Properties

Label 975.2.t.d.268.1
Level $975$
Weight $2$
Character 975.268
Analytic conductor $7.785$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(268,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.268"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.t (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 268.1
Character \(\chi\) \(=\) 975.268
Dual form 975.2.t.d.382.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.48675 q^{2} +(0.707107 + 0.707107i) q^{3} +4.18390 q^{4} +(-1.75839 - 1.75839i) q^{6} -0.242414i q^{7} -5.43081 q^{8} +1.00000i q^{9} +(-4.24054 + 4.24054i) q^{11} +(2.95847 + 2.95847i) q^{12} +(-2.25052 - 2.81694i) q^{13} +0.602823i q^{14} +5.13724 q^{16} +(-1.37194 - 1.37194i) q^{17} -2.48675i q^{18} +(3.91462 - 3.91462i) q^{19} +(0.171413 - 0.171413i) q^{21} +(10.5451 - 10.5451i) q^{22} +(1.90471 - 1.90471i) q^{23} +(-3.84016 - 3.84016i) q^{24} +(5.59648 + 7.00501i) q^{26} +(-0.707107 + 0.707107i) q^{27} -1.01424i q^{28} -5.76992i q^{29} +(-5.69411 - 5.69411i) q^{31} -1.91338 q^{32} -5.99703 q^{33} +(3.41167 + 3.41167i) q^{34} +4.18390i q^{36} +3.31881i q^{37} +(-9.73467 + 9.73467i) q^{38} +(0.400516 - 3.58324i) q^{39} +(-1.51472 - 1.51472i) q^{41} +(-0.426260 + 0.426260i) q^{42} +(3.88596 - 3.88596i) q^{43} +(-17.7420 + 17.7420i) q^{44} +(-4.73652 + 4.73652i) q^{46} -1.68447i q^{47} +(3.63258 + 3.63258i) q^{48} +6.94124 q^{49} -1.94022i q^{51} +(-9.41597 - 11.7858i) q^{52} +(2.22339 + 2.22339i) q^{53} +(1.75839 - 1.75839i) q^{54} +1.31651i q^{56} +5.53612 q^{57} +14.3483i q^{58} +(-5.27843 - 5.27843i) q^{59} +10.2486 q^{61} +(14.1598 + 14.1598i) q^{62} +0.242414 q^{63} -5.51638 q^{64} +14.9131 q^{66} -15.3086 q^{67} +(-5.74007 - 5.74007i) q^{68} +2.69366 q^{69} +(-0.0780456 - 0.0780456i) q^{71} -5.43081i q^{72} +1.45403 q^{73} -8.25304i q^{74} +(16.3784 - 16.3784i) q^{76} +(1.02797 + 1.02797i) q^{77} +(-0.995982 + 8.91060i) q^{78} +7.60135i q^{79} -1.00000 q^{81} +(3.76672 + 3.76672i) q^{82} -2.71964i q^{83} +(0.717175 - 0.717175i) q^{84} +(-9.66338 + 9.66338i) q^{86} +(4.07995 - 4.07995i) q^{87} +(23.0296 - 23.0296i) q^{88} +(-0.887120 - 0.887120i) q^{89} +(-0.682867 + 0.545559i) q^{91} +(7.96910 - 7.96910i) q^{92} -8.05269i q^{93} +4.18886i q^{94} +(-1.35296 - 1.35296i) q^{96} +4.76021 q^{97} -17.2611 q^{98} +(-4.24054 - 4.24054i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 4 q^{2} + 28 q^{4} + 12 q^{8} - 8 q^{11} + 8 q^{12} + 28 q^{16} - 28 q^{17} + 8 q^{21} + 32 q^{22} + 8 q^{23} - 16 q^{31} + 68 q^{32} + 8 q^{33} - 28 q^{34} - 8 q^{39} + 4 q^{41} - 40 q^{44} - 16 q^{46}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.48675 −1.75839 −0.879197 0.476458i \(-0.841920\pi\)
−0.879197 + 0.476458i \(0.841920\pi\)
\(3\) 0.707107 + 0.707107i 0.408248 + 0.408248i
\(4\) 4.18390 2.09195
\(5\) 0 0
\(6\) −1.75839 1.75839i −0.717862 0.717862i
\(7\) 0.242414i 0.0916240i −0.998950 0.0458120i \(-0.985412\pi\)
0.998950 0.0458120i \(-0.0145875\pi\)
\(8\) −5.43081 −1.92008
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −4.24054 + 4.24054i −1.27857 + 1.27857i −0.337104 + 0.941467i \(0.609447\pi\)
−0.941467 + 0.337104i \(0.890553\pi\)
\(12\) 2.95847 + 2.95847i 0.854036 + 0.854036i
\(13\) −2.25052 2.81694i −0.624183 0.781278i
\(14\) 0.602823i 0.161111i
\(15\) 0 0
\(16\) 5.13724 1.28431
\(17\) −1.37194 1.37194i −0.332745 0.332745i 0.520883 0.853628i \(-0.325603\pi\)
−0.853628 + 0.520883i \(0.825603\pi\)
\(18\) 2.48675i 0.586132i
\(19\) 3.91462 3.91462i 0.898076 0.898076i −0.0971894 0.995266i \(-0.530985\pi\)
0.995266 + 0.0971894i \(0.0309853\pi\)
\(20\) 0 0
\(21\) 0.171413 0.171413i 0.0374054 0.0374054i
\(22\) 10.5451 10.5451i 2.24823 2.24823i
\(23\) 1.90471 1.90471i 0.397159 0.397159i −0.480071 0.877230i \(-0.659389\pi\)
0.877230 + 0.480071i \(0.159389\pi\)
\(24\) −3.84016 3.84016i −0.783870 0.783870i
\(25\) 0 0
\(26\) 5.59648 + 7.00501i 1.09756 + 1.37380i
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) 1.01424i 0.191673i
\(29\) 5.76992i 1.07145i −0.844393 0.535724i \(-0.820039\pi\)
0.844393 0.535724i \(-0.179961\pi\)
\(30\) 0 0
\(31\) −5.69411 5.69411i −1.02269 1.02269i −0.999736 0.0229561i \(-0.992692\pi\)
−0.0229561 0.999736i \(-0.507308\pi\)
\(32\) −1.91338 −0.338241
\(33\) −5.99703 −1.04395
\(34\) 3.41167 + 3.41167i 0.585096 + 0.585096i
\(35\) 0 0
\(36\) 4.18390i 0.697317i
\(37\) 3.31881i 0.545609i 0.962069 + 0.272805i \(0.0879513\pi\)
−0.962069 + 0.272805i \(0.912049\pi\)
\(38\) −9.73467 + 9.73467i −1.57917 + 1.57917i
\(39\) 0.400516 3.58324i 0.0641339 0.573777i
\(40\) 0 0
\(41\) −1.51472 1.51472i −0.236559 0.236559i 0.578865 0.815424i \(-0.303496\pi\)
−0.815424 + 0.578865i \(0.803496\pi\)
\(42\) −0.426260 + 0.426260i −0.0657734 + 0.0657734i
\(43\) 3.88596 3.88596i 0.592603 0.592603i −0.345731 0.938334i \(-0.612369\pi\)
0.938334 + 0.345731i \(0.112369\pi\)
\(44\) −17.7420 + 17.7420i −2.67471 + 2.67471i
\(45\) 0 0
\(46\) −4.73652 + 4.73652i −0.698362 + 0.698362i
\(47\) 1.68447i 0.245706i −0.992425 0.122853i \(-0.960796\pi\)
0.992425 0.122853i \(-0.0392043\pi\)
\(48\) 3.63258 + 3.63258i 0.524317 + 0.524317i
\(49\) 6.94124 0.991605
\(50\) 0 0
\(51\) 1.94022i 0.271685i
\(52\) −9.41597 11.7858i −1.30576 1.63440i
\(53\) 2.22339 + 2.22339i 0.305406 + 0.305406i 0.843125 0.537718i \(-0.180714\pi\)
−0.537718 + 0.843125i \(0.680714\pi\)
\(54\) 1.75839 1.75839i 0.239287 0.239287i
\(55\) 0 0
\(56\) 1.31651i 0.175926i
\(57\) 5.53612 0.733276
\(58\) 14.3483i 1.88403i
\(59\) −5.27843 5.27843i −0.687193 0.687193i 0.274418 0.961611i \(-0.411515\pi\)
−0.961611 + 0.274418i \(0.911515\pi\)
\(60\) 0 0
\(61\) 10.2486 1.31220 0.656101 0.754673i \(-0.272204\pi\)
0.656101 + 0.754673i \(0.272204\pi\)
\(62\) 14.1598 + 14.1598i 1.79830 + 1.79830i
\(63\) 0.242414 0.0305413
\(64\) −5.51638 −0.689548
\(65\) 0 0
\(66\) 14.9131 1.83567
\(67\) −15.3086 −1.87024 −0.935121 0.354328i \(-0.884710\pi\)
−0.935121 + 0.354328i \(0.884710\pi\)
\(68\) −5.74007 5.74007i −0.696086 0.696086i
\(69\) 2.69366 0.324279
\(70\) 0 0
\(71\) −0.0780456 0.0780456i −0.00926231 0.00926231i 0.702460 0.711723i \(-0.252085\pi\)
−0.711723 + 0.702460i \(0.752085\pi\)
\(72\) 5.43081i 0.640027i
\(73\) 1.45403 0.170181 0.0850905 0.996373i \(-0.472882\pi\)
0.0850905 + 0.996373i \(0.472882\pi\)
\(74\) 8.25304i 0.959397i
\(75\) 0 0
\(76\) 16.3784 16.3784i 1.87873 1.87873i
\(77\) 1.02797 + 1.02797i 0.117148 + 0.117148i
\(78\) −0.995982 + 8.91060i −0.112773 + 1.00893i
\(79\) 7.60135i 0.855219i 0.903964 + 0.427609i \(0.140644\pi\)
−0.903964 + 0.427609i \(0.859356\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 3.76672 + 3.76672i 0.415964 + 0.415964i
\(83\) 2.71964i 0.298520i −0.988798 0.149260i \(-0.952311\pi\)
0.988798 0.149260i \(-0.0476891\pi\)
\(84\) 0.717175 0.717175i 0.0782502 0.0782502i
\(85\) 0 0
\(86\) −9.66338 + 9.66338i −1.04203 + 1.04203i
\(87\) 4.07995 4.07995i 0.437416 0.437416i
\(88\) 23.0296 23.0296i 2.45496 2.45496i
\(89\) −0.887120 0.887120i −0.0940345 0.0940345i 0.658525 0.752559i \(-0.271181\pi\)
−0.752559 + 0.658525i \(0.771181\pi\)
\(90\) 0 0
\(91\) −0.682867 + 0.545559i −0.0715839 + 0.0571902i
\(92\) 7.96910 7.96910i 0.830837 0.830837i
\(93\) 8.05269i 0.835025i
\(94\) 4.18886i 0.432048i
\(95\) 0 0
\(96\) −1.35296 1.35296i −0.138086 0.138086i
\(97\) 4.76021 0.483326 0.241663 0.970360i \(-0.422307\pi\)
0.241663 + 0.970360i \(0.422307\pi\)
\(98\) −17.2611 −1.74363
\(99\) −4.24054 4.24054i −0.426190 0.426190i
\(100\) 0 0
\(101\) 11.2837i 1.12277i −0.827553 0.561387i \(-0.810268\pi\)
0.827553 0.561387i \(-0.189732\pi\)
\(102\) 4.82483i 0.477729i
\(103\) 9.85776 9.85776i 0.971314 0.971314i −0.0282861 0.999600i \(-0.509005\pi\)
0.999600 + 0.0282861i \(0.00900494\pi\)
\(104\) 12.2222 + 15.2983i 1.19848 + 1.50012i
\(105\) 0 0
\(106\) −5.52901 5.52901i −0.537025 0.537025i
\(107\) 4.00248 4.00248i 0.386934 0.386934i −0.486658 0.873592i \(-0.661784\pi\)
0.873592 + 0.486658i \(0.161784\pi\)
\(108\) −2.95847 + 2.95847i −0.284679 + 0.284679i
\(109\) 4.59552 4.59552i 0.440171 0.440171i −0.451899 0.892069i \(-0.649253\pi\)
0.892069 + 0.451899i \(0.149253\pi\)
\(110\) 0 0
\(111\) −2.34675 + 2.34675i −0.222744 + 0.222744i
\(112\) 1.24534i 0.117674i
\(113\) −12.3277 12.3277i −1.15969 1.15969i −0.984542 0.175149i \(-0.943959\pi\)
−0.175149 0.984542i \(-0.556041\pi\)
\(114\) −13.7669 −1.28939
\(115\) 0 0
\(116\) 24.1408i 2.24142i
\(117\) 2.81694 2.25052i 0.260426 0.208061i
\(118\) 13.1261 + 13.1261i 1.20836 + 1.20836i
\(119\) −0.332578 + 0.332578i −0.0304874 + 0.0304874i
\(120\) 0 0
\(121\) 24.9644i 2.26949i
\(122\) −25.4857 −2.30737
\(123\) 2.14213i 0.193150i
\(124\) −23.8236 23.8236i −2.13942 2.13942i
\(125\) 0 0
\(126\) −0.602823 −0.0537037
\(127\) −3.83744 3.83744i −0.340518 0.340518i 0.516044 0.856562i \(-0.327404\pi\)
−0.856562 + 0.516044i \(0.827404\pi\)
\(128\) 17.5446 1.55074
\(129\) 5.49557 0.483858
\(130\) 0 0
\(131\) −5.03941 −0.440295 −0.220148 0.975467i \(-0.570654\pi\)
−0.220148 + 0.975467i \(0.570654\pi\)
\(132\) −25.0910 −2.18389
\(133\) −0.948961 0.948961i −0.0822854 0.0822854i
\(134\) 38.0686 3.28862
\(135\) 0 0
\(136\) 7.45075 + 7.45075i 0.638897 + 0.638897i
\(137\) 13.3951i 1.14442i −0.820108 0.572209i \(-0.806087\pi\)
0.820108 0.572209i \(-0.193913\pi\)
\(138\) −6.69845 −0.570210
\(139\) 6.03788i 0.512126i −0.966660 0.256063i \(-0.917575\pi\)
0.966660 0.256063i \(-0.0824255\pi\)
\(140\) 0 0
\(141\) 1.19110 1.19110i 0.100309 0.100309i
\(142\) 0.194080 + 0.194080i 0.0162868 + 0.0162868i
\(143\) 21.4888 + 2.40191i 1.79698 + 0.200858i
\(144\) 5.13724i 0.428103i
\(145\) 0 0
\(146\) −3.61579 −0.299245
\(147\) 4.90819 + 4.90819i 0.404821 + 0.404821i
\(148\) 13.8856i 1.14139i
\(149\) 14.7948 14.7948i 1.21203 1.21203i 0.241678 0.970356i \(-0.422302\pi\)
0.970356 0.241678i \(-0.0776979\pi\)
\(150\) 0 0
\(151\) −14.6792 + 14.6792i −1.19458 + 1.19458i −0.218808 + 0.975768i \(0.570217\pi\)
−0.975768 + 0.218808i \(0.929783\pi\)
\(152\) −21.2596 + 21.2596i −1.72438 + 1.72438i
\(153\) 1.37194 1.37194i 0.110915 0.110915i
\(154\) −2.55630 2.55630i −0.205992 0.205992i
\(155\) 0 0
\(156\) 1.67572 14.9919i 0.134165 1.20031i
\(157\) −4.26691 + 4.26691i −0.340537 + 0.340537i −0.856569 0.516032i \(-0.827408\pi\)
0.516032 + 0.856569i \(0.327408\pi\)
\(158\) 18.9026i 1.50381i
\(159\) 3.14435i 0.249363i
\(160\) 0 0
\(161\) −0.461728 0.461728i −0.0363893 0.0363893i
\(162\) 2.48675 0.195377
\(163\) −14.7233 −1.15322 −0.576611 0.817019i \(-0.695625\pi\)
−0.576611 + 0.817019i \(0.695625\pi\)
\(164\) −6.33743 6.33743i −0.494870 0.494870i
\(165\) 0 0
\(166\) 6.76306i 0.524915i
\(167\) 6.08556i 0.470915i 0.971885 + 0.235457i \(0.0756588\pi\)
−0.971885 + 0.235457i \(0.924341\pi\)
\(168\) −0.930911 + 0.930911i −0.0718213 + 0.0718213i
\(169\) −2.87029 + 12.6792i −0.220791 + 0.975321i
\(170\) 0 0
\(171\) 3.91462 + 3.91462i 0.299359 + 0.299359i
\(172\) 16.2585 16.2585i 1.23970 1.23970i
\(173\) −11.3322 + 11.3322i −0.861570 + 0.861570i −0.991520 0.129951i \(-0.958518\pi\)
0.129951 + 0.991520i \(0.458518\pi\)
\(174\) −10.1458 + 10.1458i −0.769151 + 0.769151i
\(175\) 0 0
\(176\) −21.7847 + 21.7847i −1.64208 + 1.64208i
\(177\) 7.46482i 0.561090i
\(178\) 2.20604 + 2.20604i 0.165350 + 0.165350i
\(179\) −3.99730 −0.298772 −0.149386 0.988779i \(-0.547730\pi\)
−0.149386 + 0.988779i \(0.547730\pi\)
\(180\) 0 0
\(181\) 16.5433i 1.22966i 0.788661 + 0.614828i \(0.210774\pi\)
−0.788661 + 0.614828i \(0.789226\pi\)
\(182\) 1.69812 1.35667i 0.125873 0.100563i
\(183\) 7.24688 + 7.24688i 0.535705 + 0.535705i
\(184\) −10.3441 + 10.3441i −0.762577 + 0.762577i
\(185\) 0 0
\(186\) 20.0250i 1.46830i
\(187\) 11.6355 0.850876
\(188\) 7.04768i 0.514005i
\(189\) 0.171413 + 0.171413i 0.0124685 + 0.0124685i
\(190\) 0 0
\(191\) 13.0425 0.943721 0.471860 0.881673i \(-0.343583\pi\)
0.471860 + 0.881673i \(0.343583\pi\)
\(192\) −3.90067 3.90067i −0.281507 0.281507i
\(193\) 9.28317 0.668217 0.334109 0.942535i \(-0.391565\pi\)
0.334109 + 0.942535i \(0.391565\pi\)
\(194\) −11.8374 −0.849879
\(195\) 0 0
\(196\) 29.0415 2.07439
\(197\) 12.9124 0.919967 0.459983 0.887927i \(-0.347855\pi\)
0.459983 + 0.887927i \(0.347855\pi\)
\(198\) 10.5451 + 10.5451i 0.749411 + 0.749411i
\(199\) −2.35534 −0.166966 −0.0834830 0.996509i \(-0.526604\pi\)
−0.0834830 + 0.996509i \(0.526604\pi\)
\(200\) 0 0
\(201\) −10.8248 10.8248i −0.763523 0.763523i
\(202\) 28.0598i 1.97428i
\(203\) −1.39871 −0.0981703
\(204\) 8.11768i 0.568352i
\(205\) 0 0
\(206\) −24.5137 + 24.5137i −1.70795 + 1.70795i
\(207\) 1.90471 + 1.90471i 0.132386 + 0.132386i
\(208\) −11.5615 14.4713i −0.801644 1.00340i
\(209\) 33.2003i 2.29651i
\(210\) 0 0
\(211\) −21.9810 −1.51323 −0.756617 0.653858i \(-0.773149\pi\)
−0.756617 + 0.653858i \(0.773149\pi\)
\(212\) 9.30245 + 9.30245i 0.638895 + 0.638895i
\(213\) 0.110373i 0.00756264i
\(214\) −9.95315 + 9.95315i −0.680383 + 0.680383i
\(215\) 0 0
\(216\) 3.84016 3.84016i 0.261290 0.261290i
\(217\) −1.38033 + 1.38033i −0.0937032 + 0.0937032i
\(218\) −11.4279 + 11.4279i −0.773993 + 0.773993i
\(219\) 1.02815 + 1.02815i 0.0694761 + 0.0694761i
\(220\) 0 0
\(221\) −0.777089 + 6.95226i −0.0522727 + 0.467660i
\(222\) 5.83578 5.83578i 0.391672 0.391672i
\(223\) 8.72020i 0.583948i 0.956426 + 0.291974i \(0.0943120\pi\)
−0.956426 + 0.291974i \(0.905688\pi\)
\(224\) 0.463831i 0.0309910i
\(225\) 0 0
\(226\) 30.6558 + 30.6558i 2.03919 + 2.03919i
\(227\) 18.3913 1.22068 0.610338 0.792141i \(-0.291034\pi\)
0.610338 + 0.792141i \(0.291034\pi\)
\(228\) 23.1626 1.53398
\(229\) −16.7151 16.7151i −1.10456 1.10456i −0.993852 0.110712i \(-0.964687\pi\)
−0.110712 0.993852i \(-0.535313\pi\)
\(230\) 0 0
\(231\) 1.45377i 0.0956508i
\(232\) 31.3353i 2.05727i
\(233\) 0.600932 0.600932i 0.0393684 0.0393684i −0.687149 0.726517i \(-0.741138\pi\)
0.726517 + 0.687149i \(0.241138\pi\)
\(234\) −7.00501 + 5.59648i −0.457932 + 0.365853i
\(235\) 0 0
\(236\) −22.0844 22.0844i −1.43757 1.43757i
\(237\) −5.37497 + 5.37497i −0.349141 + 0.349141i
\(238\) 0.827038 0.827038i 0.0536089 0.0536089i
\(239\) 8.71291 8.71291i 0.563591 0.563591i −0.366735 0.930326i \(-0.619524\pi\)
0.930326 + 0.366735i \(0.119524\pi\)
\(240\) 0 0
\(241\) −6.37606 + 6.37606i −0.410718 + 0.410718i −0.881989 0.471271i \(-0.843796\pi\)
0.471271 + 0.881989i \(0.343796\pi\)
\(242\) 62.0801i 3.99066i
\(243\) −0.707107 0.707107i −0.0453609 0.0453609i
\(244\) 42.8793 2.74506
\(245\) 0 0
\(246\) 5.32694i 0.339633i
\(247\) −19.8372 2.21730i −1.26221 0.141084i
\(248\) 30.9236 + 30.9236i 1.96365 + 1.96365i
\(249\) 1.92308 1.92308i 0.121870 0.121870i
\(250\) 0 0
\(251\) 8.17534i 0.516023i 0.966142 + 0.258011i \(0.0830672\pi\)
−0.966142 + 0.258011i \(0.916933\pi\)
\(252\) 1.01424 0.0638910
\(253\) 16.1540i 1.01559i
\(254\) 9.54274 + 9.54274i 0.598765 + 0.598765i
\(255\) 0 0
\(256\) −32.5962 −2.03726
\(257\) −9.97233 9.97233i −0.622057 0.622057i 0.324000 0.946057i \(-0.394972\pi\)
−0.946057 + 0.324000i \(0.894972\pi\)
\(258\) −13.6661 −0.850813
\(259\) 0.804528 0.0499909
\(260\) 0 0
\(261\) 5.76992 0.357149
\(262\) 12.5317 0.774212
\(263\) −16.5535 16.5535i −1.02073 1.02073i −0.999780 0.0209533i \(-0.993330\pi\)
−0.0209533 0.999780i \(-0.506670\pi\)
\(264\) 32.5687 2.00447
\(265\) 0 0
\(266\) 2.35983 + 2.35983i 0.144690 + 0.144690i
\(267\) 1.25458i 0.0767789i
\(268\) −64.0497 −3.91246
\(269\) 16.7169i 1.01925i 0.860397 + 0.509625i \(0.170216\pi\)
−0.860397 + 0.509625i \(0.829784\pi\)
\(270\) 0 0
\(271\) 12.5904 12.5904i 0.764814 0.764814i −0.212374 0.977188i \(-0.568120\pi\)
0.977188 + 0.212374i \(0.0681195\pi\)
\(272\) −7.04799 7.04799i −0.427347 0.427347i
\(273\) −0.868628 0.0970909i −0.0525718 0.00587621i
\(274\) 33.3101i 2.01234i
\(275\) 0 0
\(276\) 11.2700 0.678375
\(277\) −17.8939 17.8939i −1.07514 1.07514i −0.996937 0.0782056i \(-0.975081\pi\)
−0.0782056 0.996937i \(-0.524919\pi\)
\(278\) 15.0147i 0.900520i
\(279\) 5.69411 5.69411i 0.340898 0.340898i
\(280\) 0 0
\(281\) −2.64673 + 2.64673i −0.157891 + 0.157891i −0.781631 0.623741i \(-0.785612\pi\)
0.623741 + 0.781631i \(0.285612\pi\)
\(282\) −2.96197 + 2.96197i −0.176383 + 0.176383i
\(283\) 2.64156 2.64156i 0.157025 0.157025i −0.624222 0.781247i \(-0.714584\pi\)
0.781247 + 0.624222i \(0.214584\pi\)
\(284\) −0.326535 0.326535i −0.0193763 0.0193763i
\(285\) 0 0
\(286\) −53.4371 5.97293i −3.15980 0.353187i
\(287\) −0.367189 + 0.367189i −0.0216745 + 0.0216745i
\(288\) 1.91338i 0.112747i
\(289\) 13.2356i 0.778562i
\(290\) 0 0
\(291\) 3.36598 + 3.36598i 0.197317 + 0.197317i
\(292\) 6.08351 0.356010
\(293\) 8.87232 0.518327 0.259163 0.965834i \(-0.416553\pi\)
0.259163 + 0.965834i \(0.416553\pi\)
\(294\) −12.2054 12.2054i −0.711835 0.711835i
\(295\) 0 0
\(296\) 18.0238i 1.04761i
\(297\) 5.99703i 0.347983i
\(298\) −36.7908 + 36.7908i −2.13124 + 2.13124i
\(299\) −9.65203 1.07885i −0.558191 0.0623918i
\(300\) 0 0
\(301\) −0.942012 0.942012i −0.0542966 0.0542966i
\(302\) 36.5034 36.5034i 2.10054 2.10054i
\(303\) 7.97881 7.97881i 0.458370 0.458370i
\(304\) 20.1104 20.1104i 1.15341 1.15341i
\(305\) 0 0
\(306\) −3.41167 + 3.41167i −0.195032 + 0.195032i
\(307\) 25.1833i 1.43729i 0.695378 + 0.718644i \(0.255237\pi\)
−0.695378 + 0.718644i \(0.744763\pi\)
\(308\) 4.30092 + 4.30092i 0.245068 + 0.245068i
\(309\) 13.9410 0.793074
\(310\) 0 0
\(311\) 7.05837i 0.400243i 0.979771 + 0.200122i \(0.0641337\pi\)
−0.979771 + 0.200122i \(0.935866\pi\)
\(312\) −2.17513 + 19.4599i −0.123142 + 1.10170i
\(313\) 3.85568 + 3.85568i 0.217936 + 0.217936i 0.807628 0.589692i \(-0.200751\pi\)
−0.589692 + 0.807628i \(0.700751\pi\)
\(314\) 10.6107 10.6107i 0.598798 0.598798i
\(315\) 0 0
\(316\) 31.8033i 1.78908i
\(317\) −13.9177 −0.781695 −0.390847 0.920456i \(-0.627818\pi\)
−0.390847 + 0.920456i \(0.627818\pi\)
\(318\) 7.81920i 0.438479i
\(319\) 24.4676 + 24.4676i 1.36992 + 1.36992i
\(320\) 0 0
\(321\) 5.66036 0.315931
\(322\) 1.14820 + 1.14820i 0.0639867 + 0.0639867i
\(323\) −10.7413 −0.597660
\(324\) −4.18390 −0.232439
\(325\) 0 0
\(326\) 36.6132 2.02782
\(327\) 6.49904 0.359398
\(328\) 8.22614 + 8.22614i 0.454213 + 0.454213i
\(329\) −0.408341 −0.0225126
\(330\) 0 0
\(331\) −6.88277 6.88277i −0.378311 0.378311i 0.492181 0.870493i \(-0.336200\pi\)
−0.870493 + 0.492181i \(0.836200\pi\)
\(332\) 11.3787i 0.624489i
\(333\) −3.31881 −0.181870
\(334\) 15.1332i 0.828054i
\(335\) 0 0
\(336\) 0.880589 0.880589i 0.0480400 0.0480400i
\(337\) 0.812119 + 0.812119i 0.0442389 + 0.0442389i 0.728880 0.684641i \(-0.240041\pi\)
−0.684641 + 0.728880i \(0.740041\pi\)
\(338\) 7.13768 31.5299i 0.388238 1.71500i
\(339\) 17.4340i 0.946884i
\(340\) 0 0
\(341\) 48.2922 2.61517
\(342\) −9.73467 9.73467i −0.526391 0.526391i
\(343\) 3.37956i 0.182479i
\(344\) −21.1039 + 21.1039i −1.13785 + 1.13785i
\(345\) 0 0
\(346\) 28.1803 28.1803i 1.51498 1.51498i
\(347\) −25.2146 + 25.2146i −1.35359 + 1.35359i −0.471983 + 0.881608i \(0.656462\pi\)
−0.881608 + 0.471983i \(0.843538\pi\)
\(348\) 17.0701 17.0701i 0.915054 0.915054i
\(349\) −4.85536 4.85536i −0.259902 0.259902i 0.565112 0.825014i \(-0.308833\pi\)
−0.825014 + 0.565112i \(0.808833\pi\)
\(350\) 0 0
\(351\) 3.58324 + 0.400516i 0.191259 + 0.0213780i
\(352\) 8.11377 8.11377i 0.432465 0.432465i
\(353\) 25.9459i 1.38096i −0.723351 0.690480i \(-0.757399\pi\)
0.723351 0.690480i \(-0.242601\pi\)
\(354\) 18.5631i 0.986618i
\(355\) 0 0
\(356\) −3.71162 3.71162i −0.196716 0.196716i
\(357\) −0.470337 −0.0248929
\(358\) 9.94027 0.525359
\(359\) 2.31461 + 2.31461i 0.122160 + 0.122160i 0.765544 0.643384i \(-0.222470\pi\)
−0.643384 + 0.765544i \(0.722470\pi\)
\(360\) 0 0
\(361\) 11.6486i 0.613083i
\(362\) 41.1390i 2.16222i
\(363\) 17.6525 17.6525i 0.926515 0.926515i
\(364\) −2.85705 + 2.28257i −0.149750 + 0.119639i
\(365\) 0 0
\(366\) −18.0211 18.0211i −0.941980 0.941980i
\(367\) −10.2557 + 10.2557i −0.535346 + 0.535346i −0.922158 0.386813i \(-0.873576\pi\)
0.386813 + 0.922158i \(0.373576\pi\)
\(368\) 9.78493 9.78493i 0.510075 0.510075i
\(369\) 1.51472 1.51472i 0.0788531 0.0788531i
\(370\) 0 0
\(371\) 0.538982 0.538982i 0.0279826 0.0279826i
\(372\) 33.6917i 1.74683i
\(373\) −5.33438 5.33438i −0.276204 0.276204i 0.555388 0.831592i \(-0.312570\pi\)
−0.831592 + 0.555388i \(0.812570\pi\)
\(374\) −28.9346 −1.49618
\(375\) 0 0
\(376\) 9.14806i 0.471775i
\(377\) −16.2535 + 12.9853i −0.837098 + 0.668779i
\(378\) −0.426260 0.426260i −0.0219245 0.0219245i
\(379\) −4.89160 + 4.89160i −0.251265 + 0.251265i −0.821489 0.570224i \(-0.806856\pi\)
0.570224 + 0.821489i \(0.306856\pi\)
\(380\) 0 0
\(381\) 5.42696i 0.278032i
\(382\) −32.4333 −1.65943
\(383\) 0.331496i 0.0169386i −0.999964 0.00846932i \(-0.997304\pi\)
0.999964 0.00846932i \(-0.00269590\pi\)
\(384\) 12.4059 + 12.4059i 0.633086 + 0.633086i
\(385\) 0 0
\(386\) −23.0849 −1.17499
\(387\) 3.88596 + 3.88596i 0.197534 + 0.197534i
\(388\) 19.9163 1.01110
\(389\) −6.77907 −0.343713 −0.171856 0.985122i \(-0.554976\pi\)
−0.171856 + 0.985122i \(0.554976\pi\)
\(390\) 0 0
\(391\) −5.22629 −0.264305
\(392\) −37.6965 −1.90396
\(393\) −3.56340 3.56340i −0.179750 0.179750i
\(394\) −32.1097 −1.61766
\(395\) 0 0
\(396\) −17.7420 17.7420i −0.891570 0.891570i
\(397\) 25.7273i 1.29121i 0.763670 + 0.645607i \(0.223396\pi\)
−0.763670 + 0.645607i \(0.776604\pi\)
\(398\) 5.85714 0.293592
\(399\) 1.34203i 0.0671857i
\(400\) 0 0
\(401\) 7.72622 7.72622i 0.385829 0.385829i −0.487368 0.873197i \(-0.662043\pi\)
0.873197 + 0.487368i \(0.162043\pi\)
\(402\) 26.9185 + 26.9185i 1.34258 + 1.34258i
\(403\) −3.22523 + 28.8547i −0.160660 + 1.43735i
\(404\) 47.2101i 2.34879i
\(405\) 0 0
\(406\) 3.47824 0.172622
\(407\) −14.0736 14.0736i −0.697601 0.697601i
\(408\) 10.5370i 0.521657i
\(409\) −7.15874 + 7.15874i −0.353977 + 0.353977i −0.861587 0.507610i \(-0.830529\pi\)
0.507610 + 0.861587i \(0.330529\pi\)
\(410\) 0 0
\(411\) 9.47174 9.47174i 0.467207 0.467207i
\(412\) 41.2439 41.2439i 2.03194 2.03194i
\(413\) −1.27957 + 1.27957i −0.0629634 + 0.0629634i
\(414\) −4.73652 4.73652i −0.232787 0.232787i
\(415\) 0 0
\(416\) 4.30611 + 5.38988i 0.211124 + 0.264260i
\(417\) 4.26942 4.26942i 0.209075 0.209075i
\(418\) 82.5606i 4.03817i
\(419\) 23.1087i 1.12894i 0.825455 + 0.564468i \(0.190919\pi\)
−0.825455 + 0.564468i \(0.809081\pi\)
\(420\) 0 0
\(421\) −0.323390 0.323390i −0.0157611 0.0157611i 0.699182 0.714943i \(-0.253548\pi\)
−0.714943 + 0.699182i \(0.753548\pi\)
\(422\) 54.6612 2.66086
\(423\) 1.68447 0.0819019
\(424\) −12.0748 12.0748i −0.586405 0.586405i
\(425\) 0 0
\(426\) 0.274470i 0.0132981i
\(427\) 2.48442i 0.120229i
\(428\) 16.7460 16.7460i 0.809448 0.809448i
\(429\) 13.4965 + 16.8933i 0.651615 + 0.815615i
\(430\) 0 0
\(431\) 1.67187 + 1.67187i 0.0805312 + 0.0805312i 0.746225 0.665694i \(-0.231864\pi\)
−0.665694 + 0.746225i \(0.731864\pi\)
\(432\) −3.63258 + 3.63258i −0.174772 + 0.174772i
\(433\) 10.8483 10.8483i 0.521337 0.521337i −0.396638 0.917975i \(-0.629823\pi\)
0.917975 + 0.396638i \(0.129823\pi\)
\(434\) 3.43254 3.43254i 0.164767 0.164767i
\(435\) 0 0
\(436\) 19.2272 19.2272i 0.920815 0.920815i
\(437\) 14.9124i 0.713358i
\(438\) −2.55675 2.55675i −0.122166 0.122166i
\(439\) 20.2491 0.966437 0.483219 0.875500i \(-0.339468\pi\)
0.483219 + 0.875500i \(0.339468\pi\)
\(440\) 0 0
\(441\) 6.94124i 0.330535i
\(442\) 1.93242 17.2885i 0.0919159 0.822330i
\(443\) 13.2900 + 13.2900i 0.631425 + 0.631425i 0.948426 0.317000i \(-0.102676\pi\)
−0.317000 + 0.948426i \(0.602676\pi\)
\(444\) −9.81859 + 9.81859i −0.465970 + 0.465970i
\(445\) 0 0
\(446\) 21.6849i 1.02681i
\(447\) 20.9230 0.989622
\(448\) 1.33725i 0.0631792i
\(449\) −23.3059 23.3059i −1.09988 1.09988i −0.994425 0.105451i \(-0.966372\pi\)
−0.105451 0.994425i \(-0.533628\pi\)
\(450\) 0 0
\(451\) 12.8464 0.604916
\(452\) −51.5778 51.5778i −2.42602 2.42602i
\(453\) −20.7595 −0.975367
\(454\) −45.7346 −2.14643
\(455\) 0 0
\(456\) −30.0656 −1.40795
\(457\) 15.5860 0.729085 0.364542 0.931187i \(-0.381225\pi\)
0.364542 + 0.931187i \(0.381225\pi\)
\(458\) 41.5662 + 41.5662i 1.94226 + 1.94226i
\(459\) 1.94022 0.0905616
\(460\) 0 0
\(461\) 20.8994 + 20.8994i 0.973381 + 0.973381i 0.999655 0.0262742i \(-0.00836429\pi\)
−0.0262742 + 0.999655i \(0.508364\pi\)
\(462\) 3.61515i 0.168192i
\(463\) 8.32123 0.386720 0.193360 0.981128i \(-0.438061\pi\)
0.193360 + 0.981128i \(0.438061\pi\)
\(464\) 29.6414i 1.37607i
\(465\) 0 0
\(466\) −1.49436 + 1.49436i −0.0692251 + 0.0692251i
\(467\) −21.9600 21.9600i −1.01619 1.01619i −0.999867 0.0163185i \(-0.994805\pi\)
−0.0163185 0.999867i \(-0.505195\pi\)
\(468\) 11.7858 9.41597i 0.544799 0.435253i
\(469\) 3.71102i 0.171359i
\(470\) 0 0
\(471\) −6.03433 −0.278047
\(472\) 28.6661 + 28.6661i 1.31947 + 1.31947i
\(473\) 32.9571i 1.51537i
\(474\) 13.3662 13.3662i 0.613929 0.613929i
\(475\) 0 0
\(476\) −1.39148 + 1.39148i −0.0637782 + 0.0637782i
\(477\) −2.22339 + 2.22339i −0.101802 + 0.101802i
\(478\) −21.6668 + 21.6668i −0.991015 + 0.991015i
\(479\) −12.9813 12.9813i −0.593132 0.593132i 0.345344 0.938476i \(-0.387762\pi\)
−0.938476 + 0.345344i \(0.887762\pi\)
\(480\) 0 0
\(481\) 9.34889 7.46907i 0.426273 0.340560i
\(482\) 15.8556 15.8556i 0.722204 0.722204i
\(483\) 0.652982i 0.0297117i
\(484\) 104.449i 4.74766i
\(485\) 0 0
\(486\) 1.75839 + 1.75839i 0.0797624 + 0.0797624i
\(487\) −12.6406 −0.572801 −0.286400 0.958110i \(-0.592459\pi\)
−0.286400 + 0.958110i \(0.592459\pi\)
\(488\) −55.6584 −2.51954
\(489\) −10.4110 10.4110i −0.470801 0.470801i
\(490\) 0 0
\(491\) 27.8197i 1.25549i 0.778421 + 0.627743i \(0.216021\pi\)
−0.778421 + 0.627743i \(0.783979\pi\)
\(492\) 8.96248i 0.404060i
\(493\) −7.91599 + 7.91599i −0.356518 + 0.356518i
\(494\) 49.3301 + 5.51387i 2.21947 + 0.248081i
\(495\) 0 0
\(496\) −29.2520 29.2520i −1.31345 1.31345i
\(497\) −0.0189194 + 0.0189194i −0.000848650 + 0.000848650i
\(498\) −4.78221 + 4.78221i −0.214296 + 0.214296i
\(499\) −0.152074 + 0.152074i −0.00680776 + 0.00680776i −0.710502 0.703695i \(-0.751532\pi\)
0.703695 + 0.710502i \(0.251532\pi\)
\(500\) 0 0
\(501\) −4.30314 + 4.30314i −0.192250 + 0.192250i
\(502\) 20.3300i 0.907372i
\(503\) 4.59193 + 4.59193i 0.204744 + 0.204744i 0.802029 0.597285i \(-0.203754\pi\)
−0.597285 + 0.802029i \(0.703754\pi\)
\(504\) −1.31651 −0.0586419
\(505\) 0 0
\(506\) 40.1708i 1.78581i
\(507\) −10.9951 + 6.93593i −0.488311 + 0.308035i
\(508\) −16.0555 16.0555i −0.712347 0.712347i
\(509\) 11.1303 11.1303i 0.493341 0.493341i −0.416016 0.909357i \(-0.636574\pi\)
0.909357 + 0.416016i \(0.136574\pi\)
\(510\) 0 0
\(511\) 0.352477i 0.0155927i
\(512\) 45.9692 2.03157
\(513\) 5.53612i 0.244425i
\(514\) 24.7986 + 24.7986i 1.09382 + 1.09382i
\(515\) 0 0
\(516\) 22.9929 1.01221
\(517\) 7.14308 + 7.14308i 0.314152 + 0.314152i
\(518\) −2.00066 −0.0879038
\(519\) −16.0261 −0.703469
\(520\) 0 0
\(521\) −13.6076 −0.596161 −0.298080 0.954541i \(-0.596346\pi\)
−0.298080 + 0.954541i \(0.596346\pi\)
\(522\) −14.3483 −0.628009
\(523\) 12.9591 + 12.9591i 0.566664 + 0.566664i 0.931192 0.364528i \(-0.118770\pi\)
−0.364528 + 0.931192i \(0.618770\pi\)
\(524\) −21.0844 −0.921076
\(525\) 0 0
\(526\) 41.1644 + 41.1644i 1.79485 + 1.79485i
\(527\) 15.6240i 0.680591i
\(528\) −30.8082 −1.34075
\(529\) 15.7442i 0.684530i
\(530\) 0 0
\(531\) 5.27843 5.27843i 0.229064 0.229064i
\(532\) −3.97036 3.97036i −0.172137 0.172137i
\(533\) −0.857959 + 7.67577i −0.0371623 + 0.332475i
\(534\) 3.11981i 0.135008i
\(535\) 0 0
\(536\) 83.1381 3.59102
\(537\) −2.82652 2.82652i −0.121973 0.121973i
\(538\) 41.5708i 1.79224i
\(539\) −29.4346 + 29.4346i −1.26784 + 1.26784i
\(540\) 0 0
\(541\) −24.0220 + 24.0220i −1.03279 + 1.03279i −0.0333420 + 0.999444i \(0.510615\pi\)
−0.999444 + 0.0333420i \(0.989385\pi\)
\(542\) −31.3092 + 31.3092i −1.34485 + 1.34485i
\(543\) −11.6979 + 11.6979i −0.502005 + 0.502005i
\(544\) 2.62505 + 2.62505i 0.112548 + 0.112548i
\(545\) 0 0
\(546\) 2.16006 + 0.241440i 0.0924419 + 0.0103327i
\(547\) 18.6456 18.6456i 0.797229 0.797229i −0.185428 0.982658i \(-0.559367\pi\)
0.982658 + 0.185428i \(0.0593673\pi\)
\(548\) 56.0437i 2.39407i
\(549\) 10.2486i 0.437401i
\(550\) 0 0
\(551\) −22.5871 22.5871i −0.962241 0.962241i
\(552\) −14.6288 −0.622641
\(553\) 1.84268 0.0783586
\(554\) 44.4977 + 44.4977i 1.89053 + 1.89053i
\(555\) 0 0
\(556\) 25.2619i 1.07134i
\(557\) 1.32872i 0.0562996i −0.999604 0.0281498i \(-0.991038\pi\)
0.999604 0.0281498i \(-0.00896155\pi\)
\(558\) −14.1598 + 14.1598i −0.599432 + 0.599432i
\(559\) −19.6919 2.20106i −0.832880 0.0930951i
\(560\) 0 0
\(561\) 8.22758 + 8.22758i 0.347369 + 0.347369i
\(562\) 6.58175 6.58175i 0.277634 0.277634i
\(563\) −15.2469 + 15.2469i −0.642582 + 0.642582i −0.951190 0.308607i \(-0.900137\pi\)
0.308607 + 0.951190i \(0.400137\pi\)
\(564\) 4.98346 4.98346i 0.209842 0.209842i
\(565\) 0 0
\(566\) −6.56889 + 6.56889i −0.276111 + 0.276111i
\(567\) 0.242414i 0.0101804i
\(568\) 0.423851 + 0.423851i 0.0177844 + 0.0177844i
\(569\) −31.7042 −1.32911 −0.664555 0.747239i \(-0.731379\pi\)
−0.664555 + 0.747239i \(0.731379\pi\)
\(570\) 0 0
\(571\) 3.77184i 0.157847i 0.996881 + 0.0789233i \(0.0251482\pi\)
−0.996881 + 0.0789233i \(0.974852\pi\)
\(572\) 89.9070 + 10.0493i 3.75920 + 0.420184i
\(573\) 9.22243 + 9.22243i 0.385272 + 0.385272i
\(574\) 0.913107 0.913107i 0.0381123 0.0381123i
\(575\) 0 0
\(576\) 5.51638i 0.229849i
\(577\) 38.7401 1.61277 0.806385 0.591391i \(-0.201421\pi\)
0.806385 + 0.591391i \(0.201421\pi\)
\(578\) 32.9135i 1.36902i
\(579\) 6.56419 + 6.56419i 0.272799 + 0.272799i
\(580\) 0 0
\(581\) −0.659281 −0.0273516
\(582\) −8.37033 8.37033i −0.346962 0.346962i
\(583\) −18.8568 −0.780967
\(584\) −7.89654 −0.326761
\(585\) 0 0
\(586\) −22.0632 −0.911423
\(587\) −11.4947 −0.474438 −0.237219 0.971456i \(-0.576236\pi\)
−0.237219 + 0.971456i \(0.576236\pi\)
\(588\) 20.5354 + 20.5354i 0.846866 + 0.846866i
\(589\) −44.5806 −1.83691
\(590\) 0 0
\(591\) 9.13041 + 9.13041i 0.375575 + 0.375575i
\(592\) 17.0495i 0.700731i
\(593\) 23.5194 0.965824 0.482912 0.875669i \(-0.339579\pi\)
0.482912 + 0.875669i \(0.339579\pi\)
\(594\) 14.9131i 0.611891i
\(595\) 0 0
\(596\) 61.8999 61.8999i 2.53552 2.53552i
\(597\) −1.66548 1.66548i −0.0681636 0.0681636i
\(598\) 24.0021 + 2.68284i 0.981520 + 0.109709i
\(599\) 15.0098i 0.613282i 0.951825 + 0.306641i \(0.0992051\pi\)
−0.951825 + 0.306641i \(0.900795\pi\)
\(600\) 0 0
\(601\) −9.20174 −0.375347 −0.187673 0.982231i \(-0.560095\pi\)
−0.187673 + 0.982231i \(0.560095\pi\)
\(602\) 2.34254 + 2.34254i 0.0954749 + 0.0954749i
\(603\) 15.3086i 0.623414i
\(604\) −61.4163 + 61.4163i −2.49900 + 2.49900i
\(605\) 0 0
\(606\) −19.8413 + 19.8413i −0.805996 + 0.805996i
\(607\) 1.90926 1.90926i 0.0774945 0.0774945i −0.667297 0.744792i \(-0.732549\pi\)
0.744792 + 0.667297i \(0.232549\pi\)
\(608\) −7.49017 + 7.49017i −0.303766 + 0.303766i
\(609\) −0.989038 0.989038i −0.0400779 0.0400779i
\(610\) 0 0
\(611\) −4.74506 + 3.79095i −0.191965 + 0.153365i
\(612\) 5.74007 5.74007i 0.232029 0.232029i
\(613\) 8.40716i 0.339562i 0.985482 + 0.169781i \(0.0543060\pi\)
−0.985482 + 0.169781i \(0.945694\pi\)
\(614\) 62.6245i 2.52732i
\(615\) 0 0
\(616\) −5.58270 5.58270i −0.224933 0.224933i
\(617\) 5.02106 0.202140 0.101070 0.994879i \(-0.467773\pi\)
0.101070 + 0.994879i \(0.467773\pi\)
\(618\) −34.6677 −1.39454
\(619\) 28.7489 + 28.7489i 1.15552 + 1.15552i 0.985429 + 0.170089i \(0.0544054\pi\)
0.170089 + 0.985429i \(0.445595\pi\)
\(620\) 0 0
\(621\) 2.69366i 0.108093i
\(622\) 17.5524i 0.703786i
\(623\) −0.215051 + 0.215051i −0.00861582 + 0.00861582i
\(624\) 2.05755 18.4079i 0.0823678 0.736907i
\(625\) 0 0
\(626\) −9.58810 9.58810i −0.383218 0.383218i
\(627\) −23.4761 + 23.4761i −0.937546 + 0.937546i
\(628\) −17.8524 + 17.8524i −0.712386 + 0.712386i
\(629\) 4.55322 4.55322i 0.181549 0.181549i
\(630\) 0 0
\(631\) 21.7388 21.7388i 0.865407 0.865407i −0.126553 0.991960i \(-0.540391\pi\)
0.991960 + 0.126553i \(0.0403913\pi\)
\(632\) 41.2815i 1.64209i
\(633\) −15.5429 15.5429i −0.617775 0.617775i
\(634\) 34.6097 1.37453
\(635\) 0 0
\(636\) 13.1557i 0.521656i
\(637\) −15.6214 19.5530i −0.618943 0.774719i
\(638\) −60.8446 60.8446i −2.40886 2.40886i
\(639\) 0.0780456 0.0780456i 0.00308744 0.00308744i
\(640\) 0 0
\(641\) 8.55187i 0.337779i −0.985635 0.168889i \(-0.945982\pi\)
0.985635 0.168889i \(-0.0540181\pi\)
\(642\) −14.0759 −0.555531
\(643\) 3.11521i 0.122852i 0.998112 + 0.0614259i \(0.0195648\pi\)
−0.998112 + 0.0614259i \(0.980435\pi\)
\(644\) −1.93183 1.93183i −0.0761246 0.0761246i
\(645\) 0 0
\(646\) 26.7108 1.05092
\(647\) 26.4560 + 26.4560i 1.04009 + 1.04009i 0.999162 + 0.0409311i \(0.0130324\pi\)
0.0409311 + 0.999162i \(0.486968\pi\)
\(648\) 5.43081 0.213342
\(649\) 44.7668 1.75725
\(650\) 0 0
\(651\) −1.95209 −0.0765084
\(652\) −61.6010 −2.41248
\(653\) 9.61272 + 9.61272i 0.376175 + 0.376175i 0.869720 0.493545i \(-0.164299\pi\)
−0.493545 + 0.869720i \(0.664299\pi\)
\(654\) −16.1615 −0.631963
\(655\) 0 0
\(656\) −7.78146 7.78146i −0.303815 0.303815i
\(657\) 1.45403i 0.0567270i
\(658\) 1.01544 0.0395860
\(659\) 15.1490i 0.590122i −0.955478 0.295061i \(-0.904660\pi\)
0.955478 0.295061i \(-0.0953400\pi\)
\(660\) 0 0
\(661\) 18.9976 18.9976i 0.738920 0.738920i −0.233449 0.972369i \(-0.575001\pi\)
0.972369 + 0.233449i \(0.0750013\pi\)
\(662\) 17.1157 + 17.1157i 0.665220 + 0.665220i
\(663\) −5.46548 + 4.36651i −0.212262 + 0.169581i
\(664\) 14.7699i 0.573182i
\(665\) 0 0
\(666\) 8.25304 0.319799
\(667\) −10.9900 10.9900i −0.425534 0.425534i
\(668\) 25.4614i 0.985131i
\(669\) −6.16611 + 6.16611i −0.238396 + 0.238396i
\(670\) 0 0
\(671\) −43.4597 + 43.4597i −1.67774 + 1.67774i
\(672\) −0.327978 + 0.327978i −0.0126520 + 0.0126520i
\(673\) 26.4650 26.4650i 1.02015 1.02015i 0.0203584 0.999793i \(-0.493519\pi\)
0.999793 0.0203584i \(-0.00648074\pi\)
\(674\) −2.01953 2.01953i −0.0777895 0.0777895i
\(675\) 0 0
\(676\) −12.0090 + 53.0484i −0.461885 + 2.04032i
\(677\) 13.7029 13.7029i 0.526645 0.526645i −0.392925 0.919570i \(-0.628537\pi\)
0.919570 + 0.392925i \(0.128537\pi\)
\(678\) 43.3539i 1.66500i
\(679\) 1.15394i 0.0442843i
\(680\) 0 0
\(681\) 13.0046 + 13.0046i 0.498339 + 0.498339i
\(682\) −120.090 −4.59850
\(683\) 14.6506 0.560588 0.280294 0.959914i \(-0.409568\pi\)
0.280294 + 0.959914i \(0.409568\pi\)
\(684\) 16.3784 + 16.3784i 0.626244 + 0.626244i
\(685\) 0 0
\(686\) 8.40410i 0.320870i
\(687\) 23.6387i 0.901873i
\(688\) 19.9631 19.9631i 0.761085 0.761085i
\(689\) 1.25936 11.2670i 0.0479779 0.429237i
\(690\) 0 0
\(691\) −34.7630 34.7630i −1.32245 1.32245i −0.911789 0.410660i \(-0.865298\pi\)
−0.410660 0.911789i \(-0.634702\pi\)
\(692\) −47.4128 + 47.4128i −1.80236 + 1.80236i
\(693\) −1.02797 + 1.02797i −0.0390493 + 0.0390493i
\(694\) 62.7023 62.7023i 2.38015 2.38015i
\(695\) 0 0
\(696\) −22.1574 + 22.1574i −0.839875 + 0.839875i
\(697\) 4.15621i 0.157428i
\(698\) 12.0740 + 12.0740i 0.457009 + 0.457009i
\(699\) 0.849846 0.0321441
\(700\) 0 0
\(701\) 13.7058i 0.517659i −0.965923 0.258830i \(-0.916663\pi\)
0.965923 0.258830i \(-0.0833369\pi\)
\(702\) −8.91060 0.995982i −0.336309 0.0375909i
\(703\) 12.9919 + 12.9919i 0.489999 + 0.489999i
\(704\) 23.3925 23.3925i 0.881636 0.881636i
\(705\) 0 0
\(706\) 64.5208i 2.42827i
\(707\) −2.73534 −0.102873
\(708\) 31.2321i 1.17377i
\(709\) 4.33781 + 4.33781i 0.162910 + 0.162910i 0.783854 0.620945i \(-0.213251\pi\)
−0.620945 + 0.783854i \(0.713251\pi\)
\(710\) 0 0
\(711\) −7.60135 −0.285073
\(712\) 4.81778 + 4.81778i 0.180554 + 0.180554i
\(713\) −21.6912 −0.812342
\(714\) 1.16961 0.0437715
\(715\) 0 0
\(716\) −16.7243 −0.625017
\(717\) 12.3219 0.460170
\(718\) −5.75584 5.75584i −0.214806 0.214806i
\(719\) 27.4328 1.02307 0.511536 0.859262i \(-0.329077\pi\)
0.511536 + 0.859262i \(0.329077\pi\)
\(720\) 0 0
\(721\) −2.38966 2.38966i −0.0889957 0.0889957i
\(722\) 28.9670i 1.07804i
\(723\) −9.01711 −0.335350
\(724\) 69.2157i 2.57238i
\(725\) 0 0
\(726\) −43.8972 + 43.8972i −1.62918 + 1.62918i
\(727\) 27.8372 + 27.8372i 1.03243 + 1.03243i 0.999456 + 0.0329694i \(0.0104964\pi\)
0.0329694 + 0.999456i \(0.489504\pi\)
\(728\) 3.70852 2.96283i 0.137447 0.109810i
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) −10.6626 −0.394371
\(732\) 30.3202 + 30.3202i 1.12067 + 1.12067i
\(733\) 16.0974i 0.594571i −0.954789 0.297285i \(-0.903919\pi\)
0.954789 0.297285i \(-0.0960813\pi\)
\(734\) 25.5034 25.5034i 0.941349 0.941349i
\(735\) 0 0
\(736\) −3.64443 + 3.64443i −0.134335 + 0.134335i
\(737\) 64.9167 64.9167i 2.39124 2.39124i
\(738\) −3.76672 + 3.76672i −0.138655 + 0.138655i
\(739\) 9.67318 + 9.67318i 0.355834 + 0.355834i 0.862275 0.506441i \(-0.169039\pi\)
−0.506441 + 0.862275i \(0.669039\pi\)
\(740\) 0 0
\(741\) −12.4592 15.5949i −0.457699 0.572893i
\(742\) −1.34031 + 1.34031i −0.0492044 + 0.0492044i
\(743\) 0.660092i 0.0242164i 0.999927 + 0.0121082i \(0.00385426\pi\)
−0.999927 + 0.0121082i \(0.996146\pi\)
\(744\) 43.7326i 1.60332i
\(745\) 0 0
\(746\) 13.2653 + 13.2653i 0.485675 + 0.485675i
\(747\) 2.71964 0.0995066
\(748\) 48.6820 1.77999
\(749\) −0.970259 0.970259i −0.0354525 0.0354525i
\(750\) 0 0
\(751\) 35.4818i 1.29475i 0.762171 + 0.647375i \(0.224133\pi\)
−0.762171 + 0.647375i \(0.775867\pi\)
\(752\) 8.65354i 0.315562i
\(753\) −5.78084 + 5.78084i −0.210665 + 0.210665i
\(754\) 40.4183 32.2912i 1.47195 1.17598i
\(755\) 0 0
\(756\) 0.717175 + 0.717175i 0.0260834 + 0.0260834i
\(757\) −10.5506 + 10.5506i −0.383469 + 0.383469i −0.872350 0.488881i \(-0.837405\pi\)
0.488881 + 0.872350i \(0.337405\pi\)
\(758\) 12.1642 12.1642i 0.441823 0.441823i
\(759\) −11.4226 + 11.4226i −0.414613 + 0.414613i
\(760\) 0 0
\(761\) 22.4488 22.4488i 0.813767 0.813767i −0.171429 0.985196i \(-0.554839\pi\)
0.985196 + 0.171429i \(0.0548386\pi\)
\(762\) 13.4955i 0.488890i
\(763\) −1.11402 1.11402i −0.0403302 0.0403302i
\(764\) 54.5685 1.97422
\(765\) 0 0
\(766\) 0.824345i 0.0297848i
\(767\) −2.98978 + 26.7482i −0.107955 + 0.965822i
\(768\) −23.0490 23.0490i −0.831709 0.831709i
\(769\) 3.44776 3.44776i 0.124329 0.124329i −0.642204 0.766534i \(-0.721980\pi\)
0.766534 + 0.642204i \(0.221980\pi\)
\(770\) 0 0
\(771\) 14.1030i 0.507907i
\(772\) 38.8399 1.39788
\(773\) 25.5316i 0.918307i −0.888357 0.459154i \(-0.848153\pi\)
0.888357 0.459154i \(-0.151847\pi\)
\(774\) −9.66338 9.66338i −0.347343 0.347343i
\(775\) 0 0
\(776\) −25.8518 −0.928026
\(777\) 0.568887 + 0.568887i 0.0204087 + 0.0204087i
\(778\) 16.8578 0.604383
\(779\) −11.8591 −0.424896
\(780\) 0 0
\(781\) 0.661911 0.0236850
\(782\) 12.9965 0.464752
\(783\) 4.07995 + 4.07995i 0.145805 + 0.145805i
\(784\) 35.6588 1.27353
\(785\) 0 0
\(786\) 8.86127 + 8.86127i 0.316071 + 0.316071i
\(787\) 15.5693i 0.554986i −0.960728 0.277493i \(-0.910496\pi\)
0.960728 0.277493i \(-0.0895035\pi\)
\(788\) 54.0240 1.92453
\(789\) 23.4102i 0.833426i
\(790\) 0 0
\(791\) −2.98841 + 2.98841i −0.106256 + 0.106256i
\(792\) 23.0296 + 23.0296i 0.818320 + 0.818320i
\(793\) −23.0648 28.8698i −0.819055 1.02520i
\(794\) 63.9772i 2.27046i
\(795\) 0 0
\(796\) −9.85453 −0.349285
\(797\) −7.35388 7.35388i −0.260488 0.260488i 0.564764 0.825252i \(-0.308967\pi\)
−0.825252 + 0.564764i \(0.808967\pi\)
\(798\) 3.33730i 0.118139i
\(799\) −2.31100 + 2.31100i −0.0817573 + 0.0817573i
\(800\) 0 0
\(801\) 0.887120 0.887120i 0.0313448 0.0313448i
\(802\) −19.2132 + 19.2132i −0.678440 + 0.678440i
\(803\) −6.16586 + 6.16586i −0.217588 + 0.217588i
\(804\) −45.2900 45.2900i −1.59725 1.59725i
\(805\) 0 0
\(806\) 8.02033 71.7543i 0.282504 2.52744i
\(807\) −11.8207 + 11.8207i −0.416107 + 0.416107i
\(808\) 61.2798i 2.15582i
\(809\) 32.8074i 1.15345i 0.816939 + 0.576724i \(0.195669\pi\)
−0.816939 + 0.576724i \(0.804331\pi\)
\(810\) 0 0
\(811\) −23.4835 23.4835i −0.824618 0.824618i 0.162149 0.986766i \(-0.448158\pi\)
−0.986766 + 0.162149i \(0.948158\pi\)
\(812\) −5.85207 −0.205368
\(813\) 17.8056 0.624468
\(814\) 34.9974 + 34.9974i 1.22666 + 1.22666i
\(815\) 0 0
\(816\) 9.96736i 0.348927i
\(817\) 30.4241i 1.06440i
\(818\) 17.8020 17.8020i 0.622431 0.622431i
\(819\) −0.545559 0.682867i −0.0190634 0.0238613i
\(820\) 0 0
\(821\) 28.3481 + 28.3481i 0.989357 + 0.989357i 0.999944 0.0105868i \(-0.00336993\pi\)
−0.0105868 + 0.999944i \(0.503370\pi\)
\(822\) −23.5538 + 23.5538i −0.821534 + 0.821534i
\(823\) −33.0457 + 33.0457i −1.15190 + 1.15190i −0.165729 + 0.986171i \(0.552998\pi\)
−0.986171 + 0.165729i \(0.947002\pi\)
\(824\) −53.5356 + 53.5356i −1.86500 + 1.86500i
\(825\) 0 0
\(826\) 3.18196 3.18196i 0.110714 0.110714i
\(827\) 50.1300i 1.74319i 0.490225 + 0.871596i \(0.336915\pi\)
−0.490225 + 0.871596i \(0.663085\pi\)
\(828\) 7.96910 + 7.96910i 0.276946 + 0.276946i
\(829\) −28.1449 −0.977512 −0.488756 0.872420i \(-0.662549\pi\)
−0.488756 + 0.872420i \(0.662549\pi\)
\(830\) 0 0
\(831\) 25.3059i 0.877850i
\(832\) 12.4148 + 15.5393i 0.430404 + 0.538729i
\(833\) −9.52297 9.52297i −0.329951 0.329951i
\(834\) −10.6170 + 10.6170i −0.367636 + 0.367636i
\(835\) 0 0
\(836\) 138.907i 4.80419i
\(837\) 8.05269 0.278342
\(838\) 57.4655i 1.98511i
\(839\) 25.8159 + 25.8159i 0.891264 + 0.891264i 0.994642 0.103378i \(-0.0329651\pi\)
−0.103378 + 0.994642i \(0.532965\pi\)
\(840\) 0 0
\(841\) −4.29196 −0.147999
\(842\) 0.804189 + 0.804189i 0.0277142 + 0.0277142i
\(843\) −3.74304 −0.128917
\(844\) −91.9664 −3.16561
\(845\) 0 0
\(846\) −4.18886 −0.144016
\(847\) −6.05173 −0.207940
\(848\) 11.4221 + 11.4221i 0.392236 + 0.392236i
\(849\) 3.73573 0.128210
\(850\) 0 0
\(851\) 6.32136 + 6.32136i 0.216694 + 0.216694i
\(852\) 0.461790i 0.0158207i
\(853\) −6.25026 −0.214005 −0.107002 0.994259i \(-0.534125\pi\)
−0.107002 + 0.994259i \(0.534125\pi\)
\(854\) 6.17811i 0.211411i
\(855\) 0 0
\(856\) −21.7367 + 21.7367i −0.742945 + 0.742945i
\(857\) −12.2252 12.2252i −0.417607 0.417607i 0.466771 0.884378i \(-0.345417\pi\)
−0.884378 + 0.466771i \(0.845417\pi\)
\(858\) −33.5623 42.0093i −1.14580 1.43417i
\(859\) 25.0493i 0.854670i −0.904093 0.427335i \(-0.859452\pi\)
0.904093 0.427335i \(-0.140548\pi\)
\(860\) 0 0
\(861\) −0.519284 −0.0176972
\(862\) −4.15752 4.15752i −0.141606 0.141606i
\(863\) 25.4480i 0.866261i 0.901331 + 0.433130i \(0.142591\pi\)
−0.901331 + 0.433130i \(0.857409\pi\)
\(864\) 1.35296 1.35296i 0.0460288 0.0460288i
\(865\) 0 0
\(866\) −26.9770 + 26.9770i −0.916716 + 0.916716i
\(867\) 9.35895 9.35895i 0.317847 0.317847i
\(868\) −5.77519 + 5.77519i −0.196023 + 0.196023i
\(869\) −32.2338 32.2338i −1.09346 1.09346i
\(870\) 0 0
\(871\) 34.4524 + 43.1234i 1.16737 + 1.46118i
\(872\) −24.9574 + 24.9574i −0.845163 + 0.845163i
\(873\) 4.76021i 0.161109i
\(874\) 37.0834i 1.25436i
\(875\) 0 0
\(876\) 4.30169 + 4.30169i 0.145341 + 0.145341i
\(877\) 21.2930 0.719015 0.359507 0.933142i \(-0.382945\pi\)
0.359507 + 0.933142i \(0.382945\pi\)
\(878\) −50.3544 −1.69938
\(879\) 6.27368 + 6.27368i 0.211606 + 0.211606i
\(880\) 0 0
\(881\) 10.5084i 0.354037i 0.984208 + 0.177018i \(0.0566452\pi\)
−0.984208 + 0.177018i \(0.943355\pi\)
\(882\) 17.2611i 0.581211i
\(883\) 9.86276 9.86276i 0.331908 0.331908i −0.521403 0.853311i \(-0.674591\pi\)
0.853311 + 0.521403i \(0.174591\pi\)
\(884\) −3.25126 + 29.0876i −0.109352 + 0.978321i
\(885\) 0 0
\(886\) −33.0488 33.0488i −1.11030 1.11030i
\(887\) −21.5847 + 21.5847i −0.724745 + 0.724745i −0.969568 0.244823i \(-0.921270\pi\)
0.244823 + 0.969568i \(0.421270\pi\)
\(888\) 12.7448 12.7448i 0.427687 0.427687i
\(889\) −0.930252 + 0.930252i −0.0311996 + 0.0311996i
\(890\) 0 0
\(891\) 4.24054 4.24054i 0.142063 0.142063i
\(892\) 36.4845i 1.22159i
\(893\) −6.59408 6.59408i −0.220663 0.220663i
\(894\) −52.0301 −1.74015
\(895\) 0 0
\(896\) 4.25307i 0.142085i
\(897\) −6.06215 7.58788i −0.202409 0.253352i
\(898\) 57.9559 + 57.9559i 1.93401 + 1.93401i
\(899\) −32.8546 + 32.8546i −1.09576 + 1.09576i
\(900\) 0 0
\(901\) 6.10073i 0.203245i
\(902\) −31.9458 −1.06368
\(903\) 1.33221i 0.0443330i
\(904\) 66.9493 + 66.9493i 2.22670 + 2.22670i
\(905\) 0 0
\(906\) 51.6236 1.71508
\(907\) 14.1974 + 14.1974i 0.471417 + 0.471417i 0.902373 0.430956i \(-0.141823\pi\)
−0.430956 + 0.902373i \(0.641823\pi\)
\(908\) 76.9475 2.55359
\(909\) 11.2837 0.374258
\(910\) 0 0
\(911\) −6.62609 −0.219532 −0.109766 0.993957i \(-0.535010\pi\)
−0.109766 + 0.993957i \(0.535010\pi\)
\(912\) 28.4403 0.941754
\(913\) 11.5328 + 11.5328i 0.381679 + 0.381679i
\(914\) −38.7585 −1.28202
\(915\) 0 0
\(916\) −69.9344 69.9344i −2.31070 2.31070i
\(917\) 1.22162i 0.0403416i
\(918\) −4.82483 −0.159243
\(919\) 56.0617i 1.84930i −0.380813 0.924652i \(-0.624356\pi\)
0.380813 0.924652i \(-0.375644\pi\)
\(920\) 0 0
\(921\) −17.8073 + 17.8073i −0.586770 + 0.586770i
\(922\) −51.9714 51.9714i −1.71159 1.71159i
\(923\) −0.0442062 + 0.395493i −0.00145507 + 0.0130178i
\(924\) 6.08242i 0.200097i
\(925\) 0 0
\(926\) −20.6928 −0.680007
\(927\) 9.85776 + 9.85776i 0.323771 + 0.323771i
\(928\) 11.0400i 0.362407i
\(929\) 16.7396 16.7396i 0.549210 0.549210i −0.377003 0.926212i \(-0.623045\pi\)
0.926212 + 0.377003i \(0.123045\pi\)
\(930\) 0 0
\(931\) 27.1723 27.1723i 0.890537 0.890537i
\(932\) 2.51424 2.51424i 0.0823567 0.0823567i
\(933\) −4.99102 + 4.99102i −0.163399 + 0.163399i
\(934\) 54.6088 + 54.6088i 1.78685 + 1.78685i
\(935\) 0 0
\(936\) −15.2983 + 12.2222i −0.500039 + 0.399494i
\(937\) −12.3582 + 12.3582i −0.403724 + 0.403724i −0.879543 0.475819i \(-0.842152\pi\)
0.475819 + 0.879543i \(0.342152\pi\)
\(938\) 9.22837i 0.301317i
\(939\) 5.45276i 0.177944i
\(940\) 0 0
\(941\) 18.8531 + 18.8531i 0.614594 + 0.614594i 0.944140 0.329545i \(-0.106895\pi\)
−0.329545 + 0.944140i \(0.606895\pi\)
\(942\) 15.0058 0.488917
\(943\) −5.77018 −0.187903
\(944\) −27.1165 27.1165i −0.882568 0.882568i
\(945\) 0 0
\(946\) 81.9559i 2.66462i
\(947\) 13.5380i 0.439926i 0.975508 + 0.219963i \(0.0705937\pi\)
−0.975508 + 0.219963i \(0.929406\pi\)
\(948\) −22.4883 + 22.4883i −0.730387 + 0.730387i
\(949\) −3.27232 4.09590i −0.106224 0.132959i
\(950\) 0 0
\(951\) −9.84128 9.84128i −0.319125 0.319125i
\(952\) 1.80617 1.80617i 0.0585383 0.0585383i
\(953\) −10.8161 + 10.8161i −0.350369 + 0.350369i −0.860247 0.509878i \(-0.829691\pi\)
0.509878 + 0.860247i \(0.329691\pi\)
\(954\) 5.52901 5.52901i 0.179008 0.179008i
\(955\) 0 0
\(956\) 36.4540 36.4540i 1.17901 1.17901i
\(957\) 34.6024i 1.11854i
\(958\) 32.2812 + 32.2812i 1.04296 + 1.04296i
\(959\) −3.24716 −0.104856
\(960\) 0 0
\(961\) 33.8458i 1.09180i
\(962\) −23.2483 + 18.5737i −0.749556 + 0.598839i
\(963\) 4.00248 + 4.00248i 0.128978 + 0.128978i
\(964\) −26.6768 + 26.6768i −0.859202 + 0.859202i
\(965\) 0 0
\(966\) 1.62380i 0.0522449i
\(967\) 16.5180 0.531183 0.265591 0.964086i \(-0.414433\pi\)
0.265591 + 0.964086i \(0.414433\pi\)
\(968\) 135.577i 4.35760i
\(969\) −7.59523 7.59523i −0.243994 0.243994i
\(970\) 0 0
\(971\) −40.8913 −1.31226 −0.656132 0.754646i \(-0.727809\pi\)
−0.656132 + 0.754646i \(0.727809\pi\)
\(972\) −2.95847 2.95847i −0.0948928 0.0948928i
\(973\) −1.46367 −0.0469231
\(974\) 31.4340 1.00721
\(975\) 0 0
\(976\) 52.6497 1.68527
\(977\) 1.92441 0.0615674 0.0307837 0.999526i \(-0.490200\pi\)
0.0307837 + 0.999526i \(0.490200\pi\)
\(978\) 25.8894 + 25.8894i 0.827853 + 0.827853i
\(979\) 7.52374 0.240460
\(980\) 0 0
\(981\) 4.59552 + 4.59552i 0.146724 + 0.146724i
\(982\) 69.1805i 2.20764i
\(983\) −59.7525 −1.90581 −0.952904 0.303273i \(-0.901921\pi\)
−0.952904 + 0.303273i \(0.901921\pi\)
\(984\) 11.6335i 0.370863i
\(985\) 0 0
\(986\) 19.6851 19.6851i 0.626900 0.626900i
\(987\) −0.288741 0.288741i −0.00919071 0.00919071i
\(988\) −82.9970 9.27698i −2.64049 0.295140i
\(989\) 14.8032i 0.470714i
\(990\) 0 0
\(991\) 29.3438 0.932136 0.466068 0.884749i \(-0.345670\pi\)
0.466068 + 0.884749i \(0.345670\pi\)
\(992\) 10.8950 + 10.8950i 0.345917 + 0.345917i
\(993\) 9.73371i 0.308890i
\(994\) 0.0470477 0.0470477i 0.00149226 0.00149226i
\(995\) 0 0
\(996\) 8.04597 8.04597i 0.254946 0.254946i
\(997\) 34.3919 34.3919i 1.08920 1.08920i 0.0935912 0.995611i \(-0.470165\pi\)
0.995611 0.0935912i \(-0.0298347\pi\)
\(998\) 0.378169 0.378169i 0.0119707 0.0119707i
\(999\) −2.34675 2.34675i −0.0742480 0.0742480i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.t.d.268.1 28
5.2 odd 4 975.2.k.d.307.1 28
5.3 odd 4 195.2.k.a.112.14 28
5.4 even 2 195.2.t.a.73.14 yes 28
13.5 odd 4 975.2.k.d.343.14 28
15.8 even 4 585.2.n.g.307.1 28
15.14 odd 2 585.2.w.g.73.1 28
65.18 even 4 195.2.t.a.187.14 yes 28
65.44 odd 4 195.2.k.a.148.1 yes 28
65.57 even 4 inner 975.2.t.d.382.1 28
195.44 even 4 585.2.n.g.343.14 28
195.83 odd 4 585.2.w.g.577.1 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.k.a.112.14 28 5.3 odd 4
195.2.k.a.148.1 yes 28 65.44 odd 4
195.2.t.a.73.14 yes 28 5.4 even 2
195.2.t.a.187.14 yes 28 65.18 even 4
585.2.n.g.307.1 28 15.8 even 4
585.2.n.g.343.14 28 195.44 even 4
585.2.w.g.73.1 28 15.14 odd 2
585.2.w.g.577.1 28 195.83 odd 4
975.2.k.d.307.1 28 5.2 odd 4
975.2.k.d.343.14 28 13.5 odd 4
975.2.t.d.268.1 28 1.1 even 1 trivial
975.2.t.d.382.1 28 65.57 even 4 inner