Properties

Label 975.2.k.d.343.14
Level $975$
Weight $2$
Character 975.343
Analytic conductor $7.785$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(307,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,-28,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 343.14
Character \(\chi\) \(=\) 975.343
Dual form 975.2.k.d.307.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.48675i q^{2} +(0.707107 + 0.707107i) q^{3} -4.18390 q^{4} +(-1.75839 + 1.75839i) q^{6} +0.242414 q^{7} -5.43081i q^{8} +1.00000i q^{9} +(-4.24054 - 4.24054i) q^{11} +(-2.95847 - 2.95847i) q^{12} +(-2.81694 - 2.25052i) q^{13} +0.602823i q^{14} +5.13724 q^{16} +(1.37194 + 1.37194i) q^{17} -2.48675 q^{18} +(-3.91462 - 3.91462i) q^{19} +(0.171413 + 0.171413i) q^{21} +(10.5451 - 10.5451i) q^{22} +(-1.90471 + 1.90471i) q^{23} +(3.84016 - 3.84016i) q^{24} +(5.59648 - 7.00501i) q^{26} +(-0.707107 + 0.707107i) q^{27} -1.01424 q^{28} -5.76992i q^{29} +(-5.69411 + 5.69411i) q^{31} +1.91338i q^{32} -5.99703i q^{33} +(-3.41167 + 3.41167i) q^{34} -4.18390i q^{36} -3.31881 q^{37} +(9.73467 - 9.73467i) q^{38} +(-0.400516 - 3.58324i) q^{39} +(-1.51472 + 1.51472i) q^{41} +(-0.426260 + 0.426260i) q^{42} +(-3.88596 + 3.88596i) q^{43} +(17.7420 + 17.7420i) q^{44} +(-4.73652 - 4.73652i) q^{46} +1.68447 q^{47} +(3.63258 + 3.63258i) q^{48} -6.94124 q^{49} +1.94022i q^{51} +(11.7858 + 9.41597i) q^{52} +(2.22339 + 2.22339i) q^{53} +(-1.75839 - 1.75839i) q^{54} -1.31651i q^{56} -5.53612i q^{57} +14.3483 q^{58} +(5.27843 - 5.27843i) q^{59} +10.2486 q^{61} +(-14.1598 - 14.1598i) q^{62} +0.242414i q^{63} +5.51638 q^{64} +14.9131 q^{66} +15.3086i q^{67} +(-5.74007 - 5.74007i) q^{68} -2.69366 q^{69} +(-0.0780456 + 0.0780456i) q^{71} +5.43081 q^{72} +1.45403i q^{73} -8.25304i q^{74} +(16.3784 + 16.3784i) q^{76} +(-1.02797 - 1.02797i) q^{77} +(8.91060 - 0.995982i) q^{78} +7.60135i q^{79} -1.00000 q^{81} +(-3.76672 - 3.76672i) q^{82} -2.71964 q^{83} +(-0.717175 - 0.717175i) q^{84} +(-9.66338 - 9.66338i) q^{86} +(4.07995 - 4.07995i) q^{87} +(-23.0296 + 23.0296i) q^{88} +(0.887120 - 0.887120i) q^{89} +(-0.682867 - 0.545559i) q^{91} +(7.96910 - 7.96910i) q^{92} -8.05269 q^{93} +4.18886i q^{94} +(-1.35296 + 1.35296i) q^{96} -4.76021i q^{97} -17.2611i q^{98} +(4.24054 - 4.24054i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 28 q^{4} - 8 q^{11} - 8 q^{12} + 12 q^{13} + 28 q^{16} + 28 q^{17} + 4 q^{18} + 8 q^{21} + 32 q^{22} - 8 q^{23} - 16 q^{31} + 28 q^{34} - 32 q^{37} + 8 q^{39} + 4 q^{41} + 40 q^{44} - 16 q^{46} + 24 q^{47}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.48675i 1.75839i 0.476458 + 0.879197i \(0.341920\pi\)
−0.476458 + 0.879197i \(0.658080\pi\)
\(3\) 0.707107 + 0.707107i 0.408248 + 0.408248i
\(4\) −4.18390 −2.09195
\(5\) 0 0
\(6\) −1.75839 + 1.75839i −0.717862 + 0.717862i
\(7\) 0.242414 0.0916240 0.0458120 0.998950i \(-0.485412\pi\)
0.0458120 + 0.998950i \(0.485412\pi\)
\(8\) 5.43081i 1.92008i
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −4.24054 4.24054i −1.27857 1.27857i −0.941467 0.337104i \(-0.890553\pi\)
−0.337104 0.941467i \(-0.609447\pi\)
\(12\) −2.95847 2.95847i −0.854036 0.854036i
\(13\) −2.81694 2.25052i −0.781278 0.624183i
\(14\) 0.602823i 0.161111i
\(15\) 0 0
\(16\) 5.13724 1.28431
\(17\) 1.37194 + 1.37194i 0.332745 + 0.332745i 0.853628 0.520883i \(-0.174397\pi\)
−0.520883 + 0.853628i \(0.674397\pi\)
\(18\) −2.48675 −0.586132
\(19\) −3.91462 3.91462i −0.898076 0.898076i 0.0971894 0.995266i \(-0.469015\pi\)
−0.995266 + 0.0971894i \(0.969015\pi\)
\(20\) 0 0
\(21\) 0.171413 + 0.171413i 0.0374054 + 0.0374054i
\(22\) 10.5451 10.5451i 2.24823 2.24823i
\(23\) −1.90471 + 1.90471i −0.397159 + 0.397159i −0.877230 0.480071i \(-0.840611\pi\)
0.480071 + 0.877230i \(0.340611\pi\)
\(24\) 3.84016 3.84016i 0.783870 0.783870i
\(25\) 0 0
\(26\) 5.59648 7.00501i 1.09756 1.37380i
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) −1.01424 −0.191673
\(29\) 5.76992i 1.07145i −0.844393 0.535724i \(-0.820039\pi\)
0.844393 0.535724i \(-0.179961\pi\)
\(30\) 0 0
\(31\) −5.69411 + 5.69411i −1.02269 + 1.02269i −0.0229561 + 0.999736i \(0.507308\pi\)
−0.999736 + 0.0229561i \(0.992692\pi\)
\(32\) 1.91338i 0.338241i
\(33\) 5.99703i 1.04395i
\(34\) −3.41167 + 3.41167i −0.585096 + 0.585096i
\(35\) 0 0
\(36\) 4.18390i 0.697317i
\(37\) −3.31881 −0.545609 −0.272805 0.962069i \(-0.587951\pi\)
−0.272805 + 0.962069i \(0.587951\pi\)
\(38\) 9.73467 9.73467i 1.57917 1.57917i
\(39\) −0.400516 3.58324i −0.0641339 0.573777i
\(40\) 0 0
\(41\) −1.51472 + 1.51472i −0.236559 + 0.236559i −0.815424 0.578865i \(-0.803496\pi\)
0.578865 + 0.815424i \(0.303496\pi\)
\(42\) −0.426260 + 0.426260i −0.0657734 + 0.0657734i
\(43\) −3.88596 + 3.88596i −0.592603 + 0.592603i −0.938334 0.345731i \(-0.887631\pi\)
0.345731 + 0.938334i \(0.387631\pi\)
\(44\) 17.7420 + 17.7420i 2.67471 + 2.67471i
\(45\) 0 0
\(46\) −4.73652 4.73652i −0.698362 0.698362i
\(47\) 1.68447 0.245706 0.122853 0.992425i \(-0.460796\pi\)
0.122853 + 0.992425i \(0.460796\pi\)
\(48\) 3.63258 + 3.63258i 0.524317 + 0.524317i
\(49\) −6.94124 −0.991605
\(50\) 0 0
\(51\) 1.94022i 0.271685i
\(52\) 11.7858 + 9.41597i 1.63440 + 1.30576i
\(53\) 2.22339 + 2.22339i 0.305406 + 0.305406i 0.843125 0.537718i \(-0.180714\pi\)
−0.537718 + 0.843125i \(0.680714\pi\)
\(54\) −1.75839 1.75839i −0.239287 0.239287i
\(55\) 0 0
\(56\) 1.31651i 0.175926i
\(57\) 5.53612i 0.733276i
\(58\) 14.3483 1.88403
\(59\) 5.27843 5.27843i 0.687193 0.687193i −0.274418 0.961611i \(-0.588485\pi\)
0.961611 + 0.274418i \(0.0884852\pi\)
\(60\) 0 0
\(61\) 10.2486 1.31220 0.656101 0.754673i \(-0.272204\pi\)
0.656101 + 0.754673i \(0.272204\pi\)
\(62\) −14.1598 14.1598i −1.79830 1.79830i
\(63\) 0.242414i 0.0305413i
\(64\) 5.51638 0.689548
\(65\) 0 0
\(66\) 14.9131 1.83567
\(67\) 15.3086i 1.87024i 0.354328 + 0.935121i \(0.384710\pi\)
−0.354328 + 0.935121i \(0.615290\pi\)
\(68\) −5.74007 5.74007i −0.696086 0.696086i
\(69\) −2.69366 −0.324279
\(70\) 0 0
\(71\) −0.0780456 + 0.0780456i −0.00926231 + 0.00926231i −0.711723 0.702460i \(-0.752085\pi\)
0.702460 + 0.711723i \(0.252085\pi\)
\(72\) 5.43081 0.640027
\(73\) 1.45403i 0.170181i 0.996373 + 0.0850905i \(0.0271179\pi\)
−0.996373 + 0.0850905i \(0.972882\pi\)
\(74\) 8.25304i 0.959397i
\(75\) 0 0
\(76\) 16.3784 + 16.3784i 1.87873 + 1.87873i
\(77\) −1.02797 1.02797i −0.117148 0.117148i
\(78\) 8.91060 0.995982i 1.00893 0.112773i
\(79\) 7.60135i 0.855219i 0.903964 + 0.427609i \(0.140644\pi\)
−0.903964 + 0.427609i \(0.859356\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) −3.76672 3.76672i −0.415964 0.415964i
\(83\) −2.71964 −0.298520 −0.149260 0.988798i \(-0.547689\pi\)
−0.149260 + 0.988798i \(0.547689\pi\)
\(84\) −0.717175 0.717175i −0.0782502 0.0782502i
\(85\) 0 0
\(86\) −9.66338 9.66338i −1.04203 1.04203i
\(87\) 4.07995 4.07995i 0.437416 0.437416i
\(88\) −23.0296 + 23.0296i −2.45496 + 2.45496i
\(89\) 0.887120 0.887120i 0.0940345 0.0940345i −0.658525 0.752559i \(-0.728819\pi\)
0.752559 + 0.658525i \(0.228819\pi\)
\(90\) 0 0
\(91\) −0.682867 0.545559i −0.0715839 0.0571902i
\(92\) 7.96910 7.96910i 0.830837 0.830837i
\(93\) −8.05269 −0.835025
\(94\) 4.18886i 0.432048i
\(95\) 0 0
\(96\) −1.35296 + 1.35296i −0.138086 + 0.138086i
\(97\) 4.76021i 0.483326i −0.970360 0.241663i \(-0.922307\pi\)
0.970360 0.241663i \(-0.0776929\pi\)
\(98\) 17.2611i 1.74363i
\(99\) 4.24054 4.24054i 0.426190 0.426190i
\(100\) 0 0
\(101\) 11.2837i 1.12277i 0.827553 + 0.561387i \(0.189732\pi\)
−0.827553 + 0.561387i \(0.810268\pi\)
\(102\) −4.82483 −0.477729
\(103\) −9.85776 + 9.85776i −0.971314 + 0.971314i −0.999600 0.0282861i \(-0.990995\pi\)
0.0282861 + 0.999600i \(0.490995\pi\)
\(104\) −12.2222 + 15.2983i −1.19848 + 1.50012i
\(105\) 0 0
\(106\) −5.52901 + 5.52901i −0.537025 + 0.537025i
\(107\) 4.00248 4.00248i 0.386934 0.386934i −0.486658 0.873592i \(-0.661784\pi\)
0.873592 + 0.486658i \(0.161784\pi\)
\(108\) 2.95847 2.95847i 0.284679 0.284679i
\(109\) −4.59552 4.59552i −0.440171 0.440171i 0.451899 0.892069i \(-0.350747\pi\)
−0.892069 + 0.451899i \(0.850747\pi\)
\(110\) 0 0
\(111\) −2.34675 2.34675i −0.222744 0.222744i
\(112\) 1.24534 0.117674
\(113\) −12.3277 12.3277i −1.15969 1.15969i −0.984542 0.175149i \(-0.943959\pi\)
−0.175149 0.984542i \(-0.556041\pi\)
\(114\) 13.7669 1.28939
\(115\) 0 0
\(116\) 24.1408i 2.24142i
\(117\) 2.25052 2.81694i 0.208061 0.260426i
\(118\) 13.1261 + 13.1261i 1.20836 + 1.20836i
\(119\) 0.332578 + 0.332578i 0.0304874 + 0.0304874i
\(120\) 0 0
\(121\) 24.9644i 2.26949i
\(122\) 25.4857i 2.30737i
\(123\) −2.14213 −0.193150
\(124\) 23.8236 23.8236i 2.13942 2.13942i
\(125\) 0 0
\(126\) −0.602823 −0.0537037
\(127\) 3.83744 + 3.83744i 0.340518 + 0.340518i 0.856562 0.516044i \(-0.172596\pi\)
−0.516044 + 0.856562i \(0.672596\pi\)
\(128\) 17.5446i 1.55074i
\(129\) −5.49557 −0.483858
\(130\) 0 0
\(131\) −5.03941 −0.440295 −0.220148 0.975467i \(-0.570654\pi\)
−0.220148 + 0.975467i \(0.570654\pi\)
\(132\) 25.0910i 2.18389i
\(133\) −0.948961 0.948961i −0.0822854 0.0822854i
\(134\) −38.0686 −3.28862
\(135\) 0 0
\(136\) 7.45075 7.45075i 0.638897 0.638897i
\(137\) 13.3951 1.14442 0.572209 0.820108i \(-0.306087\pi\)
0.572209 + 0.820108i \(0.306087\pi\)
\(138\) 6.69845i 0.570210i
\(139\) 6.03788i 0.512126i −0.966660 0.256063i \(-0.917575\pi\)
0.966660 0.256063i \(-0.0824255\pi\)
\(140\) 0 0
\(141\) 1.19110 + 1.19110i 0.100309 + 0.100309i
\(142\) −0.194080 0.194080i −0.0162868 0.0162868i
\(143\) 2.40191 + 21.4888i 0.200858 + 1.79698i
\(144\) 5.13724i 0.428103i
\(145\) 0 0
\(146\) −3.61579 −0.299245
\(147\) −4.90819 4.90819i −0.404821 0.404821i
\(148\) 13.8856 1.14139
\(149\) −14.7948 14.7948i −1.21203 1.21203i −0.970356 0.241678i \(-0.922302\pi\)
−0.241678 0.970356i \(-0.577698\pi\)
\(150\) 0 0
\(151\) −14.6792 14.6792i −1.19458 1.19458i −0.975768 0.218808i \(-0.929783\pi\)
−0.218808 0.975768i \(-0.570217\pi\)
\(152\) −21.2596 + 21.2596i −1.72438 + 1.72438i
\(153\) −1.37194 + 1.37194i −0.110915 + 0.110915i
\(154\) 2.55630 2.55630i 0.205992 0.205992i
\(155\) 0 0
\(156\) 1.67572 + 14.9919i 0.134165 + 1.20031i
\(157\) −4.26691 + 4.26691i −0.340537 + 0.340537i −0.856569 0.516032i \(-0.827408\pi\)
0.516032 + 0.856569i \(0.327408\pi\)
\(158\) −18.9026 −1.50381
\(159\) 3.14435i 0.249363i
\(160\) 0 0
\(161\) −0.461728 + 0.461728i −0.0363893 + 0.0363893i
\(162\) 2.48675i 0.195377i
\(163\) 14.7233i 1.15322i −0.817019 0.576611i \(-0.804375\pi\)
0.817019 0.576611i \(-0.195625\pi\)
\(164\) 6.33743 6.33743i 0.494870 0.494870i
\(165\) 0 0
\(166\) 6.76306i 0.524915i
\(167\) −6.08556 −0.470915 −0.235457 0.971885i \(-0.575659\pi\)
−0.235457 + 0.971885i \(0.575659\pi\)
\(168\) 0.930911 0.930911i 0.0718213 0.0718213i
\(169\) 2.87029 + 12.6792i 0.220791 + 0.975321i
\(170\) 0 0
\(171\) 3.91462 3.91462i 0.299359 0.299359i
\(172\) 16.2585 16.2585i 1.23970 1.23970i
\(173\) 11.3322 11.3322i 0.861570 0.861570i −0.129951 0.991520i \(-0.541482\pi\)
0.991520 + 0.129951i \(0.0414819\pi\)
\(174\) 10.1458 + 10.1458i 0.769151 + 0.769151i
\(175\) 0 0
\(176\) −21.7847 21.7847i −1.64208 1.64208i
\(177\) 7.46482 0.561090
\(178\) 2.20604 + 2.20604i 0.165350 + 0.165350i
\(179\) 3.99730 0.298772 0.149386 0.988779i \(-0.452270\pi\)
0.149386 + 0.988779i \(0.452270\pi\)
\(180\) 0 0
\(181\) 16.5433i 1.22966i −0.788661 0.614828i \(-0.789226\pi\)
0.788661 0.614828i \(-0.210774\pi\)
\(182\) 1.35667 1.69812i 0.100563 0.125873i
\(183\) 7.24688 + 7.24688i 0.535705 + 0.535705i
\(184\) 10.3441 + 10.3441i 0.762577 + 0.762577i
\(185\) 0 0
\(186\) 20.0250i 1.46830i
\(187\) 11.6355i 0.850876i
\(188\) −7.04768 −0.514005
\(189\) −0.171413 + 0.171413i −0.0124685 + 0.0124685i
\(190\) 0 0
\(191\) 13.0425 0.943721 0.471860 0.881673i \(-0.343583\pi\)
0.471860 + 0.881673i \(0.343583\pi\)
\(192\) 3.90067 + 3.90067i 0.281507 + 0.281507i
\(193\) 9.28317i 0.668217i 0.942535 + 0.334109i \(0.108435\pi\)
−0.942535 + 0.334109i \(0.891565\pi\)
\(194\) 11.8374 0.849879
\(195\) 0 0
\(196\) 29.0415 2.07439
\(197\) 12.9124i 0.919967i −0.887927 0.459983i \(-0.847855\pi\)
0.887927 0.459983i \(-0.152145\pi\)
\(198\) 10.5451 + 10.5451i 0.749411 + 0.749411i
\(199\) 2.35534 0.166966 0.0834830 0.996509i \(-0.473396\pi\)
0.0834830 + 0.996509i \(0.473396\pi\)
\(200\) 0 0
\(201\) −10.8248 + 10.8248i −0.763523 + 0.763523i
\(202\) −28.0598 −1.97428
\(203\) 1.39871i 0.0981703i
\(204\) 8.11768i 0.568352i
\(205\) 0 0
\(206\) −24.5137 24.5137i −1.70795 1.70795i
\(207\) −1.90471 1.90471i −0.132386 0.132386i
\(208\) −14.4713 11.5615i −1.00340 0.801644i
\(209\) 33.2003i 2.29651i
\(210\) 0 0
\(211\) −21.9810 −1.51323 −0.756617 0.653858i \(-0.773149\pi\)
−0.756617 + 0.653858i \(0.773149\pi\)
\(212\) −9.30245 9.30245i −0.638895 0.638895i
\(213\) −0.110373 −0.00756264
\(214\) 9.95315 + 9.95315i 0.680383 + 0.680383i
\(215\) 0 0
\(216\) 3.84016 + 3.84016i 0.261290 + 0.261290i
\(217\) −1.38033 + 1.38033i −0.0937032 + 0.0937032i
\(218\) 11.4279 11.4279i 0.773993 0.773993i
\(219\) −1.02815 + 1.02815i −0.0694761 + 0.0694761i
\(220\) 0 0
\(221\) −0.777089 6.95226i −0.0522727 0.467660i
\(222\) 5.83578 5.83578i 0.391672 0.391672i
\(223\) 8.72020 0.583948 0.291974 0.956426i \(-0.405688\pi\)
0.291974 + 0.956426i \(0.405688\pi\)
\(224\) 0.463831i 0.0309910i
\(225\) 0 0
\(226\) 30.6558 30.6558i 2.03919 2.03919i
\(227\) 18.3913i 1.22068i −0.792141 0.610338i \(-0.791034\pi\)
0.792141 0.610338i \(-0.208966\pi\)
\(228\) 23.1626i 1.53398i
\(229\) 16.7151 16.7151i 1.10456 1.10456i 0.110712 0.993852i \(-0.464687\pi\)
0.993852 0.110712i \(-0.0353133\pi\)
\(230\) 0 0
\(231\) 1.45377i 0.0956508i
\(232\) −31.3353 −2.05727
\(233\) −0.600932 + 0.600932i −0.0393684 + 0.0393684i −0.726517 0.687149i \(-0.758862\pi\)
0.687149 + 0.726517i \(0.258862\pi\)
\(234\) 7.00501 + 5.59648i 0.457932 + 0.365853i
\(235\) 0 0
\(236\) −22.0844 + 22.0844i −1.43757 + 1.43757i
\(237\) −5.37497 + 5.37497i −0.349141 + 0.349141i
\(238\) −0.827038 + 0.827038i −0.0536089 + 0.0536089i
\(239\) −8.71291 8.71291i −0.563591 0.563591i 0.366735 0.930326i \(-0.380476\pi\)
−0.930326 + 0.366735i \(0.880476\pi\)
\(240\) 0 0
\(241\) −6.37606 6.37606i −0.410718 0.410718i 0.471271 0.881989i \(-0.343796\pi\)
−0.881989 + 0.471271i \(0.843796\pi\)
\(242\) −62.0801 −3.99066
\(243\) −0.707107 0.707107i −0.0453609 0.0453609i
\(244\) −42.8793 −2.74506
\(245\) 0 0
\(246\) 5.32694i 0.339633i
\(247\) 2.21730 + 19.8372i 0.141084 + 1.26221i
\(248\) 30.9236 + 30.9236i 1.96365 + 1.96365i
\(249\) −1.92308 1.92308i −0.121870 0.121870i
\(250\) 0 0
\(251\) 8.17534i 0.516023i −0.966142 0.258011i \(-0.916933\pi\)
0.966142 0.258011i \(-0.0830672\pi\)
\(252\) 1.01424i 0.0638910i
\(253\) 16.1540 1.01559
\(254\) −9.54274 + 9.54274i −0.598765 + 0.598765i
\(255\) 0 0
\(256\) −32.5962 −2.03726
\(257\) 9.97233 + 9.97233i 0.622057 + 0.622057i 0.946057 0.324000i \(-0.105028\pi\)
−0.324000 + 0.946057i \(0.605028\pi\)
\(258\) 13.6661i 0.850813i
\(259\) −0.804528 −0.0499909
\(260\) 0 0
\(261\) 5.76992 0.357149
\(262\) 12.5317i 0.774212i
\(263\) −16.5535 16.5535i −1.02073 1.02073i −0.999780 0.0209533i \(-0.993330\pi\)
−0.0209533 0.999780i \(-0.506670\pi\)
\(264\) −32.5687 −2.00447
\(265\) 0 0
\(266\) 2.35983 2.35983i 0.144690 0.144690i
\(267\) 1.25458 0.0767789
\(268\) 64.0497i 3.91246i
\(269\) 16.7169i 1.01925i 0.860397 + 0.509625i \(0.170216\pi\)
−0.860397 + 0.509625i \(0.829784\pi\)
\(270\) 0 0
\(271\) 12.5904 + 12.5904i 0.764814 + 0.764814i 0.977188 0.212374i \(-0.0681195\pi\)
−0.212374 + 0.977188i \(0.568120\pi\)
\(272\) 7.04799 + 7.04799i 0.427347 + 0.427347i
\(273\) −0.0970909 0.868628i −0.00587621 0.0525718i
\(274\) 33.3101i 2.01234i
\(275\) 0 0
\(276\) 11.2700 0.678375
\(277\) 17.8939 + 17.8939i 1.07514 + 1.07514i 0.996937 + 0.0782056i \(0.0249191\pi\)
0.0782056 + 0.996937i \(0.475081\pi\)
\(278\) 15.0147 0.900520
\(279\) −5.69411 5.69411i −0.340898 0.340898i
\(280\) 0 0
\(281\) −2.64673 2.64673i −0.157891 0.157891i 0.623741 0.781631i \(-0.285612\pi\)
−0.781631 + 0.623741i \(0.785612\pi\)
\(282\) −2.96197 + 2.96197i −0.176383 + 0.176383i
\(283\) −2.64156 + 2.64156i −0.157025 + 0.157025i −0.781247 0.624222i \(-0.785416\pi\)
0.624222 + 0.781247i \(0.285416\pi\)
\(284\) 0.326535 0.326535i 0.0193763 0.0193763i
\(285\) 0 0
\(286\) −53.4371 + 5.97293i −3.15980 + 0.353187i
\(287\) −0.367189 + 0.367189i −0.0216745 + 0.0216745i
\(288\) −1.91338 −0.112747
\(289\) 13.2356i 0.778562i
\(290\) 0 0
\(291\) 3.36598 3.36598i 0.197317 0.197317i
\(292\) 6.08351i 0.356010i
\(293\) 8.87232i 0.518327i 0.965834 + 0.259163i \(0.0834468\pi\)
−0.965834 + 0.259163i \(0.916553\pi\)
\(294\) 12.2054 12.2054i 0.711835 0.711835i
\(295\) 0 0
\(296\) 18.0238i 1.04761i
\(297\) 5.99703 0.347983
\(298\) 36.7908 36.7908i 2.13124 2.13124i
\(299\) 9.65203 1.07885i 0.558191 0.0623918i
\(300\) 0 0
\(301\) −0.942012 + 0.942012i −0.0542966 + 0.0542966i
\(302\) 36.5034 36.5034i 2.10054 2.10054i
\(303\) −7.97881 + 7.97881i −0.458370 + 0.458370i
\(304\) −20.1104 20.1104i −1.15341 1.15341i
\(305\) 0 0
\(306\) −3.41167 3.41167i −0.195032 0.195032i
\(307\) −25.1833 −1.43729 −0.718644 0.695378i \(-0.755237\pi\)
−0.718644 + 0.695378i \(0.755237\pi\)
\(308\) 4.30092 + 4.30092i 0.245068 + 0.245068i
\(309\) −13.9410 −0.793074
\(310\) 0 0
\(311\) 7.05837i 0.400243i −0.979771 0.200122i \(-0.935866\pi\)
0.979771 0.200122i \(-0.0641337\pi\)
\(312\) −19.4599 + 2.17513i −1.10170 + 0.123142i
\(313\) 3.85568 + 3.85568i 0.217936 + 0.217936i 0.807628 0.589692i \(-0.200751\pi\)
−0.589692 + 0.807628i \(0.700751\pi\)
\(314\) −10.6107 10.6107i −0.598798 0.598798i
\(315\) 0 0
\(316\) 31.8033i 1.78908i
\(317\) 13.9177i 0.781695i 0.920456 + 0.390847i \(0.127818\pi\)
−0.920456 + 0.390847i \(0.872182\pi\)
\(318\) −7.81920 −0.438479
\(319\) −24.4676 + 24.4676i −1.36992 + 1.36992i
\(320\) 0 0
\(321\) 5.66036 0.315931
\(322\) −1.14820 1.14820i −0.0639867 0.0639867i
\(323\) 10.7413i 0.597660i
\(324\) 4.18390 0.232439
\(325\) 0 0
\(326\) 36.6132 2.02782
\(327\) 6.49904i 0.359398i
\(328\) 8.22614 + 8.22614i 0.454213 + 0.454213i
\(329\) 0.408341 0.0225126
\(330\) 0 0
\(331\) −6.88277 + 6.88277i −0.378311 + 0.378311i −0.870493 0.492181i \(-0.836200\pi\)
0.492181 + 0.870493i \(0.336200\pi\)
\(332\) 11.3787 0.624489
\(333\) 3.31881i 0.181870i
\(334\) 15.1332i 0.828054i
\(335\) 0 0
\(336\) 0.880589 + 0.880589i 0.0480400 + 0.0480400i
\(337\) −0.812119 0.812119i −0.0442389 0.0442389i 0.684641 0.728880i \(-0.259959\pi\)
−0.728880 + 0.684641i \(0.759959\pi\)
\(338\) −31.5299 + 7.13768i −1.71500 + 0.388238i
\(339\) 17.4340i 0.946884i
\(340\) 0 0
\(341\) 48.2922 2.61517
\(342\) 9.73467 + 9.73467i 0.526391 + 0.526391i
\(343\) −3.37956 −0.182479
\(344\) 21.1039 + 21.1039i 1.13785 + 1.13785i
\(345\) 0 0
\(346\) 28.1803 + 28.1803i 1.51498 + 1.51498i
\(347\) −25.2146 + 25.2146i −1.35359 + 1.35359i −0.471983 + 0.881608i \(0.656462\pi\)
−0.881608 + 0.471983i \(0.843538\pi\)
\(348\) −17.0701 + 17.0701i −0.915054 + 0.915054i
\(349\) 4.85536 4.85536i 0.259902 0.259902i −0.565112 0.825014i \(-0.691167\pi\)
0.825014 + 0.565112i \(0.191167\pi\)
\(350\) 0 0
\(351\) 3.58324 0.400516i 0.191259 0.0213780i
\(352\) 8.11377 8.11377i 0.432465 0.432465i
\(353\) −25.9459 −1.38096 −0.690480 0.723351i \(-0.742601\pi\)
−0.690480 + 0.723351i \(0.742601\pi\)
\(354\) 18.5631i 0.986618i
\(355\) 0 0
\(356\) −3.71162 + 3.71162i −0.196716 + 0.196716i
\(357\) 0.470337i 0.0248929i
\(358\) 9.94027i 0.525359i
\(359\) −2.31461 + 2.31461i −0.122160 + 0.122160i −0.765544 0.643384i \(-0.777530\pi\)
0.643384 + 0.765544i \(0.277530\pi\)
\(360\) 0 0
\(361\) 11.6486i 0.613083i
\(362\) 41.1390 2.16222
\(363\) −17.6525 + 17.6525i −0.926515 + 0.926515i
\(364\) 2.85705 + 2.28257i 0.149750 + 0.119639i
\(365\) 0 0
\(366\) −18.0211 + 18.0211i −0.941980 + 0.941980i
\(367\) −10.2557 + 10.2557i −0.535346 + 0.535346i −0.922158 0.386813i \(-0.873576\pi\)
0.386813 + 0.922158i \(0.373576\pi\)
\(368\) −9.78493 + 9.78493i −0.510075 + 0.510075i
\(369\) −1.51472 1.51472i −0.0788531 0.0788531i
\(370\) 0 0
\(371\) 0.538982 + 0.538982i 0.0279826 + 0.0279826i
\(372\) 33.6917 1.74683
\(373\) −5.33438 5.33438i −0.276204 0.276204i 0.555388 0.831592i \(-0.312570\pi\)
−0.831592 + 0.555388i \(0.812570\pi\)
\(374\) 28.9346 1.49618
\(375\) 0 0
\(376\) 9.14806i 0.471775i
\(377\) −12.9853 + 16.2535i −0.668779 + 0.837098i
\(378\) −0.426260 0.426260i −0.0219245 0.0219245i
\(379\) 4.89160 + 4.89160i 0.251265 + 0.251265i 0.821489 0.570224i \(-0.193144\pi\)
−0.570224 + 0.821489i \(0.693144\pi\)
\(380\) 0 0
\(381\) 5.42696i 0.278032i
\(382\) 32.4333i 1.65943i
\(383\) −0.331496 −0.0169386 −0.00846932 0.999964i \(-0.502696\pi\)
−0.00846932 + 0.999964i \(0.502696\pi\)
\(384\) −12.4059 + 12.4059i −0.633086 + 0.633086i
\(385\) 0 0
\(386\) −23.0849 −1.17499
\(387\) −3.88596 3.88596i −0.197534 0.197534i
\(388\) 19.9163i 1.01110i
\(389\) 6.77907 0.343713 0.171856 0.985122i \(-0.445024\pi\)
0.171856 + 0.985122i \(0.445024\pi\)
\(390\) 0 0
\(391\) −5.22629 −0.264305
\(392\) 37.6965i 1.90396i
\(393\) −3.56340 3.56340i −0.179750 0.179750i
\(394\) 32.1097 1.61766
\(395\) 0 0
\(396\) −17.7420 + 17.7420i −0.891570 + 0.891570i
\(397\) −25.7273 −1.29121 −0.645607 0.763670i \(-0.723396\pi\)
−0.645607 + 0.763670i \(0.723396\pi\)
\(398\) 5.85714i 0.293592i
\(399\) 1.34203i 0.0671857i
\(400\) 0 0
\(401\) 7.72622 + 7.72622i 0.385829 + 0.385829i 0.873197 0.487368i \(-0.162043\pi\)
−0.487368 + 0.873197i \(0.662043\pi\)
\(402\) −26.9185 26.9185i −1.34258 1.34258i
\(403\) 28.8547 3.22523i 1.43735 0.160660i
\(404\) 47.2101i 2.34879i
\(405\) 0 0
\(406\) 3.47824 0.172622
\(407\) 14.0736 + 14.0736i 0.697601 + 0.697601i
\(408\) 10.5370 0.521657
\(409\) 7.15874 + 7.15874i 0.353977 + 0.353977i 0.861587 0.507610i \(-0.169471\pi\)
−0.507610 + 0.861587i \(0.669471\pi\)
\(410\) 0 0
\(411\) 9.47174 + 9.47174i 0.467207 + 0.467207i
\(412\) 41.2439 41.2439i 2.03194 2.03194i
\(413\) 1.27957 1.27957i 0.0629634 0.0629634i
\(414\) 4.73652 4.73652i 0.232787 0.232787i
\(415\) 0 0
\(416\) 4.30611 5.38988i 0.211124 0.264260i
\(417\) 4.26942 4.26942i 0.209075 0.209075i
\(418\) −82.5606 −4.03817
\(419\) 23.1087i 1.12894i 0.825455 + 0.564468i \(0.190919\pi\)
−0.825455 + 0.564468i \(0.809081\pi\)
\(420\) 0 0
\(421\) −0.323390 + 0.323390i −0.0157611 + 0.0157611i −0.714943 0.699182i \(-0.753548\pi\)
0.699182 + 0.714943i \(0.253548\pi\)
\(422\) 54.6612i 2.66086i
\(423\) 1.68447i 0.0819019i
\(424\) 12.0748 12.0748i 0.586405 0.586405i
\(425\) 0 0
\(426\) 0.274470i 0.0132981i
\(427\) 2.48442 0.120229
\(428\) −16.7460 + 16.7460i −0.809448 + 0.809448i
\(429\) −13.4965 + 16.8933i −0.651615 + 0.815615i
\(430\) 0 0
\(431\) 1.67187 1.67187i 0.0805312 0.0805312i −0.665694 0.746225i \(-0.731864\pi\)
0.746225 + 0.665694i \(0.231864\pi\)
\(432\) −3.63258 + 3.63258i −0.174772 + 0.174772i
\(433\) −10.8483 + 10.8483i −0.521337 + 0.521337i −0.917975 0.396638i \(-0.870177\pi\)
0.396638 + 0.917975i \(0.370177\pi\)
\(434\) −3.43254 3.43254i −0.164767 0.164767i
\(435\) 0 0
\(436\) 19.2272 + 19.2272i 0.920815 + 0.920815i
\(437\) 14.9124 0.713358
\(438\) −2.55675 2.55675i −0.122166 0.122166i
\(439\) −20.2491 −0.966437 −0.483219 0.875500i \(-0.660532\pi\)
−0.483219 + 0.875500i \(0.660532\pi\)
\(440\) 0 0
\(441\) 6.94124i 0.330535i
\(442\) 17.2885 1.93242i 0.822330 0.0919159i
\(443\) 13.2900 + 13.2900i 0.631425 + 0.631425i 0.948426 0.317000i \(-0.102676\pi\)
−0.317000 + 0.948426i \(0.602676\pi\)
\(444\) 9.81859 + 9.81859i 0.465970 + 0.465970i
\(445\) 0 0
\(446\) 21.6849i 1.02681i
\(447\) 20.9230i 0.989622i
\(448\) 1.33725 0.0631792
\(449\) 23.3059 23.3059i 1.09988 1.09988i 0.105451 0.994425i \(-0.466372\pi\)
0.994425 0.105451i \(-0.0336285\pi\)
\(450\) 0 0
\(451\) 12.8464 0.604916
\(452\) 51.5778 + 51.5778i 2.42602 + 2.42602i
\(453\) 20.7595i 0.975367i
\(454\) 45.7346 2.14643
\(455\) 0 0
\(456\) −30.0656 −1.40795
\(457\) 15.5860i 0.729085i −0.931187 0.364542i \(-0.881225\pi\)
0.931187 0.364542i \(-0.118775\pi\)
\(458\) 41.5662 + 41.5662i 1.94226 + 1.94226i
\(459\) −1.94022 −0.0905616
\(460\) 0 0
\(461\) 20.8994 20.8994i 0.973381 0.973381i −0.0262742 0.999655i \(-0.508364\pi\)
0.999655 + 0.0262742i \(0.00836429\pi\)
\(462\) 3.61515 0.168192
\(463\) 8.32123i 0.386720i 0.981128 + 0.193360i \(0.0619386\pi\)
−0.981128 + 0.193360i \(0.938061\pi\)
\(464\) 29.6414i 1.37607i
\(465\) 0 0
\(466\) −1.49436 1.49436i −0.0692251 0.0692251i
\(467\) 21.9600 + 21.9600i 1.01619 + 1.01619i 0.999867 + 0.0163185i \(0.00519457\pi\)
0.0163185 + 0.999867i \(0.494805\pi\)
\(468\) −9.41597 + 11.7858i −0.435253 + 0.544799i
\(469\) 3.71102i 0.171359i
\(470\) 0 0
\(471\) −6.03433 −0.278047
\(472\) −28.6661 28.6661i −1.31947 1.31947i
\(473\) 32.9571 1.51537
\(474\) −13.3662 13.3662i −0.613929 0.613929i
\(475\) 0 0
\(476\) −1.39148 1.39148i −0.0637782 0.0637782i
\(477\) −2.22339 + 2.22339i −0.101802 + 0.101802i
\(478\) 21.6668 21.6668i 0.991015 0.991015i
\(479\) 12.9813 12.9813i 0.593132 0.593132i −0.345344 0.938476i \(-0.612238\pi\)
0.938476 + 0.345344i \(0.112238\pi\)
\(480\) 0 0
\(481\) 9.34889 + 7.46907i 0.426273 + 0.340560i
\(482\) 15.8556 15.8556i 0.722204 0.722204i
\(483\) −0.652982 −0.0297117
\(484\) 104.449i 4.74766i
\(485\) 0 0
\(486\) 1.75839 1.75839i 0.0797624 0.0797624i
\(487\) 12.6406i 0.572801i 0.958110 + 0.286400i \(0.0924587\pi\)
−0.958110 + 0.286400i \(0.907541\pi\)
\(488\) 55.6584i 2.51954i
\(489\) 10.4110 10.4110i 0.470801 0.470801i
\(490\) 0 0
\(491\) 27.8197i 1.25549i −0.778421 0.627743i \(-0.783979\pi\)
0.778421 0.627743i \(-0.216021\pi\)
\(492\) 8.96248 0.404060
\(493\) 7.91599 7.91599i 0.356518 0.356518i
\(494\) −49.3301 + 5.51387i −2.21947 + 0.248081i
\(495\) 0 0
\(496\) −29.2520 + 29.2520i −1.31345 + 1.31345i
\(497\) −0.0189194 + 0.0189194i −0.000848650 + 0.000848650i
\(498\) 4.78221 4.78221i 0.214296 0.214296i
\(499\) 0.152074 + 0.152074i 0.00680776 + 0.00680776i 0.710502 0.703695i \(-0.248468\pi\)
−0.703695 + 0.710502i \(0.748468\pi\)
\(500\) 0 0
\(501\) −4.30314 4.30314i −0.192250 0.192250i
\(502\) 20.3300 0.907372
\(503\) 4.59193 + 4.59193i 0.204744 + 0.204744i 0.802029 0.597285i \(-0.203754\pi\)
−0.597285 + 0.802029i \(0.703754\pi\)
\(504\) 1.31651 0.0586419
\(505\) 0 0
\(506\) 40.1708i 1.78581i
\(507\) −6.93593 + 10.9951i −0.308035 + 0.488311i
\(508\) −16.0555 16.0555i −0.712347 0.712347i
\(509\) −11.1303 11.1303i −0.493341 0.493341i 0.416016 0.909357i \(-0.363426\pi\)
−0.909357 + 0.416016i \(0.863426\pi\)
\(510\) 0 0
\(511\) 0.352477i 0.0155927i
\(512\) 45.9692i 2.03157i
\(513\) 5.53612 0.244425
\(514\) −24.7986 + 24.7986i −1.09382 + 1.09382i
\(515\) 0 0
\(516\) 22.9929 1.01221
\(517\) −7.14308 7.14308i −0.314152 0.314152i
\(518\) 2.00066i 0.0879038i
\(519\) 16.0261 0.703469
\(520\) 0 0
\(521\) −13.6076 −0.596161 −0.298080 0.954541i \(-0.596346\pi\)
−0.298080 + 0.954541i \(0.596346\pi\)
\(522\) 14.3483i 0.628009i
\(523\) 12.9591 + 12.9591i 0.566664 + 0.566664i 0.931192 0.364528i \(-0.118770\pi\)
−0.364528 + 0.931192i \(0.618770\pi\)
\(524\) 21.0844 0.921076
\(525\) 0 0
\(526\) 41.1644 41.1644i 1.79485 1.79485i
\(527\) −15.6240 −0.680591
\(528\) 30.8082i 1.34075i
\(529\) 15.7442i 0.684530i
\(530\) 0 0
\(531\) 5.27843 + 5.27843i 0.229064 + 0.229064i
\(532\) 3.97036 + 3.97036i 0.172137 + 0.172137i
\(533\) 7.67577 0.857959i 0.332475 0.0371623i
\(534\) 3.11981i 0.135008i
\(535\) 0 0
\(536\) 83.1381 3.59102
\(537\) 2.82652 + 2.82652i 0.121973 + 0.121973i
\(538\) −41.5708 −1.79224
\(539\) 29.4346 + 29.4346i 1.26784 + 1.26784i
\(540\) 0 0
\(541\) −24.0220 24.0220i −1.03279 1.03279i −0.999444 0.0333420i \(-0.989385\pi\)
−0.0333420 0.999444i \(-0.510615\pi\)
\(542\) −31.3092 + 31.3092i −1.34485 + 1.34485i
\(543\) 11.6979 11.6979i 0.502005 0.502005i
\(544\) −2.62505 + 2.62505i −0.112548 + 0.112548i
\(545\) 0 0
\(546\) 2.16006 0.241440i 0.0924419 0.0103327i
\(547\) 18.6456 18.6456i 0.797229 0.797229i −0.185428 0.982658i \(-0.559367\pi\)
0.982658 + 0.185428i \(0.0593673\pi\)
\(548\) −56.0437 −2.39407
\(549\) 10.2486i 0.437401i
\(550\) 0 0
\(551\) −22.5871 + 22.5871i −0.962241 + 0.962241i
\(552\) 14.6288i 0.622641i
\(553\) 1.84268i 0.0783586i
\(554\) −44.4977 + 44.4977i −1.89053 + 1.89053i
\(555\) 0 0
\(556\) 25.2619i 1.07134i
\(557\) 1.32872 0.0562996 0.0281498 0.999604i \(-0.491038\pi\)
0.0281498 + 0.999604i \(0.491038\pi\)
\(558\) 14.1598 14.1598i 0.599432 0.599432i
\(559\) 19.6919 2.20106i 0.832880 0.0930951i
\(560\) 0 0
\(561\) 8.22758 8.22758i 0.347369 0.347369i
\(562\) 6.58175 6.58175i 0.277634 0.277634i
\(563\) 15.2469 15.2469i 0.642582 0.642582i −0.308607 0.951190i \(-0.599863\pi\)
0.951190 + 0.308607i \(0.0998629\pi\)
\(564\) −4.98346 4.98346i −0.209842 0.209842i
\(565\) 0 0
\(566\) −6.56889 6.56889i −0.276111 0.276111i
\(567\) −0.242414 −0.0101804
\(568\) 0.423851 + 0.423851i 0.0177844 + 0.0177844i
\(569\) 31.7042 1.32911 0.664555 0.747239i \(-0.268621\pi\)
0.664555 + 0.747239i \(0.268621\pi\)
\(570\) 0 0
\(571\) 3.77184i 0.157847i −0.996881 0.0789233i \(-0.974852\pi\)
0.996881 0.0789233i \(-0.0251482\pi\)
\(572\) −10.0493 89.9070i −0.420184 3.75920i
\(573\) 9.22243 + 9.22243i 0.385272 + 0.385272i
\(574\) −0.913107 0.913107i −0.0381123 0.0381123i
\(575\) 0 0
\(576\) 5.51638i 0.229849i
\(577\) 38.7401i 1.61277i −0.591391 0.806385i \(-0.701421\pi\)
0.591391 0.806385i \(-0.298579\pi\)
\(578\) 32.9135 1.36902
\(579\) −6.56419 + 6.56419i −0.272799 + 0.272799i
\(580\) 0 0
\(581\) −0.659281 −0.0273516
\(582\) 8.37033 + 8.37033i 0.346962 + 0.346962i
\(583\) 18.8568i 0.780967i
\(584\) 7.89654 0.326761
\(585\) 0 0
\(586\) −22.0632 −0.911423
\(587\) 11.4947i 0.474438i 0.971456 + 0.237219i \(0.0762358\pi\)
−0.971456 + 0.237219i \(0.923764\pi\)
\(588\) 20.5354 + 20.5354i 0.846866 + 0.846866i
\(589\) 44.5806 1.83691
\(590\) 0 0
\(591\) 9.13041 9.13041i 0.375575 0.375575i
\(592\) −17.0495 −0.700731
\(593\) 23.5194i 0.965824i 0.875669 + 0.482912i \(0.160421\pi\)
−0.875669 + 0.482912i \(0.839579\pi\)
\(594\) 14.9131i 0.611891i
\(595\) 0 0
\(596\) 61.8999 + 61.8999i 2.53552 + 2.53552i
\(597\) 1.66548 + 1.66548i 0.0681636 + 0.0681636i
\(598\) 2.68284 + 24.0021i 0.109709 + 0.981520i
\(599\) 15.0098i 0.613282i 0.951825 + 0.306641i \(0.0992051\pi\)
−0.951825 + 0.306641i \(0.900795\pi\)
\(600\) 0 0
\(601\) −9.20174 −0.375347 −0.187673 0.982231i \(-0.560095\pi\)
−0.187673 + 0.982231i \(0.560095\pi\)
\(602\) −2.34254 2.34254i −0.0954749 0.0954749i
\(603\) −15.3086 −0.623414
\(604\) 61.4163 + 61.4163i 2.49900 + 2.49900i
\(605\) 0 0
\(606\) −19.8413 19.8413i −0.805996 0.805996i
\(607\) 1.90926 1.90926i 0.0774945 0.0774945i −0.667297 0.744792i \(-0.732549\pi\)
0.744792 + 0.667297i \(0.232549\pi\)
\(608\) 7.49017 7.49017i 0.303766 0.303766i
\(609\) 0.989038 0.989038i 0.0400779 0.0400779i
\(610\) 0 0
\(611\) −4.74506 3.79095i −0.191965 0.153365i
\(612\) 5.74007 5.74007i 0.232029 0.232029i
\(613\) 8.40716 0.339562 0.169781 0.985482i \(-0.445694\pi\)
0.169781 + 0.985482i \(0.445694\pi\)
\(614\) 62.6245i 2.52732i
\(615\) 0 0
\(616\) −5.58270 + 5.58270i −0.224933 + 0.224933i
\(617\) 5.02106i 0.202140i −0.994879 0.101070i \(-0.967773\pi\)
0.994879 0.101070i \(-0.0322267\pi\)
\(618\) 34.6677i 1.39454i
\(619\) −28.7489 + 28.7489i −1.15552 + 1.15552i −0.170089 + 0.985429i \(0.554405\pi\)
−0.985429 + 0.170089i \(0.945595\pi\)
\(620\) 0 0
\(621\) 2.69366i 0.108093i
\(622\) 17.5524 0.703786
\(623\) 0.215051 0.215051i 0.00861582 0.00861582i
\(624\) −2.05755 18.4079i −0.0823678 0.736907i
\(625\) 0 0
\(626\) −9.58810 + 9.58810i −0.383218 + 0.383218i
\(627\) −23.4761 + 23.4761i −0.937546 + 0.937546i
\(628\) 17.8524 17.8524i 0.712386 0.712386i
\(629\) −4.55322 4.55322i −0.181549 0.181549i
\(630\) 0 0
\(631\) 21.7388 + 21.7388i 0.865407 + 0.865407i 0.991960 0.126553i \(-0.0403913\pi\)
−0.126553 + 0.991960i \(0.540391\pi\)
\(632\) 41.2815 1.64209
\(633\) −15.5429 15.5429i −0.617775 0.617775i
\(634\) −34.6097 −1.37453
\(635\) 0 0
\(636\) 13.1557i 0.521656i
\(637\) 19.5530 + 15.6214i 0.774719 + 0.618943i
\(638\) −60.8446 60.8446i −2.40886 2.40886i
\(639\) −0.0780456 0.0780456i −0.00308744 0.00308744i
\(640\) 0 0
\(641\) 8.55187i 0.337779i 0.985635 + 0.168889i \(0.0540181\pi\)
−0.985635 + 0.168889i \(0.945982\pi\)
\(642\) 14.0759i 0.555531i
\(643\) 3.11521 0.122852 0.0614259 0.998112i \(-0.480435\pi\)
0.0614259 + 0.998112i \(0.480435\pi\)
\(644\) 1.93183 1.93183i 0.0761246 0.0761246i
\(645\) 0 0
\(646\) 26.7108 1.05092
\(647\) −26.4560 26.4560i −1.04009 1.04009i −0.999162 0.0409311i \(-0.986968\pi\)
−0.0409311 0.999162i \(-0.513032\pi\)
\(648\) 5.43081i 0.213342i
\(649\) −44.7668 −1.75725
\(650\) 0 0
\(651\) −1.95209 −0.0765084
\(652\) 61.6010i 2.41248i
\(653\) 9.61272 + 9.61272i 0.376175 + 0.376175i 0.869720 0.493545i \(-0.164299\pi\)
−0.493545 + 0.869720i \(0.664299\pi\)
\(654\) 16.1615 0.631963
\(655\) 0 0
\(656\) −7.78146 + 7.78146i −0.303815 + 0.303815i
\(657\) −1.45403 −0.0567270
\(658\) 1.01544i 0.0395860i
\(659\) 15.1490i 0.590122i −0.955478 0.295061i \(-0.904660\pi\)
0.955478 0.295061i \(-0.0953400\pi\)
\(660\) 0 0
\(661\) 18.9976 + 18.9976i 0.738920 + 0.738920i 0.972369 0.233449i \(-0.0750013\pi\)
−0.233449 + 0.972369i \(0.575001\pi\)
\(662\) −17.1157 17.1157i −0.665220 0.665220i
\(663\) 4.36651 5.46548i 0.169581 0.212262i
\(664\) 14.7699i 0.573182i
\(665\) 0 0
\(666\) 8.25304 0.319799
\(667\) 10.9900 + 10.9900i 0.425534 + 0.425534i
\(668\) 25.4614 0.985131
\(669\) 6.16611 + 6.16611i 0.238396 + 0.238396i
\(670\) 0 0
\(671\) −43.4597 43.4597i −1.67774 1.67774i
\(672\) −0.327978 + 0.327978i −0.0126520 + 0.0126520i
\(673\) −26.4650 + 26.4650i −1.02015 + 1.02015i −0.0203584 + 0.999793i \(0.506481\pi\)
−0.999793 + 0.0203584i \(0.993519\pi\)
\(674\) 2.01953 2.01953i 0.0777895 0.0777895i
\(675\) 0 0
\(676\) −12.0090 53.0484i −0.461885 2.04032i
\(677\) 13.7029 13.7029i 0.526645 0.526645i −0.392925 0.919570i \(-0.628537\pi\)
0.919570 + 0.392925i \(0.128537\pi\)
\(678\) 43.3539 1.66500
\(679\) 1.15394i 0.0442843i
\(680\) 0 0
\(681\) 13.0046 13.0046i 0.498339 0.498339i
\(682\) 120.090i 4.59850i
\(683\) 14.6506i 0.560588i 0.959914 + 0.280294i \(0.0904320\pi\)
−0.959914 + 0.280294i \(0.909568\pi\)
\(684\) −16.3784 + 16.3784i −0.626244 + 0.626244i
\(685\) 0 0
\(686\) 8.40410i 0.320870i
\(687\) 23.6387 0.901873
\(688\) −19.9631 + 19.9631i −0.761085 + 0.761085i
\(689\) −1.25936 11.2670i −0.0479779 0.429237i
\(690\) 0 0
\(691\) −34.7630 + 34.7630i −1.32245 + 1.32245i −0.410660 + 0.911789i \(0.634702\pi\)
−0.911789 + 0.410660i \(0.865298\pi\)
\(692\) −47.4128 + 47.4128i −1.80236 + 1.80236i
\(693\) 1.02797 1.02797i 0.0390493 0.0390493i
\(694\) −62.7023 62.7023i −2.38015 2.38015i
\(695\) 0 0
\(696\) −22.1574 22.1574i −0.839875 0.839875i
\(697\) −4.15621 −0.157428
\(698\) 12.0740 + 12.0740i 0.457009 + 0.457009i
\(699\) −0.849846 −0.0321441
\(700\) 0 0
\(701\) 13.7058i 0.517659i 0.965923 + 0.258830i \(0.0833369\pi\)
−0.965923 + 0.258830i \(0.916663\pi\)
\(702\) 0.995982 + 8.91060i 0.0375909 + 0.336309i
\(703\) 12.9919 + 12.9919i 0.489999 + 0.489999i
\(704\) −23.3925 23.3925i −0.881636 0.881636i
\(705\) 0 0
\(706\) 64.5208i 2.42827i
\(707\) 2.73534i 0.102873i
\(708\) −31.2321 −1.17377
\(709\) −4.33781 + 4.33781i −0.162910 + 0.162910i −0.783854 0.620945i \(-0.786749\pi\)
0.620945 + 0.783854i \(0.286749\pi\)
\(710\) 0 0
\(711\) −7.60135 −0.285073
\(712\) −4.81778 4.81778i −0.180554 0.180554i
\(713\) 21.6912i 0.812342i
\(714\) −1.16961 −0.0437715
\(715\) 0 0
\(716\) −16.7243 −0.625017
\(717\) 12.3219i 0.460170i
\(718\) −5.75584 5.75584i −0.214806 0.214806i
\(719\) −27.4328 −1.02307 −0.511536 0.859262i \(-0.670923\pi\)
−0.511536 + 0.859262i \(0.670923\pi\)
\(720\) 0 0
\(721\) −2.38966 + 2.38966i −0.0889957 + 0.0889957i
\(722\) −28.9670 −1.07804
\(723\) 9.01711i 0.335350i
\(724\) 69.2157i 2.57238i
\(725\) 0 0
\(726\) −43.8972 43.8972i −1.62918 1.62918i
\(727\) −27.8372 27.8372i −1.03243 1.03243i −0.999456 0.0329694i \(-0.989504\pi\)
−0.0329694 0.999456i \(-0.510496\pi\)
\(728\) −2.96283 + 3.70852i −0.109810 + 0.137447i
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) −10.6626 −0.394371
\(732\) −30.3202 30.3202i −1.12067 1.12067i
\(733\) −16.0974 −0.594571 −0.297285 0.954789i \(-0.596081\pi\)
−0.297285 + 0.954789i \(0.596081\pi\)
\(734\) −25.5034 25.5034i −0.941349 0.941349i
\(735\) 0 0
\(736\) −3.64443 3.64443i −0.134335 0.134335i
\(737\) 64.9167 64.9167i 2.39124 2.39124i
\(738\) 3.76672 3.76672i 0.138655 0.138655i
\(739\) −9.67318 + 9.67318i −0.355834 + 0.355834i −0.862275 0.506441i \(-0.830961\pi\)
0.506441 + 0.862275i \(0.330961\pi\)
\(740\) 0 0
\(741\) −12.4592 + 15.5949i −0.457699 + 0.572893i
\(742\) −1.34031 + 1.34031i −0.0492044 + 0.0492044i
\(743\) 0.660092 0.0242164 0.0121082 0.999927i \(-0.496146\pi\)
0.0121082 + 0.999927i \(0.496146\pi\)
\(744\) 43.7326i 1.60332i
\(745\) 0 0
\(746\) 13.2653 13.2653i 0.485675 0.485675i
\(747\) 2.71964i 0.0995066i
\(748\) 48.6820i 1.77999i
\(749\) 0.970259 0.970259i 0.0354525 0.0354525i
\(750\) 0 0
\(751\) 35.4818i 1.29475i −0.762171 0.647375i \(-0.775867\pi\)
0.762171 0.647375i \(-0.224133\pi\)
\(752\) 8.65354 0.315562
\(753\) 5.78084 5.78084i 0.210665 0.210665i
\(754\) −40.4183 32.2912i −1.47195 1.17598i
\(755\) 0 0
\(756\) 0.717175 0.717175i 0.0260834 0.0260834i
\(757\) −10.5506 + 10.5506i −0.383469 + 0.383469i −0.872350 0.488881i \(-0.837405\pi\)
0.488881 + 0.872350i \(0.337405\pi\)
\(758\) −12.1642 + 12.1642i −0.441823 + 0.441823i
\(759\) 11.4226 + 11.4226i 0.414613 + 0.414613i
\(760\) 0 0
\(761\) 22.4488 + 22.4488i 0.813767 + 0.813767i 0.985196 0.171429i \(-0.0548386\pi\)
−0.171429 + 0.985196i \(0.554839\pi\)
\(762\) −13.4955 −0.488890
\(763\) −1.11402 1.11402i −0.0403302 0.0403302i
\(764\) −54.5685 −1.97422
\(765\) 0 0
\(766\) 0.824345i 0.0297848i
\(767\) −26.7482 + 2.98978i −0.965822 + 0.107955i
\(768\) −23.0490 23.0490i −0.831709 0.831709i
\(769\) −3.44776 3.44776i −0.124329 0.124329i 0.642204 0.766534i \(-0.278020\pi\)
−0.766534 + 0.642204i \(0.778020\pi\)
\(770\) 0 0
\(771\) 14.1030i 0.507907i
\(772\) 38.8399i 1.39788i
\(773\) −25.5316 −0.918307 −0.459154 0.888357i \(-0.651847\pi\)
−0.459154 + 0.888357i \(0.651847\pi\)
\(774\) 9.66338 9.66338i 0.347343 0.347343i
\(775\) 0 0
\(776\) −25.8518 −0.928026
\(777\) −0.568887 0.568887i −0.0204087 0.0204087i
\(778\) 16.8578i 0.604383i
\(779\) 11.8591 0.424896
\(780\) 0 0
\(781\) 0.661911 0.0236850
\(782\) 12.9965i 0.464752i
\(783\) 4.07995 + 4.07995i 0.145805 + 0.145805i
\(784\) −35.6588 −1.27353
\(785\) 0 0
\(786\) 8.86127 8.86127i 0.316071 0.316071i
\(787\) 15.5693 0.554986 0.277493 0.960728i \(-0.410496\pi\)
0.277493 + 0.960728i \(0.410496\pi\)
\(788\) 54.0240i 1.92453i
\(789\) 23.4102i 0.833426i
\(790\) 0 0
\(791\) −2.98841 2.98841i −0.106256 0.106256i
\(792\) −23.0296 23.0296i −0.818320 0.818320i
\(793\) −28.8698 23.0648i −1.02520 0.819055i
\(794\) 63.9772i 2.27046i
\(795\) 0 0
\(796\) −9.85453 −0.349285
\(797\) 7.35388 + 7.35388i 0.260488 + 0.260488i 0.825252 0.564764i \(-0.191033\pi\)
−0.564764 + 0.825252i \(0.691033\pi\)
\(798\) 3.33730 0.118139
\(799\) 2.31100 + 2.31100i 0.0817573 + 0.0817573i
\(800\) 0 0
\(801\) 0.887120 + 0.887120i 0.0313448 + 0.0313448i
\(802\) −19.2132 + 19.2132i −0.678440 + 0.678440i
\(803\) 6.16586 6.16586i 0.217588 0.217588i
\(804\) 45.2900 45.2900i 1.59725 1.59725i
\(805\) 0 0
\(806\) 8.02033 + 71.7543i 0.282504 + 2.52744i
\(807\) −11.8207 + 11.8207i −0.416107 + 0.416107i
\(808\) 61.2798 2.15582
\(809\) 32.8074i 1.15345i 0.816939 + 0.576724i \(0.195669\pi\)
−0.816939 + 0.576724i \(0.804331\pi\)
\(810\) 0 0
\(811\) −23.4835 + 23.4835i −0.824618 + 0.824618i −0.986766 0.162149i \(-0.948158\pi\)
0.162149 + 0.986766i \(0.448158\pi\)
\(812\) 5.85207i 0.205368i
\(813\) 17.8056i 0.624468i
\(814\) −34.9974 + 34.9974i −1.22666 + 1.22666i
\(815\) 0 0
\(816\) 9.96736i 0.348927i
\(817\) 30.4241 1.06440
\(818\) −17.8020 + 17.8020i −0.622431 + 0.622431i
\(819\) 0.545559 0.682867i 0.0190634 0.0238613i
\(820\) 0 0
\(821\) 28.3481 28.3481i 0.989357 0.989357i −0.0105868 0.999944i \(-0.503370\pi\)
0.999944 + 0.0105868i \(0.00336993\pi\)
\(822\) −23.5538 + 23.5538i −0.821534 + 0.821534i
\(823\) 33.0457 33.0457i 1.15190 1.15190i 0.165729 0.986171i \(-0.447002\pi\)
0.986171 0.165729i \(-0.0529977\pi\)
\(824\) 53.5356 + 53.5356i 1.86500 + 1.86500i
\(825\) 0 0
\(826\) 3.18196 + 3.18196i 0.110714 + 0.110714i
\(827\) −50.1300 −1.74319 −0.871596 0.490225i \(-0.836915\pi\)
−0.871596 + 0.490225i \(0.836915\pi\)
\(828\) 7.96910 + 7.96910i 0.276946 + 0.276946i
\(829\) 28.1449 0.977512 0.488756 0.872420i \(-0.337451\pi\)
0.488756 + 0.872420i \(0.337451\pi\)
\(830\) 0 0
\(831\) 25.3059i 0.877850i
\(832\) −15.5393 12.4148i −0.538729 0.430404i
\(833\) −9.52297 9.52297i −0.329951 0.329951i
\(834\) 10.6170 + 10.6170i 0.367636 + 0.367636i
\(835\) 0 0
\(836\) 138.907i 4.80419i
\(837\) 8.05269i 0.278342i
\(838\) −57.4655 −1.98511
\(839\) −25.8159 + 25.8159i −0.891264 + 0.891264i −0.994642 0.103378i \(-0.967035\pi\)
0.103378 + 0.994642i \(0.467035\pi\)
\(840\) 0 0
\(841\) −4.29196 −0.147999
\(842\) −0.804189 0.804189i −0.0277142 0.0277142i
\(843\) 3.74304i 0.128917i
\(844\) 91.9664 3.16561
\(845\) 0 0
\(846\) −4.18886 −0.144016
\(847\) 6.05173i 0.207940i
\(848\) 11.4221 + 11.4221i 0.392236 + 0.392236i
\(849\) −3.73573 −0.128210
\(850\) 0 0
\(851\) 6.32136 6.32136i 0.216694 0.216694i
\(852\) 0.461790 0.0158207
\(853\) 6.25026i 0.214005i −0.994259 0.107002i \(-0.965875\pi\)
0.994259 0.107002i \(-0.0341253\pi\)
\(854\) 6.17811i 0.211411i
\(855\) 0 0
\(856\) −21.7367 21.7367i −0.742945 0.742945i
\(857\) 12.2252 + 12.2252i 0.417607 + 0.417607i 0.884378 0.466771i \(-0.154583\pi\)
−0.466771 + 0.884378i \(0.654583\pi\)
\(858\) −42.0093 33.5623i −1.43417 1.14580i
\(859\) 25.0493i 0.854670i −0.904093 0.427335i \(-0.859452\pi\)
0.904093 0.427335i \(-0.140548\pi\)
\(860\) 0 0
\(861\) −0.519284 −0.0176972
\(862\) 4.15752 + 4.15752i 0.141606 + 0.141606i
\(863\) 25.4480 0.866261 0.433130 0.901331i \(-0.357409\pi\)
0.433130 + 0.901331i \(0.357409\pi\)
\(864\) −1.35296 1.35296i −0.0460288 0.0460288i
\(865\) 0 0
\(866\) −26.9770 26.9770i −0.916716 0.916716i
\(867\) 9.35895 9.35895i 0.317847 0.317847i
\(868\) 5.77519 5.77519i 0.196023 0.196023i
\(869\) 32.2338 32.2338i 1.09346 1.09346i
\(870\) 0 0
\(871\) 34.4524 43.1234i 1.16737 1.46118i
\(872\) −24.9574 + 24.9574i −0.845163 + 0.845163i
\(873\) 4.76021 0.161109
\(874\) 37.0834i 1.25436i
\(875\) 0 0
\(876\) 4.30169 4.30169i 0.145341 0.145341i
\(877\) 21.2930i 0.719015i −0.933142 0.359507i \(-0.882945\pi\)
0.933142 0.359507i \(-0.117055\pi\)
\(878\) 50.3544i 1.69938i
\(879\) −6.27368 + 6.27368i −0.211606 + 0.211606i
\(880\) 0 0
\(881\) 10.5084i 0.354037i −0.984208 0.177018i \(-0.943355\pi\)
0.984208 0.177018i \(-0.0566452\pi\)
\(882\) 17.2611 0.581211
\(883\) −9.86276 + 9.86276i −0.331908 + 0.331908i −0.853311 0.521403i \(-0.825409\pi\)
0.521403 + 0.853311i \(0.325409\pi\)
\(884\) 3.25126 + 29.0876i 0.109352 + 0.978321i
\(885\) 0 0
\(886\) −33.0488 + 33.0488i −1.11030 + 1.11030i
\(887\) −21.5847 + 21.5847i −0.724745 + 0.724745i −0.969568 0.244823i \(-0.921270\pi\)
0.244823 + 0.969568i \(0.421270\pi\)
\(888\) −12.7448 + 12.7448i −0.427687 + 0.427687i
\(889\) 0.930252 + 0.930252i 0.0311996 + 0.0311996i
\(890\) 0 0
\(891\) 4.24054 + 4.24054i 0.142063 + 0.142063i
\(892\) −36.4845 −1.22159
\(893\) −6.59408 6.59408i −0.220663 0.220663i
\(894\) 52.0301 1.74015
\(895\) 0 0
\(896\) 4.25307i 0.142085i
\(897\) 7.58788 + 6.06215i 0.253352 + 0.202409i
\(898\) 57.9559 + 57.9559i 1.93401 + 1.93401i
\(899\) 32.8546 + 32.8546i 1.09576 + 1.09576i
\(900\) 0 0
\(901\) 6.10073i 0.203245i
\(902\) 31.9458i 1.06368i
\(903\) −1.33221 −0.0443330
\(904\) −66.9493 + 66.9493i −2.22670 + 2.22670i
\(905\) 0 0
\(906\) 51.6236 1.71508
\(907\) −14.1974 14.1974i −0.471417 0.471417i 0.430956 0.902373i \(-0.358177\pi\)
−0.902373 + 0.430956i \(0.858177\pi\)
\(908\) 76.9475i 2.55359i
\(909\) −11.2837 −0.374258
\(910\) 0 0
\(911\) −6.62609 −0.219532 −0.109766 0.993957i \(-0.535010\pi\)
−0.109766 + 0.993957i \(0.535010\pi\)
\(912\) 28.4403i 0.941754i
\(913\) 11.5328 + 11.5328i 0.381679 + 0.381679i
\(914\) 38.7585 1.28202
\(915\) 0 0
\(916\) −69.9344 + 69.9344i −2.31070 + 2.31070i
\(917\) −1.22162 −0.0403416
\(918\) 4.82483i 0.159243i
\(919\) 56.0617i 1.84930i −0.380813 0.924652i \(-0.624356\pi\)
0.380813 0.924652i \(-0.375644\pi\)
\(920\) 0 0
\(921\) −17.8073 17.8073i −0.586770 0.586770i
\(922\) 51.9714 + 51.9714i 1.71159 + 1.71159i
\(923\) 0.395493 0.0442062i 0.0130178 0.00145507i
\(924\) 6.08242i 0.200097i
\(925\) 0 0
\(926\) −20.6928 −0.680007
\(927\) −9.85776 9.85776i −0.323771 0.323771i
\(928\) 11.0400 0.362407
\(929\) −16.7396 16.7396i −0.549210 0.549210i 0.377003 0.926212i \(-0.376955\pi\)
−0.926212 + 0.377003i \(0.876955\pi\)
\(930\) 0 0
\(931\) 27.1723 + 27.1723i 0.890537 + 0.890537i
\(932\) 2.51424 2.51424i 0.0823567 0.0823567i
\(933\) 4.99102 4.99102i 0.163399 0.163399i
\(934\) −54.6088 + 54.6088i −1.78685 + 1.78685i
\(935\) 0 0
\(936\) −15.2983 12.2222i −0.500039 0.399494i
\(937\) −12.3582 + 12.3582i −0.403724 + 0.403724i −0.879543 0.475819i \(-0.842152\pi\)
0.475819 + 0.879543i \(0.342152\pi\)
\(938\) −9.22837 −0.301317
\(939\) 5.45276i 0.177944i
\(940\) 0 0
\(941\) 18.8531 18.8531i 0.614594 0.614594i −0.329545 0.944140i \(-0.606895\pi\)
0.944140 + 0.329545i \(0.106895\pi\)
\(942\) 15.0058i 0.488917i
\(943\) 5.77018i 0.187903i
\(944\) 27.1165 27.1165i 0.882568 0.882568i
\(945\) 0 0
\(946\) 81.9559i 2.66462i
\(947\) −13.5380 −0.439926 −0.219963 0.975508i \(-0.570594\pi\)
−0.219963 + 0.975508i \(0.570594\pi\)
\(948\) 22.4883 22.4883i 0.730387 0.730387i
\(949\) 3.27232 4.09590i 0.106224 0.132959i
\(950\) 0 0
\(951\) −9.84128 + 9.84128i −0.319125 + 0.319125i
\(952\) 1.80617 1.80617i 0.0585383 0.0585383i
\(953\) 10.8161 10.8161i 0.350369 0.350369i −0.509878 0.860247i \(-0.670309\pi\)
0.860247 + 0.509878i \(0.170309\pi\)
\(954\) −5.52901 5.52901i −0.179008 0.179008i
\(955\) 0 0
\(956\) 36.4540 + 36.4540i 1.17901 + 1.17901i
\(957\) −34.6024 −1.11854
\(958\) 32.2812 + 32.2812i 1.04296 + 1.04296i
\(959\) 3.24716 0.104856
\(960\) 0 0
\(961\) 33.8458i 1.09180i
\(962\) −18.5737 + 23.2483i −0.598839 + 0.749556i
\(963\) 4.00248 + 4.00248i 0.128978 + 0.128978i
\(964\) 26.6768 + 26.6768i 0.859202 + 0.859202i
\(965\) 0 0
\(966\) 1.62380i 0.0522449i
\(967\) 16.5180i 0.531183i −0.964086 0.265591i \(-0.914433\pi\)
0.964086 0.265591i \(-0.0855672\pi\)
\(968\) 135.577 4.35760
\(969\) 7.59523 7.59523i 0.243994 0.243994i
\(970\) 0 0
\(971\) −40.8913 −1.31226 −0.656132 0.754646i \(-0.727809\pi\)
−0.656132 + 0.754646i \(0.727809\pi\)
\(972\) 2.95847 + 2.95847i 0.0948928 + 0.0948928i
\(973\) 1.46367i 0.0469231i
\(974\) −31.4340 −1.00721
\(975\) 0 0
\(976\) 52.6497 1.68527
\(977\) 1.92441i 0.0615674i −0.999526 0.0307837i \(-0.990200\pi\)
0.999526 0.0307837i \(-0.00980030\pi\)
\(978\) 25.8894 + 25.8894i 0.827853 + 0.827853i
\(979\) −7.52374 −0.240460
\(980\) 0 0
\(981\) 4.59552 4.59552i 0.146724 0.146724i
\(982\) 69.1805 2.20764
\(983\) 59.7525i 1.90581i −0.303273 0.952904i \(-0.598079\pi\)
0.303273 0.952904i \(-0.401921\pi\)
\(984\) 11.6335i 0.370863i
\(985\) 0 0
\(986\) 19.6851 + 19.6851i 0.626900 + 0.626900i
\(987\) 0.288741 + 0.288741i 0.00919071 + 0.00919071i
\(988\) −9.27698 82.9970i −0.295140 2.64049i
\(989\) 14.8032i 0.470714i
\(990\) 0 0
\(991\) 29.3438 0.932136 0.466068 0.884749i \(-0.345670\pi\)
0.466068 + 0.884749i \(0.345670\pi\)
\(992\) −10.8950 10.8950i −0.345917 0.345917i
\(993\) −9.73371 −0.308890
\(994\) −0.0470477 0.0470477i −0.00149226 0.00149226i
\(995\) 0 0
\(996\) 8.04597 + 8.04597i 0.254946 + 0.254946i
\(997\) 34.3919 34.3919i 1.08920 1.08920i 0.0935912 0.995611i \(-0.470165\pi\)
0.995611 0.0935912i \(-0.0298347\pi\)
\(998\) −0.378169 + 0.378169i −0.0119707 + 0.0119707i
\(999\) 2.34675 2.34675i 0.0742480 0.0742480i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.k.d.343.14 28
5.2 odd 4 975.2.t.d.382.1 28
5.3 odd 4 195.2.t.a.187.14 yes 28
5.4 even 2 195.2.k.a.148.1 yes 28
13.8 odd 4 975.2.t.d.268.1 28
15.8 even 4 585.2.w.g.577.1 28
15.14 odd 2 585.2.n.g.343.14 28
65.8 even 4 195.2.k.a.112.14 28
65.34 odd 4 195.2.t.a.73.14 yes 28
65.47 even 4 inner 975.2.k.d.307.1 28
195.8 odd 4 585.2.n.g.307.1 28
195.164 even 4 585.2.w.g.73.1 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.k.a.112.14 28 65.8 even 4
195.2.k.a.148.1 yes 28 5.4 even 2
195.2.t.a.73.14 yes 28 65.34 odd 4
195.2.t.a.187.14 yes 28 5.3 odd 4
585.2.n.g.307.1 28 195.8 odd 4
585.2.n.g.343.14 28 15.14 odd 2
585.2.w.g.73.1 28 195.164 even 4
585.2.w.g.577.1 28 15.8 even 4
975.2.k.d.307.1 28 65.47 even 4 inner
975.2.k.d.343.14 28 1.1 even 1 trivial
975.2.t.d.268.1 28 13.8 odd 4
975.2.t.d.382.1 28 5.2 odd 4