 0.538982i 0.0279826 + 0.0279826i
\(372\) −33.6917 −1.74683
\(373\) 5.33438 + 5.33438i 0.276204 + 0.276204i 0.831592 0.555388i \(-0.187430\pi\)
−0.555388 + 0.831592i \(0.687430\pi\)
\(374\) 28.9346 1.49618
\(375\) 9.19994 6.35304i 0.475083 0.328069i
\(376\) 9.14806i 0.471775i
\(377\) 12.9853 16.2535i 0.668779 0.837098i
\(378\) 0.426260 + 0.426260i 0.0219245 + 0.0219245i
\(379\) 4.89160 + 4.89160i 0.251265 + 0.251265i 0.821489 0.570224i \(-0.193144\pi\)
−0.570224 + 0.821489i \(0.693144\pi\)
\(380\) −49.1287 16.3979i −2.52025 0.841193i
\(381\) 5.42696i 0.278032i
\(382\) 32.4333i 1.65943i
\(383\) 0.331496 0.0169386 0.00846932 0.999964i \(-0.497304\pi\)
0.00846932 + 0.999964i \(0.497304\pi\)
\(384\) −12.4059 + 12.4059i −0.633086 + 0.633086i
\(385\) −3.08350 1.02919i −0.157150 0.0524523i
\(386\) −23.0849 −1.17499
\(387\) 3.88596 + 3.88596i 0.197534 + 0.197534i
\(388\) 19.9163i 1.01110i
\(389\) 6.77907 0.343713 0.171856 0.985122i \(-0.445024\pi\)
0.171856 + 0.985122i \(0.445024\pi\)
\(390\) 16.8295 10.8959i 0.852196 0.551735i
\(391\) −5.22629 −0.264305
\(392\) 37.6965i 1.90396i
\(393\) 3.56340 + 3.56340i 0.179750 + 0.179750i
\(394\) 32.1097 1.61766
\(395\) −7.59533 15.2057i −0.382162 0.765082i
\(396\) −17.7420 + 17.7420i −0.891570 + 0.891570i
\(397\) 25.7273 1.29121 0.645607 0.763670i \(-0.276604\pi\)
0.645607 + 0.763670i \(0.276604\pi\)
\(398\) 5.85714i 0.293592i
\(399\) 1.34203i 0.0671857i
\(400\) 15.4280 20.5367i 0.771399 1.02684i
\(401\) 7.72622 + 7.72622i 0.385829 + 0.385829i 0.873197 0.487368i \(-0.162043\pi\)
−0.487368 + 0.873197i \(0.662043\pi\)
\(402\) 26.9185 + 26.9185i 1.34258 + 1.34258i
\(403\) −28.8547 + 3.22523i −1.43735 + 0.160660i
\(404\) 47.2101i 2.34879i
\(405\) 2.00040 0.999208i 0.0994005 0.0496510i
\(406\) 3.47824 0.172622
\(407\) −14.0736 14.0736i −0.697601 0.697601i
\(408\) −10.5370 −0.521657
\(409\) 7.15874 + 7.15874i 0.353977 + 0.353977i 0.861587 0.507610i \(-0.169471\pi\)
−0.507610 + 0.861587i \(0.669471\pi\)
\(410\) −11.2987 3.77119i −0.558001 0.186246i
\(411\) 9.47174 + 9.47174i 0.467207 + 0.467207i
\(412\) −41.2439 + 41.2439i −2.03194 + 2.03194i
\(413\) −1.27957 + 1.27957i −0.0629634 + 0.0629634i
\(414\) 4.73652 4.73652i 0.232787 0.232787i
\(415\) −5.44036 + 2.71749i −0.267057 + 0.133396i
\(416\) 4.30611 5.38988i 0.211124 0.264260i
\(417\) −4.26942 + 4.26942i −0.209075 + 0.209075i
\(418\) 82.5606 4.03817
\(419\) 23.1087i 1.12894i 0.825455 + 0.564468i \(0.190919\pi\)
−0.825455 + 0.564468i \(0.809081\pi\)
\(420\) 2.15124 + 0.718027i 0.104970 + 0.0350361i
\(421\) −0.323390 + 0.323390i −0.0157611 + 0.0157611i −0.714943 0.699182i \(-0.753548\pi\)
0.699182 + 0.714943i \(0.253548\pi\)
\(422\) 54.6612i 2.66086i
\(423\) 1.68447i 0.0819019i
\(424\) 12.0748 12.0748i 0.586405 0.586405i
\(425\) −9.60467 + 1.36434i −0.465895 + 0.0661800i
\(426\) 0.274470i 0.0132981i
\(427\) −2.48442 −0.120229
\(428\) 16.7460 16.7460i 0.809448 0.809448i
\(429\) −13.4965 + 16.8933i −0.651615 + 0.815615i
\(430\) 28.9863 + 9.67486i 1.39784 + 0.466563i
\(431\) 1.67187 1.67187i 0.0805312 0.0805312i −0.665694 0.746225i \(-0.731864\pi\)
0.746225 + 0.665694i \(0.231864\pi\)
\(432\) 3.63258 3.63258i 0.174772 0.174772i
\(433\) 10.8483 10.8483i 0.521337 0.521337i −0.396638 0.917975i \(-0.629823\pi\)
0.917975 + 0.396638i \(0.129823\pi\)
\(434\) −3.43254 3.43254i −0.164767 0.164767i
\(435\) 4.08479 12.2382i 0.195851 0.586778i
\(436\) 19.2272 + 19.2272i 0.920815 + 0.920815i
\(437\) −14.9124 −0.713358
\(438\) 2.55675 + 2.55675i 0.122166 + 0.122166i
\(439\) −20.2491 −0.966437 −0.483219 0.875500i \(-0.660532\pi\)
−0.483219 + 0.875500i \(0.660532\pi\)
\(440\) −23.0569 + 69.0796i −1.09920 + 3.29324i
\(441\) 6.94124i 0.330535i
\(442\) −17.2885 + 1.93242i −0.822330 + 0.0919159i
\(443\) −13.2900 13.2900i −0.631425 0.631425i 0.317000 0.948426i \(-0.397324\pi\)
−0.948426 + 0.317000i \(0.897324\pi\)
\(444\) 9.81859 + 9.81859i 0.465970 + 0.465970i
\(445\) −0.888174 + 2.66101i −0.0421035 + 0.126144i
\(446\) 21.6849i 1.02681i
\(447\) 20.9230i 0.989622i
\(448\) −1.33725 −0.0631792
\(449\) 23.3059 23.3059i 1.09988 1.09988i 0.105451 0.994425i \(-0.466372\pi\)
0.994425 0.105451i \(-0.0336285\pi\)
\(450\) 7.46811 9.94107i 0.352050 0.468627i
\(451\) 12.8464 0.604916
\(452\) −51.5778 51.5778i −2.42602 2.42602i
\(453\) 20.7595i 0.975367i
\(454\) 45.7346 2.14643
\(455\) 1.91113 + 0.409009i 0.0895952 + 0.0191746i
\(456\) −30.0656 −1.40795
\(457\) 15.5860i 0.729085i 0.931187 + 0.364542i \(0.118775\pi\)
−0.931187 + 0.364542i \(0.881225\pi\)
\(458\) −41.5662 41.5662i −1.94226 1.94226i
\(459\) −1.94022 −0.0905616
\(460\) 7.97857 23.9042i 0.372003 1.11454i
\(461\) 20.8994 20.8994i 0.973381 0.973381i −0.0262742 0.999655i \(-0.508364\pi\)
0.999655 + 0.0262742i \(0.00836429\pi\)
\(462\) −3.61515 −0.168192
\(463\) 8.32123i 0.386720i −0.981128 0.193360i \(-0.938061\pi\)
0.981128 0.193360i \(-0.0619386\pi\)
\(464\) 29.6414i 1.37607i
\(465\) −16.1086 + 8.04631i −0.747017 + 0.373139i
\(466\) −1.49436 1.49436i −0.0692251 0.0692251i
\(467\) −21.9600 21.9600i −1.01619 1.01619i −0.999867 0.0163185i \(-0.994805\pi\)
−0.0163185 0.999867i \(-0.505195\pi\)
\(468\) 9.41597 11.7858i 0.435253 0.544799i
\(469\) 3.71102i 0.171359i
\(470\) −4.18554 8.37937i −0.193065 0.386512i
\(471\) −6.03433 −0.278047
\(472\) 28.6661 + 28.6661i 1.31947 + 1.31947i
\(473\) −32.9571 −1.51537
\(474\) −13.3662 13.3662i −0.613929 0.613929i
\(475\) −27.4055 + 3.89293i −1.25745 + 0.178620i
\(476\) −1.39148 1.39148i −0.0637782 0.0637782i
\(477\) 2.22339 2.22339i 0.101802 0.101802i
\(478\) −21.6668 + 21.6668i −0.991015 + 0.991015i
\(479\) 12.9813 12.9813i 0.593132 0.593132i −0.345344 0.938476i \(-0.612238\pi\)
0.938476 + 0.345344i \(0.112238\pi\)
\(480\) 1.35457 4.05836i 0.0618274 0.185238i
\(481\) 9.34889 + 7.46907i 0.426273 + 0.340560i
\(482\) −15.8556 + 15.8556i −0.722204 + 0.722204i
\(483\) 0.652982 0.0297117
\(484\) 104.449i 4.74766i
\(485\) −4.75644 9.52231i −0.215979 0.432386i
\(486\) 1.75839 1.75839i 0.0797624 0.0797624i
\(487\) 12.6406i 0.572801i −0.958110 0.286400i \(-0.907541\pi\)
0.958110 0.286400i \(-0.0924587\pi\)
\(488\) 55.6584i 2.51954i
\(489\) 10.4110 10.4110i 0.470801 0.470801i
\(490\) −17.2474 34.5290i −0.779159 1.55986i
\(491\) 27.8197i 1.25549i −0.778421 0.627743i \(-0.783979\pi\)
0.778421 0.627743i \(-0.216021\pi\)
\(492\) −8.96248 −0.404060
\(493\) −7.91599 + 7.91599i −0.356518 + 0.356518i
\(494\) −49.3301 + 5.51387i −2.21947 + 0.248081i
\(495\) −4.24558 + 12.7199i −0.190825 + 0.571719i
\(496\) −29.2520 + 29.2520i −1.31345 + 1.31345i
\(497\) 0.0189194 0.0189194i 0.000848650 0.000848650i
\(498\) −4.78221 + 4.78221i −0.214296 + 0.214296i
\(499\) 0.152074 + 0.152074i 0.00680776 + 0.00680776i 0.710502 0.703695i \(-0.248468\pi\)
−0.703695 + 0.710502i \(0.748468\pi\)
\(500\) 8.42246 46.0130i 0.376664 2.05776i
\(501\) −4.30314 4.30314i −0.192250 0.192250i
\(502\) −20.3300 −0.907372
\(503\) −4.59193 4.59193i −0.204744 0.204744i 0.597285 0.802029i \(-0.296246\pi\)
−0.802029 + 0.597285i \(0.796246\pi\)
\(504\) 1.31651 0.0586419
\(505\) −11.2748 22.5719i −0.501722 1.00444i
\(506\) 40.1708i 1.78581i
\(507\) 6.93593 10.9951i 0.308035 0.488311i
\(508\) 16.0555 + 16.0555i 0.712347 + 0.712347i
\(509\) −11.1303 11.1303i −0.493341 0.493341i 0.416016 0.909357i \(-0.363426\pi\)
−0.909357 + 0.416016i \(0.863426\pi\)
\(510\) −9.65157 + 4.82101i −0.427379 + 0.213478i
\(511\) 0.352477i 0.0155927i
\(512\) 45.9692i 2.03157i
\(513\) −5.53612 −0.244425
\(514\) −24.7986 + 24.7986i −1.09382 + 1.09382i
\(515\) −9.86947 + 29.5694i −0.434901 + 1.30298i
\(516\) 22.9929 1.01221
\(517\) 7.14308 + 7.14308i 0.314152 + 0.314152i
\(518\) 2.00066i 0.0879038i
\(519\) 16.0261 0.703469
\(520\) 9.16302 42.8151i 0.401825 1.87756i
\(521\) −13.6076 −0.596161 −0.298080 0.954541i \(-0.596346\pi\)
−0.298080 + 0.954541i \(0.596346\pi\)
\(522\) 14.3483i 0.628009i
\(523\) −12.9591 12.9591i −0.566664 0.566664i 0.364528 0.931192i \(-0.381230\pi\)
−0.931192 + 0.364528i \(0.881230\pi\)
\(524\) 21.0844 0.921076
\(525\) 1.20003 0.170463i 0.0523734 0.00743960i
\(526\) 41.1644 41.1644i 1.79485 1.79485i
\(527\) 15.6240 0.680591
\(528\) 30.8082i 1.34075i
\(529\) 15.7442i 0.684530i
\(530\) 5.53558 16.5848i 0.240450 0.720399i
\(531\) 5.27843 + 5.27843i 0.229064 + 0.229064i
\(532\) −3.97036 3.97036i −0.172137 0.172137i
\(533\) −7.67577 + 0.857959i −0.332475 + 0.0371623i
\(534\) 3.11981i 0.135008i
\(535\) 4.00723 12.0059i 0.173248 0.519058i
\(536\) 83.1381 3.59102
\(537\) −2.82652 2.82652i −0.121973 0.121973i
\(538\) 41.5708 1.79224
\(539\) 29.4346 + 29.4346i 1.26784 + 1.26784i
\(540\) 2.96198 8.87423i 0.127463 0.381886i
\(541\) −24.0220 24.0220i −1.03279 1.03279i −0.999444 0.0333420i \(-0.989385\pi\)
−0.0333420 0.999444i \(-0.510615\pi\)
\(542\) 31.3092 31.3092i 1.34485 1.34485i
\(543\) −11.6979 + 11.6979i −0.502005 + 0.502005i
\(544\) −2.62505 + 2.62505i −0.112548 + 0.112548i
\(545\) 13.7847 + 4.60097i 0.590473 + 0.197084i
\(546\) 2.16006 0.241440i 0.0924419 0.0103327i
\(547\) −18.6456 + 18.6456i −0.797229 + 0.797229i −0.982658 0.185428i \(-0.940633\pi\)
0.185428 + 0.982658i \(0.440633\pi\)
\(548\) 56.0437 2.39407
\(549\) 10.2486i 0.437401i
\(550\) 10.4867 + 73.8244i 0.447154 + 3.14788i
\(551\) −22.5871 + 22.5871i −0.962241 + 0.962241i
\(552\) 14.6288i 0.622641i
\(553\) 1.84268i 0.0783586i
\(554\) −44.4977 + 44.4977i −1.89053 + 1.89053i
\(555\) 7.03933 + 2.34954i 0.298803 + 0.0997325i
\(556\) 25.2619i 1.07134i
\(557\) −1.32872 −0.0562996 −0.0281498 0.999604i \(-0.508962\pi\)
−0.0281498 + 0.999604i \(0.508962\pi\)
\(558\) −14.1598 + 14.1598i −0.599432 + 0.599432i
\(559\) 19.6919 2.20106i 0.832880 0.0930951i
\(560\) 2.49117 1.24435i 0.105271 0.0525836i
\(561\) 8.22758 8.22758i 0.347369 0.347369i
\(562\) −6.58175 + 6.58175i −0.277634 + 0.277634i
\(563\) −15.2469 + 15.2469i −0.642582 + 0.642582i −0.951190 0.308607i \(-0.900137\pi\)
0.308607 + 0.951190i \(0.400137\pi\)
\(564\) −4.98346 4.98346i −0.209842 0.209842i
\(565\) −36.9782 12.3423i −1.55568 0.519246i
\(566\) −6.56889 6.56889i −0.276111 0.276111i
\(567\) 0.242414 0.0101804
\(568\) −0.423851 0.423851i −0.0177844 0.0177844i
\(569\) 31.7042 1.32911 0.664555 0.747239i \(-0.268621\pi\)
0.664555 + 0.747239i \(0.268621\pi\)
\(570\) −27.5393 + 13.7560i −1.15349 + 0.576176i
\(571\) 3.77184i 0.157847i −0.996881 0.0789233i \(-0.974852\pi\)
0.996881 0.0789233i \(-0.0251482\pi\)
\(572\) 10.0493 + 89.9070i 0.420184 + 3.75920i
\(573\) −9.22243 9.22243i −0.385272 0.385272i
\(574\) −0.913107 0.913107i −0.0381123 0.0381123i
\(575\) −1.89415 13.3344i −0.0789914 0.556085i
\(576\) 5.51638i 0.229849i
\(577\) 38.7401i 1.61277i 0.591391 + 0.806385i \(0.298579\pi\)
−0.591391 + 0.806385i \(0.701421\pi\)
\(578\) −32.9135 −1.36902
\(579\) −6.56419 + 6.56419i −0.272799 + 0.272799i
\(580\) −24.1217 48.2911i −1.00160 2.00518i
\(581\) −0.659281 −0.0273516
\(582\) −8.37033 8.37033i −0.346962 0.346962i
\(583\) 18.8568i 0.780967i
\(584\) 7.89654 0.326761
\(585\) 1.68723 7.88373i 0.0697584 0.325952i
\(586\) −22.0632 −0.911423
\(587\) 11.4947i 0.474438i −0.971456 0.237219i \(-0.923764\pi\)
0.971456 0.237219i \(-0.0762358\pi\)
\(588\) −20.5354 20.5354i −0.846866 0.846866i
\(589\) 44.5806 1.83691
\(590\) 39.3731 + 13.1417i 1.62097 + 0.541035i
\(591\) 9.13041 9.13041i 0.375575 0.375575i
\(592\) 17.0495 0.700731
\(593\) 23.5194i 0.965824i −0.875669 0.482912i \(-0.839579\pi\)
0.875669 0.482912i \(-0.160421\pi\)
\(594\) 14.9131i 0.611891i
\(595\) −0.997603 0.332973i −0.0408978 0.0136506i
\(596\) 61.8999 + 61.8999i 2.53552 + 2.53552i
\(597\) −1.66548 1.66548i −0.0681636 0.0681636i
\(598\) −2.68284 24.0021i −0.109709 0.981520i
\(599\) 15.0098i 0.613282i 0.951825 + 0.306641i \(0.0992051\pi\)
−0.951825 + 0.306641i \(0.900795\pi\)
\(600\) −3.81888 26.8842i −0.155905 1.09754i
\(601\) −9.20174 −0.375347 −0.187673 0.982231i \(-0.560095\pi\)
−0.187673 + 0.982231i \(0.560095\pi\)
\(602\) 2.34254 + 2.34254i 0.0954749 + 0.0954749i
\(603\) 15.3086 0.623414
\(604\) 61.4163 + 61.4163i 2.49900 + 2.49900i
\(605\) −24.9446 49.9386i −1.01414 2.03029i
\(606\) −19.8413 19.8413i −0.805996 0.805996i
\(607\) −1.90926 + 1.90926i −0.0774945 + 0.0774945i −0.744792 0.667297i \(-0.767451\pi\)
0.667297 + 0.744792i \(0.267451\pi\)
\(608\) −7.49017 + 7.49017i −0.303766 + 0.303766i
\(609\) 0.989038 0.989038i 0.0400779 0.0400779i
\(610\) 25.4656 + 50.9816i 1.03107 + 2.06418i
\(611\) −4.74506 3.79095i −0.191965 0.153365i
\(612\) −5.74007 + 5.74007i −0.232029 + 0.232029i
\(613\) −8.40716 −0.339562 −0.169781 0.985482i \(-0.554306\pi\)
−0.169781 + 0.985482i \(0.554306\pi\)
\(614\) 62.6245i 2.52732i
\(615\) −4.28512 + 2.14044i −0.172793 + 0.0863108i
\(616\) −5.58270 + 5.58270i −0.224933 + 0.224933i
\(617\) 5.02106i 0.202140i 0.994879 + 0.101070i \(0.0322267\pi\)
−0.994879 + 0.101070i \(0.967773\pi\)
\(618\) 34.6677i 1.39454i
\(619\) −28.7489 + 28.7489i −1.15552 + 1.15552i −0.170089 + 0.985429i \(0.554405\pi\)
−0.985429 + 0.170089i \(0.945595\pi\)
\(620\) −23.8519 + 71.4614i −0.957915 + 2.86996i
\(621\) 2.69366i 0.108093i
\(622\) −17.5524 −0.703786
\(623\) −0.215051 + 0.215051i −0.00861582 + 0.00861582i
\(624\) −2.05755 18.4079i −0.0823678 0.736907i
\(625\) −6.96198 24.0111i −0.278479 0.960442i
\(626\) −9.58810 + 9.58810i −0.383218 + 0.383218i
\(627\) 23.4761 23.4761i 0.937546 0.937546i
\(628\) −17.8524 + 17.8524i −0.712386 + 0.712386i
\(629\) −4.55322 4.55322i −0.181549 0.181549i
\(630\) 1.20588 0.602346i 0.0480436 0.0239980i
\(631\) 21.7388 + 21.7388i 0.865407 + 0.865407i 0.991960 0.126553i \(-0.0403913\pi\)
−0.126553 + 0.991960i \(0.540391\pi\)
\(632\) −41.2815 −1.64209
\(633\) 15.5429 + 15.5429i 0.617775 + 0.617775i
\(634\) −34.6097 −1.37453
\(635\) 11.5108 + 3.84200i 0.456793 + 0.152465i
\(636\) 13.1557i 0.521656i
\(637\) −19.5530 15.6214i −0.774719 0.618943i
\(638\) 60.8446 + 60.8446i 2.40886 + 2.40886i
\(639\) −0.0780456 0.0780456i −0.00308744 0.00308744i
\(640\) 17.5307 + 35.0962i 0.692962 + 1.38730i
\(641\) 8.55187i 0.337779i 0.985635 + 0.168889i \(0.0540181\pi\)
−0.985635 + 0.168889i \(0.945982\pi\)
\(642\) 14.0759i 0.555531i
\(643\) −3.11521 −0.122852 −0.0614259 0.998112i \(-0.519565\pi\)
−0.0614259 + 0.998112i \(0.519565\pi\)
\(644\) 1.93183 1.93183i 0.0761246 0.0761246i
\(645\) 10.9933 5.49122i 0.432861 0.216217i
\(646\) 26.7108 1.05092
\(647\) 26.4560 + 26.4560i 1.04009 + 1.04009i 0.999162 + 0.0409311i \(0.0130324\pi\)
0.0409311 + 0.999162i \(0.486968\pi\)
\(648\) 5.43081i 0.213342i
\(649\) −44.7668 −1.75725
\(650\) −11.1962 43.4098i −0.439152 1.70267i
\(651\) −1.95209 −0.0765084
\(652\) 61.6010i 2.41248i
\(653\) −9.61272 9.61272i −0.376175 0.376175i 0.493545 0.869720i \(-0.335701\pi\)
−0.869720 + 0.493545i \(0.835701\pi\)
\(654\) 16.1615 0.631963
\(655\) 10.0808 5.03542i 0.393890 0.196750i
\(656\) −7.78146 + 7.78146i −0.303815 + 0.303815i
\(657\) 1.45403 0.0567270
\(658\) 1.01544i 0.0395860i
\(659\) 15.1490i 0.590122i −0.955478 0.295061i \(-0.904660\pi\)
0.955478 0.295061i \(-0.0953400\pi\)
\(660\) 25.0711 + 50.1919i 0.975892 + 1.95372i
\(661\) 18.9976 + 18.9976i 0.738920 + 0.738920i 0.972369 0.233449i \(-0.0750013\pi\)
−0.233449 + 0.972369i \(0.575001\pi\)
\(662\) 17.1157 + 17.1157i 0.665220 + 0.665220i
\(663\) −4.36651 + 5.46548i −0.169581 + 0.212262i
\(664\) 14.7699i 0.573182i
\(665\) −2.84651 0.950089i −0.110383 0.0368429i
\(666\) 8.25304 0.319799
\(667\) −10.9900 10.9900i −0.425534 0.425534i
\(668\) −25.4614 −0.985131
\(669\) 6.16611 + 6.16611i 0.238396 + 0.238396i
\(670\) 76.1522 38.0384i 2.94202 1.46955i
\(671\) −43.4597 43.4597i −1.67774 1.67774i
\(672\) 0.327978 0.327978i 0.0126520 0.0126520i
\(673\) 26.4650 26.4650i 1.02015 1.02015i 0.0203584 0.999793i \(-0.493519\pi\)
0.999793 0.0203584i \(-0.00648074\pi\)
\(674\) 2.01953 2.01953i 0.0777895 0.0777895i
\(675\) −0.703187 4.95031i −0.0270657 0.190537i
\(676\) −12.0090 53.0484i −0.461885 2.04032i
\(677\) −13.7029 + 13.7029i −0.526645 + 0.526645i −0.919570 0.392925i \(-0.871463\pi\)
0.392925 + 0.919570i \(0.371463\pi\)
\(678\) −43.3539 −1.66500
\(679\) 1.15394i 0.0442843i
\(680\) −7.45960 + 22.3493i −0.286063 + 0.857057i
\(681\) 13.0046 13.0046i 0.498339 0.498339i
\(682\) 120.090i 4.59850i
\(683\) 14.6506i 0.560588i −0.959914 0.280294i \(-0.909568\pi\)
0.959914 0.280294i \(-0.0904320\pi\)
\(684\) −16.3784 + 16.3784i −0.626244 + 0.626244i
\(685\) 26.7954 13.3845i 1.02380 0.511394i
\(686\) 8.40410i 0.320870i
\(687\) −23.6387 −0.901873
\(688\) 19.9631 19.9631i 0.761085 0.761085i
\(689\) −1.25936 11.2670i −0.0479779 0.429237i
\(690\) −6.69314 13.3995i −0.254804 0.510112i
\(691\) −34.7630 + 34.7630i −1.32245 + 1.32245i −0.410660 + 0.911789i \(0.634702\pi\)
−0.911789 + 0.410660i \(0.865298\pi\)
\(692\) 47.4128 47.4128i 1.80236 1.80236i
\(693\) −1.02797 + 1.02797i −0.0390493 + 0.0390493i
\(694\) −62.7023 62.7023i −2.38015 2.38015i
\(695\) 6.03310 + 12.0781i 0.228848 + 0.458150i
\(696\) −22.1574 22.1574i −0.839875 0.839875i
\(697\) 4.15621 0.157428
\(698\) −12.0740 12.0740i −0.457009 0.457009i
\(699\) −0.849846 −0.0321441
\(700\) 3.04593 4.05454i 0.115125 0.153247i
\(701\) 13.7058i 0.517659i 0.965923 + 0.258830i \(0.0833369\pi\)
−0.965923 + 0.258830i \(0.916663\pi\)
\(702\) −0.995982 8.91060i −0.0375909 0.336309i
\(703\) −12.9919 12.9919i −0.489999 0.489999i
\(704\) −23.3925 23.3925i −0.881636 0.881636i
\(705\) −3.57284 1.19252i −0.134561 0.0449128i
\(706\) 64.5208i 2.42827i
\(707\) 2.73534i 0.102873i
\(708\) 31.2321 1.17377
\(709\) −4.33781 + 4.33781i −0.162910 + 0.162910i −0.783854 0.620945i \(-0.786749\pi\)
0.620945 + 0.783854i \(0.286749\pi\)
\(710\) −0.582162 0.194310i −0.0218481 0.00729232i
\(711\) −7.60135 −0.285073
\(712\) 4.81778 + 4.81778i 0.180554 + 0.180554i
\(713\) 21.6912i 0.812342i
\(714\) −1.16961 −0.0437715
\(715\) 26.2765 + 40.5861i 0.982687 + 1.51783i
\(716\) −16.7243 −0.625017
\(717\) 12.3219i 0.460170i
\(718\) 5.75584 + 5.75584i 0.214806 + 0.214806i
\(719\) −27.4328 −1.02307 −0.511536 0.859262i \(-0.670923\pi\)
−0.511536 + 0.859262i \(0.670923\pi\)
\(720\) −5.13317 10.2765i −0.191302 0.382983i
\(721\) −2.38966 + 2.38966i −0.0889957 + 0.0889957i
\(722\) 28.9670 1.07804
\(723\) 9.01711i 0.335350i
\(724\) 69.2157i 2.57238i
\(725\) −23.0660 17.3280i −0.856648 0.643547i
\(726\) −43.8972 43.8972i −1.62918 1.62918i
\(727\) 27.8372 + 27.8372i 1.03243 + 1.03243i 0.999456 + 0.0329694i \(0.0104964\pi\)
0.0329694 + 0.999456i \(0.489504\pi\)
\(728\) 2.96283 3.70852i 0.109810 0.137447i
\(729\) 1.00000i 0.0370370i
\(730\) 7.23302 3.61293i 0.267706 0.133721i
\(731\) −10.6626 −0.394371
\(732\) 30.3202 + 30.3202i 1.12067 + 1.12067i
\(733\) 16.0974 0.594571 0.297285 0.954789i \(-0.403919\pi\)
0.297285 + 0.954789i \(0.403919\pi\)
\(734\) −25.5034 25.5034i −0.941349 0.941349i
\(735\) −14.7226 4.91402i −0.543053 0.181256i
\(736\) −3.64443 3.64443i −0.134335 0.134335i
\(737\) −64.9167 + 64.9167i −2.39124 + 2.39124i
\(738\) −3.76672 + 3.76672i −0.138655 + 0.138655i
\(739\) −9.67318 + 9.67318i −0.355834 + 0.355834i −0.862275 0.506441i \(-0.830961\pi\)
0.506441 + 0.862275i \(0.330961\pi\)
\(740\) 27.7767 13.8746i 1.02109 0.510040i
\(741\) −12.4592 + 15.5949i −0.457699 + 0.572893i
\(742\) 1.34031 1.34031i 0.0492044 0.0492044i
\(743\) −0.660092 −0.0242164 −0.0121082 0.999927i \(-0.503854\pi\)
−0.0121082 + 0.999927i \(0.503854\pi\)
\(744\) 43.7326i 1.60332i
\(745\) 44.3784 + 14.8123i 1.62590 + 0.542682i
\(746\) 13.2653 13.2653i 0.485675 0.485675i
\(747\) 2.71964i 0.0995066i
\(748\) 48.6820i 1.77999i
\(749\) 0.970259 0.970259i 0.0354525 0.0354525i
\(750\) −15.7984 22.8779i −0.576876 0.835383i
\(751\) 35.4818i 1.29475i −0.762171 0.647375i \(-0.775867\pi\)
0.762171 0.647375i \(-0.224133\pi\)
\(752\) −8.65354 −0.315562
\(753\) −5.78084 + 5.78084i −0.210665 + 0.210665i
\(754\) −40.4183 32.2912i −1.47195 1.17598i
\(755\) 44.0318 + 14.6966i 1.60248 + 0.534865i
\(756\) 0.717175 0.717175i 0.0260834 0.0260834i
\(757\) 10.5506 10.5506i 0.383469 0.383469i −0.488881 0.872350i \(-0.662595\pi\)
0.872350 + 0.488881i \(0.162595\pi\)
\(758\) 12.1642 12.1642i 0.441823 0.441823i
\(759\) 11.4226 + 11.4226i 0.414613 + 0.414613i
\(760\) −21.2848 + 63.7703i −0.772082 + 2.31319i
\(761\) 22.4488 + 22.4488i 0.813767 + 0.813767i 0.985196 0.171429i \(-0.0548386\pi\)
−0.171429 + 0.985196i \(0.554839\pi\)
\(762\) 13.4955 0.488890
\(763\) 1.11402 + 1.11402i 0.0403302 + 0.0403302i
\(764\) −54.5685 −1.97422
\(765\) −1.37357 + 4.11528i −0.0496616 + 0.148788i
\(766\) 0.824345i 0.0297848i
\(767\) 26.7482 2.98978i 0.965822 0.107955i
\(768\) 23.0490 + 23.0490i 0.831709 + 0.831709i
\(769\) −3.44776 3.44776i −0.124329 0.124329i 0.642204 0.766534i \(-0.278020\pi\)
−0.766534 + 0.642204i \(0.778020\pi\)
\(770\) −2.55933 + 7.66787i −0.0922319 + 0.276331i
\(771\) 14.1030i 0.507907i
\(772\) 38.8399i 1.39788i
\(773\) 25.5316 0.918307 0.459154 0.888357i \(-0.348153\pi\)
0.459154 + 0.888357i \(0.348153\pi\)
\(774\) 9.66338 9.66338i 0.347343 0.347343i
\(775\) 5.66255 + 39.8633i 0.203405 + 1.43193i
\(776\) −25.8518 −0.928026
\(777\) 0.568887 + 0.568887i 0.0204087 + 0.0204087i
\(778\) 16.8578i 0.604383i
\(779\) 11.8591 0.424896
\(780\) −18.3321 28.3154i −0.656396 1.01385i
\(781\) 0.661911 0.0236850
\(782\) 12.9965i 0.464752i
\(783\) −4.07995 4.07995i −0.145805 0.145805i
\(784\) −35.6588 −1.27353
\(785\) −4.27198 + 12.7991i −0.152474 + 0.456818i
\(786\) 8.86127 8.86127i 0.316071 0.316071i
\(787\) −15.5693 −0.554986 −0.277493 0.960728i \(-0.589504\pi\)
−0.277493 + 0.960728i \(0.589504\pi\)
\(788\) 54.0240i 1.92453i
\(789\) 23.4102i 0.833426i
\(790\) −37.8127 + 18.8876i −1.34532 + 0.671992i
\(791\) −2.98841 2.98841i −0.106256 0.106256i
\(792\) 23.0296 + 23.0296i 0.818320 + 0.818320i
\(793\) 28.8698 + 23.0648i 1.02520 + 0.819055i
\(794\) 63.9772i 2.27046i
\(795\) −3.14186 6.28995i −0.111430 0.223081i
\(796\) −9.85453 −0.349285
\(797\) −7.35388 7.35388i −0.260488 0.260488i 0.564764 0.825252i \(-0.308967\pi\)
−0.825252 + 0.564764i \(0.808967\pi\)
\(798\) −3.33730 −0.118139
\(799\) 2.31100 + 2.31100i 0.0817573 + 0.0817573i
\(800\) −7.64897 5.74620i −0.270432 0.203159i
\(801\) 0.887120 + 0.887120i 0.0313448 + 0.0313448i
\(802\) 19.2132 19.2132i 0.678440 0.678440i
\(803\) −6.16586 + 6.16586i −0.217588 + 0.217588i
\(804\) 45.2900 45.2900i 1.59725 1.59725i
\(805\) 0.462277 1.38500i 0.0162931 0.0488149i
\(806\) 8.02033 + 71.7543i 0.282504 + 2.52744i
\(807\) 11.8207 11.8207i 0.416107 0.416107i
\(808\) −61.2798 −2.15582
\(809\) 32.8074i 1.15345i 0.816939 + 0.576724i \(0.195669\pi\)
−0.816939 + 0.576724i \(0.804331\pi\)
\(810\) −2.48478 4.97448i −0.0873061 0.174785i
\(811\) −23.4835 + 23.4835i −0.824618 + 0.824618i −0.986766 0.162149i \(-0.948158\pi\)
0.162149 + 0.986766i \(0.448158\pi\)
\(812\) 5.85207i 0.205368i
\(813\) 17.8056i 0.624468i
\(814\) −34.9974 + 34.9974i −1.22666 + 1.22666i
\(815\) −14.7117 29.4525i −0.515328 1.03168i
\(816\) 9.96736i 0.348927i
\(817\) −30.4241 −1.06440
\(818\) 17.8020 17.8020i 0.622431 0.622431i
\(819\) 0.545559 0.682867i 0.0190634 0.0238613i
\(820\) −6.34496 + 19.0098i −0.221576 + 0.663850i
\(821\) 28.3481 28.3481i 0.989357 0.989357i −0.0105868 0.999944i \(-0.503370\pi\)
0.999944 + 0.0105868i \(0.00336993\pi\)
\(822\) 23.5538 23.5538i 0.821534 0.821534i
\(823\) −33.0457 + 33.0457i −1.15190 + 1.15190i −0.165729 + 0.986171i \(0.552998\pi\)
−0.986171 + 0.165729i \(0.947002\pi\)
\(824\) 53.5356 + 53.5356i 1.86500 + 1.86500i
\(825\) 23.9739 + 18.0101i 0.834663 + 0.627031i
\(826\) 3.18196 + 3.18196i 0.110714 + 0.110714i
\(827\) 50.1300 1.74319 0.871596 0.490225i \(-0.163085\pi\)
0.871596 + 0.490225i \(0.163085\pi\)
\(828\) −7.96910 7.96910i −0.276946 0.276946i
\(829\) 28.1449 0.977512 0.488756 0.872420i \(-0.337451\pi\)
0.488756 + 0.872420i \(0.337451\pi\)
\(830\) 6.75771 + 13.5288i 0.234563 + 0.469592i
\(831\) 25.3059i 0.877850i
\(832\) 15.5393 + 12.4148i 0.538729 + 0.430404i
\(833\) 9.52297 + 9.52297i 0.329951 + 0.329951i
\(834\) 10.6170 + 10.6170i 0.367636 + 0.367636i
\(835\) −12.1735 + 6.08074i −0.421282 + 0.210433i
\(836\) 138.907i 4.80419i
\(837\) 8.05269i 0.278342i
\(838\) 57.4655 1.98511
\(839\) −25.8159 + 25.8159i −0.891264 + 0.891264i −0.994642 0.103378i \(-0.967035\pi\)
0.103378 + 0.994642i \(0.467035\pi\)
\(840\) 0.932016 2.79236i 0.0321576 0.0963457i
\(841\) −4.29196 −0.147999
\(842\) 0.804189 + 0.804189i 0.0277142 + 0.0277142i
\(843\) 3.74304i 0.128917i
\(844\) 91.9664 3.16561
\(845\) −18.4108 22.4953i −0.633352 0.773864i
\(846\) −4.18886 −0.144016
\(847\) 6.05173i 0.207940i
\(848\) −11.4221 11.4221i −0.392236 0.392236i
\(849\) −3.73573 −0.128210
\(850\) 3.39276 + 23.8844i 0.116371 + 0.819227i
\(851\) 6.32136 6.32136i 0.216694 0.216694i
\(852\) −0.461790 −0.0158207
\(853\) 6.25026i 0.214005i 0.994259 + 0.107002i \(0.0341253\pi\)
−0.994259 + 0.107002i \(0.965875\pi\)
\(854\) 6.17811i 0.211411i
\(855\) −3.91927 + 11.7423i −0.134036 + 0.401579i
\(856\) −21.7367 21.7367i −0.742945 0.742945i
\(857\) −12.2252 12.2252i −0.417607 0.417607i 0.466771 0.884378i \(-0.345417\pi\)
−0.884378 + 0.466771i \(0.845417\pi\)
\(858\) 42.0093 + 33.5623i 1.43417 + 1.14580i
\(859\) 25.0493i 0.854670i −0.904093 0.427335i \(-0.859452\pi\)
0.904093 0.427335i \(-0.140548\pi\)
\(860\) 16.2778 48.7689i 0.555067 1.66301i
\(861\) −0.519284 −0.0176972
\(862\) −4.15752 4.15752i −0.141606 0.141606i
\(863\) −25.4480 −0.866261 −0.433130 0.901331i \(-0.642591\pi\)
−0.433130 + 0.901331i \(0.642591\pi\)
\(864\) −1.35296 1.35296i −0.0460288 0.0460288i
\(865\) 11.3456 33.9921i 0.385763 1.15576i
\(866\) −26.9770 26.9770i −0.916716 0.916716i
\(867\) −9.35895 + 9.35895i −0.317847 + 0.317847i
\(868\) −5.77519 + 5.77519i −0.196023 + 0.196023i
\(869\) 32.2338 32.2338i 1.09346 1.09346i
\(870\) −30.4334 10.1578i −1.03179 0.344383i
\(871\) 34.4524 43.1234i 1.16737 1.46118i
\(872\) 24.9574 24.9574i 0.845163 0.845163i
\(873\) −4.76021 −0.161109
\(874\) 37.0834i 1.25436i
\(875\) 0.487996 2.66598i 0.0164973 0.0901266i
\(876\) 4.30169 4.30169i 0.145341 0.145341i
\(877\) 21.2930i 0.719015i 0.933142 + 0.359507i \(0.117055\pi\)
−0.933142 + 0.359507i \(0.882945\pi\)
\(878\) 50.3544i 1.69938i
\(879\) −6.27368 + 6.27368i −0.211606 + 0.211606i
\(880\) 65.3454 + 21.8105i 2.20279 + 0.735233i
\(881\) 10.5084i 0.354037i −0.984208 0.177018i \(-0.943355\pi\)
0.984208 0.177018i \(-0.0566452\pi\)
\(882\) −17.2611 −0.581211
\(883\) 9.86276 9.86276i 0.331908 0.331908i −0.521403 0.853311i \(-0.674591\pi\)
0.853311 + 0.521403i \(0.174591\pi\)
\(884\) 3.25126 + 29.0876i 0.109352 + 0.978321i
\(885\) 14.9326 7.45891i 0.501954 0.250729i
\(886\) −33.0488 + 33.0488i −1.11030 + 1.11030i
\(887\) 21.5847 21.5847i 0.724745 0.724745i −0.244823 0.969568i \(-0.578730\pi\)
0.969568 + 0.244823i \(0.0787299\pi\)
\(888\) 12.7448 12.7448i 0.427687 0.427687i
\(889\) 0.930252 + 0.930252i 0.0311996 + 0.0311996i
\(890\) 6.61725 + 2.20866i 0.221811 + 0.0740345i
\(891\) 4.24054 + 4.24054i 0.142063 + 0.142063i
\(892\) 36.4845 1.22159
\(893\) 6.59408 + 6.59408i 0.220663 + 0.220663i
\(894\) 52.0301 1.74015
\(895\) −7.99618 + 3.99413i −0.267283 + 0.133509i
\(896\) 4.25307i 0.142085i
\(897\) −7.58788 6.06215i −0.253352 0.202409i
\(898\) −57.9559 57.9559i −1.93401 1.93401i
\(899\) 32.8546 + 32.8546i 1.09576 + 1.09576i
\(900\) −16.7257 12.5650i −0.557522 0.418832i
\(901\) 6.10073i 0.203245i
\(902\) 31.9458i 1.06368i
\(903\) 1.33221 0.0443330
\(904\) −66.9493 + 66.9493i −2.22670 + 2.22670i
\(905\) 16.5302 + 33.0932i 0.549483 + 1.10005i
\(906\) 51.6236 1.71508
\(907\) 14.1974 + 14.1974i 0.471417 + 0.471417i 0.902373 0.430956i \(-0.141823\pi\)
−0.430956 + 0.902373i \(0.641823\pi\)
\(908\) 76.9475i 2.55359i
\(909\) −11.2837 −0.374258
\(910\) 1.01710 4.75250i 0.0337166 0.157544i
\(911\) −6.62609 −0.219532 −0.109766 0.993957i \(-0.535010\pi\)
−0.109766 + 0.993957i \(0.535010\pi\)
\(912\) 28.4403i 0.941754i
\(913\) −11.5328 11.5328i −0.381679 0.381679i
\(914\) 38.7585 1.28202
\(915\) 21.7378 + 7.25548i 0.718628 + 0.239859i
\(916\) −69.9344 + 69.9344i −2.31070 + 2.31070i
\(917\) 1.22162 0.0403416
\(918\) 4.82483i 0.159243i
\(919\) 56.0617i 1.84930i −0.380813 0.924652i \(-0.624356\pi\)
0.380813 0.924652i \(-0.375644\pi\)
\(920\) −31.0282 10.3564i −1.02297 0.341440i
\(921\) −17.8073 17.8073i −0.586770 0.586770i
\(922\) −51.9714 51.9714i −1.71159 1.71159i
\(923\) −0.395493 + 0.0442062i −0.0130178 + 0.00145507i
\(924\) 6.08242i 0.200097i
\(925\) 9.96695 13.2674i 0.327711 0.436228i
\(926\) −20.6928 −0.680007
\(927\) 9.85776 + 9.85776i 0.323771 + 0.323771i
\(928\) −11.0400 −0.362407
\(929\) −16.7396 16.7396i −0.549210 0.549210i 0.377003 0.926212i \(-0.376955\pi\)
−0.926212 + 0.377003i \(0.876955\pi\)
\(930\) 20.0091 + 40.0579i 0.656125 + 1.31355i
\(931\) 27.1723 + 27.1723i 0.890537 + 0.890537i
\(932\) −2.51424 + 2.51424i −0.0823567 + 0.0823567i
\(933\) −4.99102 + 4.99102i −0.163399 + 0.163399i
\(934\) −54.6088 + 54.6088i −1.78685 + 1.78685i
\(935\) −11.6263 23.2757i −0.380222 0.761197i
\(936\) −15.2983 12.2222i −0.500039 0.399494i
\(937\) 12.3582 12.3582i 0.403724 0.403724i −0.475819 0.879543i \(-0.657848\pi\)
0.879543 + 0.475819i \(0.157848\pi\)
\(938\) 9.22837 0.301317
\(939\) 5.45276i 0.177944i
\(940\) −14.0981 + 7.04210i −0.459831 + 0.229688i
\(941\) 18.8531 18.8531i 0.614594 0.614594i −0.329545 0.944140i \(-0.606895\pi\)
0.944140 + 0.329545i \(0.106895\pi\)
\(942\) 15.0058i 0.488917i
\(943\) 5.77018i 0.187903i
\(944\) 27.1165 27.1165i 0.882568 0.882568i
\(945\) 0.171616 0.514171i 0.00558268 0.0167260i
\(946\) 81.9559i 2.66462i
\(947\) 13.5380 0.439926 0.219963 0.975508i \(-0.429406\pi\)
0.219963 + 0.975508i \(0.429406\pi\)
\(948\) −22.4883 + 22.4883i −0.730387 + 0.730387i
\(949\) 3.27232 4.09590i 0.106224 0.132959i
\(950\) 9.68071 + 68.1504i 0.314084 + 2.21109i
\(951\) −9.84128 + 9.84128i −0.319125 + 0.319125i
\(952\) −1.80617 + 1.80617i −0.0585383 + 0.0585383i
\(953\) −10.8161 + 10.8161i −0.350369 + 0.350369i −0.860247 0.509878i \(-0.829691\pi\)
0.509878 + 0.860247i \(0.329691\pi\)
\(954\) −5.52901 5.52901i −0.179008 0.179008i
\(955\) −26.0901 + 13.0322i −0.844257 + 0.421711i
\(956\) 36.4540 + 36.4540i 1.17901 + 1.17901i
\(957\) 34.6024 1.11854
\(958\) −32.2812 32.2812i −1.04296 1.04296i
\(959\) 3.24716 0.104856
\(960\) 11.7005 + 3.90531i 0.377631 + 0.126043i
\(961\) 33.8458i 1.09180i
\(962\) 18.5737 23.2483i 0.598839 0.749556i
\(963\) −4.00248 4.00248i −0.128978 0.128978i
\(964\) 26.6768 + 26.6768i 0.859202 + 0.859202i
\(965\) 9.27582 + 18.5700i 0.298599 + 0.597790i
\(966\) 1.62380i 0.0522449i
\(967\) 16.5180i 0.531183i 0.964086 + 0.265591i \(0.0855672\pi\)
−0.964086 + 0.265591i \(0.914433\pi\)
\(968\) −135.577 −4.35760
\(969\) 7.59523 7.59523i 0.243994 0.243994i
\(970\) −23.6796 + 11.8281i −0.760305 + 0.379776i
\(971\) −40.8913 −1.31226 −0.656132 0.754646i \(-0.727809\pi\)
−0.656132 + 0.754646i \(0.727809\pi\)
\(972\) −2.95847 2.95847i −0.0948928 0.0948928i
\(973\) 1.46367i 0.0469231i
\(974\) −31.4340 −1.00721
\(975\) −15.5272 9.15994i −0.497270 0.293353i
\(976\) 52.6497 1.68527
\(977\) 1.92441i 0.0615674i 0.999526 + 0.0307837i \(0.00980030\pi\)
−0.999526 + 0.0307837i \(0.990200\pi\)
\(978\) −25.8894 25.8894i −0.827853 0.827853i
\(979\) −7.52374 −0.240460
\(980\) −58.0944 + 29.0185i −1.85576 + 0.926961i
\(981\) 4.59552 4.59552i 0.146724 0.146724i
\(982\) −69.1805 −2.20764
\(983\) 59.7525i 1.90581i 0.303273 + 0.952904i \(0.401921\pi\)
−0.303273 + 0.952904i \(0.598079\pi\)
\(984\) 11.6335i 0.370863i
\(985\) −12.9021 25.8298i −0.411096 0.823006i
\(986\) 19.6851 + 19.6851i 0.626900 + 0.626900i
\(987\) −0.288741 0.288741i −0.00919071 0.00919071i
\(988\) 9.27698 + 82.9970i 0.295140 + 2.64049i
\(989\) 14.8032i 0.470714i
\(990\) 31.6313 + 10.5577i 1.00531 + 0.335545i
\(991\) 29.3438 0.932136 0.466068 0.884749i \(-0.345670\pi\)
0.466068 + 0.884749i \(0.345670\pi\)
\(992\) 10.8950 + 10.8950i 0.345917 + 0.345917i
\(993\) 9.73371 0.308890
\(994\) −0.0470477 0.0470477i −0.00149226 0.00149226i
\(995\) −4.71162 + 2.35348i −0.149368 + 0.0746103i
\(996\) 8.04597 + 8.04597i 0.254946 + 0.254946i
\(997\) −34.3919 + 34.3919i −1.08920 + 1.08920i −0.0935912 + 0.995611i \(0.529835\pi\)
−0.995611 + 0.0935912i \(0.970165\pi\)
\(998\) 0.378169 0.378169i 0.0119707 0.0119707i
\(999\) 2.34675 2.34675i 0.0742480 0.0742480i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 195.2.k.a.148.1 yes 28
3.2 odd 2 585.2.n.g.343.14 28
5.2 odd 4 195.2.t.a.187.14 yes 28
5.3 odd 4 975.2.t.d.382.1 28
5.4 even 2 975.2.k.d.343.14 28
13.8 odd 4 195.2.t.a.73.14 yes 28
15.2 even 4 585.2.w.g.577.1 28
39.8 even 4 585.2.w.g.73.1 28
65.8 even 4 975.2.k.d.307.1 28
65.34 odd 4 975.2.t.d.268.1 28
65.47 even 4 inner 195.2.k.a.112.14 28
195.47 odd 4 585.2.n.g.307.1 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.k.a.112.14 28 65.47 even 4 inner
195.2.k.a.148.1 yes 28 1.1 even 1 trivial
195.2.t.a.73.14 yes 28 13.8 odd 4
195.2.t.a.187.14 yes 28 5.2 odd 4
585.2.n.g.307.1 28 195.47 odd 4
585.2.n.g.343.14 28 3.2 odd 2
585.2.w.g.73.1 28 39.8 even 4
585.2.w.g.577.1 28 15.2 even 4
975.2.k.d.307.1 28 65.8 even 4
975.2.k.d.343.14 28 5.4 even 2
975.2.t.d.268.1 28 65.34 odd 4
975.2.t.d.382.1 28 5.3 odd 4