Properties

Label 585.2.n.g.343.14
Level $585$
Weight $2$
Character 585.343
Analytic conductor $4.671$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [585,2,Mod(307,585)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("585.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(585, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.n (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,-28,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 343.14
Character \(\chi\) \(=\) 585.343
Dual form 585.2.n.g.307.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.48675i q^{2} -4.18390 q^{4} +(2.00040 - 0.999208i) q^{5} -0.242414 q^{7} -5.43081i q^{8} +(2.48478 + 4.97448i) q^{10} +(4.24054 + 4.24054i) q^{11} +(2.81694 + 2.25052i) q^{13} -0.602823i q^{14} +5.13724 q^{16} +(1.37194 + 1.37194i) q^{17} +(-3.91462 - 3.91462i) q^{19} +(-8.36946 + 4.18059i) q^{20} +(-10.5451 + 10.5451i) q^{22} +(-1.90471 + 1.90471i) q^{23} +(3.00317 - 3.99762i) q^{25} +(-5.59648 + 7.00501i) q^{26} +1.01424 q^{28} +5.76992i q^{29} +(-5.69411 + 5.69411i) q^{31} +1.91338i q^{32} +(-3.41167 + 3.41167i) q^{34} +(-0.484925 + 0.242222i) q^{35} +3.31881 q^{37} +(9.73467 - 9.73467i) q^{38} +(-5.42651 - 10.8638i) q^{40} +(1.51472 - 1.51472i) q^{41} +(3.88596 - 3.88596i) q^{43} +(-17.7420 - 17.7420i) q^{44} +(-4.73652 - 4.73652i) q^{46} +1.68447 q^{47} -6.94124 q^{49} +(9.94107 + 7.46811i) q^{50} +(-11.7858 - 9.41597i) q^{52} +(2.22339 + 2.22339i) q^{53} +(12.7199 + 4.24558i) q^{55} +1.31651i q^{56} -14.3483 q^{58} +(-5.27843 + 5.27843i) q^{59} +10.2486 q^{61} +(-14.1598 - 14.1598i) q^{62} +5.51638 q^{64} +(7.88373 + 1.68723i) q^{65} -15.3086i q^{67} +(-5.74007 - 5.74007i) q^{68} +(-0.602346 - 1.20588i) q^{70} +(0.0780456 - 0.0780456i) q^{71} -1.45403i q^{73} +8.25304i q^{74} +(16.3784 + 16.3784i) q^{76} +(-1.02797 - 1.02797i) q^{77} +7.60135i q^{79} +(10.2765 - 5.13317i) q^{80} +(3.76672 + 3.76672i) q^{82} -2.71964 q^{83} +(4.11528 + 1.37357i) q^{85} +(9.66338 + 9.66338i) q^{86} +(23.0296 - 23.0296i) q^{88} +(-0.887120 + 0.887120i) q^{89} +(-0.682867 - 0.545559i) q^{91} +(7.96910 - 7.96910i) q^{92} +4.18886i q^{94} +(-11.7423 - 3.91927i) q^{95} +4.76021i q^{97} -17.2611i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 28 q^{4} - 8 q^{5} + 8 q^{11} - 12 q^{13} + 28 q^{16} + 28 q^{17} - 32 q^{22} - 8 q^{23} - 4 q^{25} - 16 q^{31} + 28 q^{34} + 32 q^{37} - 48 q^{40} - 4 q^{41} - 40 q^{44} - 16 q^{46} + 24 q^{47}+ \cdots - 56 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.48675i 1.75839i 0.476458 + 0.879197i \(0.341920\pi\)
−0.476458 + 0.879197i \(0.658080\pi\)
\(3\) 0 0
\(4\) −4.18390 −2.09195
\(5\) 2.00040 0.999208i 0.894604 0.446859i
\(6\) 0 0
\(7\) −0.242414 −0.0916240 −0.0458120 0.998950i \(-0.514588\pi\)
−0.0458120 + 0.998950i \(0.514588\pi\)
\(8\) 5.43081i 1.92008i
\(9\) 0 0
\(10\) 2.48478 + 4.97448i 0.785755 + 1.57307i
\(11\) 4.24054 + 4.24054i 1.27857 + 1.27857i 0.941467 + 0.337104i \(0.109447\pi\)
0.337104 + 0.941467i \(0.390553\pi\)
\(12\) 0 0
\(13\) 2.81694 + 2.25052i 0.781278 + 0.624183i
\(14\) 0.602823i 0.161111i
\(15\) 0 0
\(16\) 5.13724 1.28431
\(17\) 1.37194 + 1.37194i 0.332745 + 0.332745i 0.853628 0.520883i \(-0.174397\pi\)
−0.520883 + 0.853628i \(0.674397\pi\)
\(18\) 0 0
\(19\) −3.91462 3.91462i −0.898076 0.898076i 0.0971894 0.995266i \(-0.469015\pi\)
−0.995266 + 0.0971894i \(0.969015\pi\)
\(20\) −8.36946 + 4.18059i −1.87147 + 0.934808i
\(21\) 0 0
\(22\) −10.5451 + 10.5451i −2.24823 + 2.24823i
\(23\) −1.90471 + 1.90471i −0.397159 + 0.397159i −0.877230 0.480071i \(-0.840611\pi\)
0.480071 + 0.877230i \(0.340611\pi\)
\(24\) 0 0
\(25\) 3.00317 3.99762i 0.600633 0.799525i
\(26\) −5.59648 + 7.00501i −1.09756 + 1.37380i
\(27\) 0 0
\(28\) 1.01424 0.191673
\(29\) 5.76992i 1.07145i 0.844393 + 0.535724i \(0.179961\pi\)
−0.844393 + 0.535724i \(0.820039\pi\)
\(30\) 0 0
\(31\) −5.69411 + 5.69411i −1.02269 + 1.02269i −0.0229561 + 0.999736i \(0.507308\pi\)
−0.999736 + 0.0229561i \(0.992692\pi\)
\(32\) 1.91338i 0.338241i
\(33\) 0 0
\(34\) −3.41167 + 3.41167i −0.585096 + 0.585096i
\(35\) −0.484925 + 0.242222i −0.0819673 + 0.0409431i
\(36\) 0 0
\(37\) 3.31881 0.545609 0.272805 0.962069i \(-0.412049\pi\)
0.272805 + 0.962069i \(0.412049\pi\)
\(38\) 9.73467 9.73467i 1.57917 1.57917i
\(39\) 0 0
\(40\) −5.42651 10.8638i −0.858007 1.71771i
\(41\) 1.51472 1.51472i 0.236559 0.236559i −0.578865 0.815424i \(-0.696504\pi\)
0.815424 + 0.578865i \(0.196504\pi\)
\(42\) 0 0
\(43\) 3.88596 3.88596i 0.592603 0.592603i −0.345731 0.938334i \(-0.612369\pi\)
0.938334 + 0.345731i \(0.112369\pi\)
\(44\) −17.7420 17.7420i −2.67471 2.67471i
\(45\) 0 0
\(46\) −4.73652 4.73652i −0.698362 0.698362i
\(47\) 1.68447 0.245706 0.122853 0.992425i \(-0.460796\pi\)
0.122853 + 0.992425i \(0.460796\pi\)
\(48\) 0 0
\(49\) −6.94124 −0.991605
\(50\) 9.94107 + 7.46811i 1.40588 + 1.05615i
\(51\) 0 0
\(52\) −11.7858 9.41597i −1.63440 1.30576i
\(53\) 2.22339 + 2.22339i 0.305406 + 0.305406i 0.843125 0.537718i \(-0.180714\pi\)
−0.537718 + 0.843125i \(0.680714\pi\)
\(54\) 0 0
\(55\) 12.7199 + 4.24558i 1.71516 + 0.572474i
\(56\) 1.31651i 0.175926i
\(57\) 0 0
\(58\) −14.3483 −1.88403
\(59\) −5.27843 + 5.27843i −0.687193 + 0.687193i −0.961611 0.274418i \(-0.911515\pi\)
0.274418 + 0.961611i \(0.411515\pi\)
\(60\) 0 0
\(61\) 10.2486 1.31220 0.656101 0.754673i \(-0.272204\pi\)
0.656101 + 0.754673i \(0.272204\pi\)
\(62\) −14.1598 14.1598i −1.79830 1.79830i
\(63\) 0 0
\(64\) 5.51638 0.689548
\(65\) 7.88373 + 1.68723i 0.977857 + 0.209275i
\(66\) 0 0
\(67\) 15.3086i 1.87024i −0.354328 0.935121i \(-0.615290\pi\)
0.354328 0.935121i \(-0.384710\pi\)
\(68\) −5.74007 5.74007i −0.696086 0.696086i
\(69\) 0 0
\(70\) −0.602346 1.20588i −0.0719941 0.144131i
\(71\) 0.0780456 0.0780456i 0.00926231 0.00926231i −0.702460 0.711723i \(-0.747915\pi\)
0.711723 + 0.702460i \(0.247915\pi\)
\(72\) 0 0
\(73\) 1.45403i 0.170181i −0.996373 0.0850905i \(-0.972882\pi\)
0.996373 0.0850905i \(-0.0271179\pi\)
\(74\) 8.25304i 0.959397i
\(75\) 0 0
\(76\) 16.3784 + 16.3784i 1.87873 + 1.87873i
\(77\) −1.02797 1.02797i −0.117148 0.117148i
\(78\) 0 0
\(79\) 7.60135i 0.855219i 0.903964 + 0.427609i \(0.140644\pi\)
−0.903964 + 0.427609i \(0.859356\pi\)
\(80\) 10.2765 5.13317i 1.14895 0.573906i
\(81\) 0 0
\(82\) 3.76672 + 3.76672i 0.415964 + 0.415964i
\(83\) −2.71964 −0.298520 −0.149260 0.988798i \(-0.547689\pi\)
−0.149260 + 0.988798i \(0.547689\pi\)
\(84\) 0 0
\(85\) 4.11528 + 1.37357i 0.446365 + 0.148985i
\(86\) 9.66338 + 9.66338i 1.04203 + 1.04203i
\(87\) 0 0
\(88\) 23.0296 23.0296i 2.45496 2.45496i
\(89\) −0.887120 + 0.887120i −0.0940345 + 0.0940345i −0.752559 0.658525i \(-0.771181\pi\)
0.658525 + 0.752559i \(0.271181\pi\)
\(90\) 0 0
\(91\) −0.682867 0.545559i −0.0715839 0.0571902i
\(92\) 7.96910 7.96910i 0.830837 0.830837i
\(93\) 0 0
\(94\) 4.18886i 0.432048i
\(95\) −11.7423 3.91927i −1.20474 0.402109i
\(96\) 0 0
\(97\) 4.76021i 0.483326i 0.970360 + 0.241663i \(0.0776929\pi\)
−0.970360 + 0.241663i \(0.922307\pi\)
\(98\) 17.2611i 1.74363i
\(99\) 0 0
\(100\) −12.5650 + 16.7257i −1.25650 + 1.67257i
\(101\) 11.2837i 1.12277i −0.827553 0.561387i \(-0.810268\pi\)
0.827553 0.561387i \(-0.189732\pi\)
\(102\) 0 0
\(103\) 9.85776 9.85776i 0.971314 0.971314i −0.0282861 0.999600i \(-0.509005\pi\)
0.999600 + 0.0282861i \(0.00900494\pi\)
\(104\) 12.2222 15.2983i 1.19848 1.50012i
\(105\) 0 0
\(106\) −5.52901 + 5.52901i −0.537025 + 0.537025i
\(107\) 4.00248 4.00248i 0.386934 0.386934i −0.486658 0.873592i \(-0.661784\pi\)
0.873592 + 0.486658i \(0.161784\pi\)
\(108\) 0 0
\(109\) −4.59552 4.59552i −0.440171 0.440171i 0.451899 0.892069i \(-0.350747\pi\)
−0.892069 + 0.451899i \(0.850747\pi\)
\(110\) −10.5577 + 31.6313i −1.00663 + 3.01592i
\(111\) 0 0
\(112\) −1.24534 −0.117674
\(113\) −12.3277 12.3277i −1.15969 1.15969i −0.984542 0.175149i \(-0.943959\pi\)
−0.175149 0.984542i \(-0.556041\pi\)
\(114\) 0 0
\(115\) −1.90697 + 5.71336i −0.177826 + 0.532774i
\(116\) 24.1408i 2.24142i
\(117\) 0 0
\(118\) −13.1261 13.1261i −1.20836 1.20836i
\(119\) −0.332578 0.332578i −0.0304874 0.0304874i
\(120\) 0 0
\(121\) 24.9644i 2.26949i
\(122\) 25.4857i 2.30737i
\(123\) 0 0
\(124\) 23.8236 23.8236i 2.13942 2.13942i
\(125\) 2.01306 10.9976i 0.180054 0.983657i
\(126\) 0 0
\(127\) −3.83744 3.83744i −0.340518 0.340518i 0.516044 0.856562i \(-0.327404\pi\)
−0.856562 + 0.516044i \(0.827404\pi\)
\(128\) 17.5446i 1.55074i
\(129\) 0 0
\(130\) −4.19571 + 19.6048i −0.367988 + 1.71946i
\(131\) 5.03941 0.440295 0.220148 0.975467i \(-0.429346\pi\)
0.220148 + 0.975467i \(0.429346\pi\)
\(132\) 0 0
\(133\) 0.948961 + 0.948961i 0.0822854 + 0.0822854i
\(134\) 38.0686 3.28862
\(135\) 0 0
\(136\) 7.45075 7.45075i 0.638897 0.638897i
\(137\) 13.3951 1.14442 0.572209 0.820108i \(-0.306087\pi\)
0.572209 + 0.820108i \(0.306087\pi\)
\(138\) 0 0
\(139\) 6.03788i 0.512126i −0.966660 0.256063i \(-0.917575\pi\)
0.966660 0.256063i \(-0.0824255\pi\)
\(140\) 2.02888 1.01344i 0.171472 0.0856509i
\(141\) 0 0
\(142\) 0.194080 + 0.194080i 0.0162868 + 0.0162868i
\(143\) 2.40191 + 21.4888i 0.200858 + 1.79698i
\(144\) 0 0
\(145\) 5.76535 + 11.5421i 0.478786 + 0.958521i
\(146\) 3.61579 0.299245
\(147\) 0 0
\(148\) −13.8856 −1.14139
\(149\) 14.7948 + 14.7948i 1.21203 + 1.21203i 0.970356 + 0.241678i \(0.0776979\pi\)
0.241678 + 0.970356i \(0.422302\pi\)
\(150\) 0 0
\(151\) −14.6792 14.6792i −1.19458 1.19458i −0.975768 0.218808i \(-0.929783\pi\)
−0.218808 0.975768i \(-0.570217\pi\)
\(152\) −21.2596 + 21.2596i −1.72438 + 1.72438i
\(153\) 0 0
\(154\) 2.55630 2.55630i 0.205992 0.205992i
\(155\) −5.70087 + 17.0801i −0.457905 + 1.37190i
\(156\) 0 0
\(157\) 4.26691 4.26691i 0.340537 0.340537i −0.516032 0.856569i \(-0.672592\pi\)
0.856569 + 0.516032i \(0.172592\pi\)
\(158\) −18.9026 −1.50381
\(159\) 0 0
\(160\) 1.91187 + 3.82752i 0.151146 + 0.302592i
\(161\) 0.461728 0.461728i 0.0363893 0.0363893i
\(162\) 0 0
\(163\) 14.7233i 1.15322i 0.817019 + 0.576611i \(0.195625\pi\)
−0.817019 + 0.576611i \(0.804375\pi\)
\(164\) −6.33743 + 6.33743i −0.494870 + 0.494870i
\(165\) 0 0
\(166\) 6.76306i 0.524915i
\(167\) −6.08556 −0.470915 −0.235457 0.971885i \(-0.575659\pi\)
−0.235457 + 0.971885i \(0.575659\pi\)
\(168\) 0 0
\(169\) 2.87029 + 12.6792i 0.220791 + 0.975321i
\(170\) −3.41572 + 10.2337i −0.261974 + 0.784886i
\(171\) 0 0
\(172\) −16.2585 + 16.2585i −1.23970 + 1.23970i
\(173\) 11.3322 11.3322i 0.861570 0.861570i −0.129951 0.991520i \(-0.541482\pi\)
0.991520 + 0.129951i \(0.0414819\pi\)
\(174\) 0 0
\(175\) −0.728011 + 0.969082i −0.0550324 + 0.0732557i
\(176\) 21.7847 + 21.7847i 1.64208 + 1.64208i
\(177\) 0 0
\(178\) −2.20604 2.20604i −0.165350 0.165350i
\(179\) −3.99730 −0.298772 −0.149386 0.988779i \(-0.547730\pi\)
−0.149386 + 0.988779i \(0.547730\pi\)
\(180\) 0 0
\(181\) 16.5433i 1.22966i −0.788661 0.614828i \(-0.789226\pi\)
0.788661 0.614828i \(-0.210774\pi\)
\(182\) 1.35667 1.69812i 0.100563 0.125873i
\(183\) 0 0
\(184\) 10.3441 + 10.3441i 0.762577 + 0.762577i
\(185\) 6.63894 3.31618i 0.488104 0.243811i
\(186\) 0 0
\(187\) 11.6355i 0.850876i
\(188\) −7.04768 −0.514005
\(189\) 0 0
\(190\) 9.74624 29.2002i 0.707066 2.11840i
\(191\) −13.0425 −0.943721 −0.471860 0.881673i \(-0.656417\pi\)
−0.471860 + 0.881673i \(0.656417\pi\)
\(192\) 0 0
\(193\) 9.28317i 0.668217i −0.942535 0.334109i \(-0.891565\pi\)
0.942535 0.334109i \(-0.108435\pi\)
\(194\) −11.8374 −0.849879
\(195\) 0 0
\(196\) 29.0415 2.07439
\(197\) 12.9124i 0.919967i −0.887927 0.459983i \(-0.847855\pi\)
0.887927 0.459983i \(-0.152145\pi\)
\(198\) 0 0
\(199\) 2.35534 0.166966 0.0834830 0.996509i \(-0.473396\pi\)
0.0834830 + 0.996509i \(0.473396\pi\)
\(200\) −21.7103 16.3096i −1.53515 1.15326i
\(201\) 0 0
\(202\) 28.0598 1.97428
\(203\) 1.39871i 0.0981703i
\(204\) 0 0
\(205\) 1.51652 4.54355i 0.105918 0.317336i
\(206\) 24.5137 + 24.5137i 1.70795 + 1.70795i
\(207\) 0 0
\(208\) 14.4713 + 11.5615i 1.00340 + 0.801644i
\(209\) 33.2003i 2.29651i
\(210\) 0 0
\(211\) −21.9810 −1.51323 −0.756617 0.653858i \(-0.773149\pi\)
−0.756617 + 0.653858i \(0.773149\pi\)
\(212\) −9.30245 9.30245i −0.638895 0.638895i
\(213\) 0 0
\(214\) 9.95315 + 9.95315i 0.680383 + 0.680383i
\(215\) 3.89057 11.6563i 0.265335 0.794955i
\(216\) 0 0
\(217\) 1.38033 1.38033i 0.0937032 0.0937032i
\(218\) 11.4279 11.4279i 0.773993 0.773993i
\(219\) 0 0
\(220\) −53.2190 17.7631i −3.58802 1.19759i
\(221\) 0.777089 + 6.95226i 0.0522727 + 0.467660i
\(222\) 0 0
\(223\) −8.72020 −0.583948 −0.291974 0.956426i \(-0.594312\pi\)
−0.291974 + 0.956426i \(0.594312\pi\)
\(224\) 0.463831i 0.0309910i
\(225\) 0 0
\(226\) 30.6558 30.6558i 2.03919 2.03919i
\(227\) 18.3913i 1.22068i −0.792141 0.610338i \(-0.791034\pi\)
0.792141 0.610338i \(-0.208966\pi\)
\(228\) 0 0
\(229\) 16.7151 16.7151i 1.10456 1.10456i 0.110712 0.993852i \(-0.464687\pi\)
0.993852 0.110712i \(-0.0353133\pi\)
\(230\) −14.2077 4.74214i −0.936827 0.312688i
\(231\) 0 0
\(232\) 31.3353 2.05727
\(233\) −0.600932 + 0.600932i −0.0393684 + 0.0393684i −0.726517 0.687149i \(-0.758862\pi\)
0.687149 + 0.726517i \(0.258862\pi\)
\(234\) 0 0
\(235\) 3.36962 1.68314i 0.219809 0.109796i
\(236\) 22.0844 22.0844i 1.43757 1.43757i
\(237\) 0 0
\(238\) 0.827038 0.827038i 0.0536089 0.0536089i
\(239\) 8.71291 + 8.71291i 0.563591 + 0.563591i 0.930326 0.366735i \(-0.119524\pi\)
−0.366735 + 0.930326i \(0.619524\pi\)
\(240\) 0 0
\(241\) −6.37606 6.37606i −0.410718 0.410718i 0.471271 0.881989i \(-0.343796\pi\)
−0.881989 + 0.471271i \(0.843796\pi\)
\(242\) −62.0801 −3.99066
\(243\) 0 0
\(244\) −42.8793 −2.74506
\(245\) −13.8852 + 6.93574i −0.887094 + 0.443108i
\(246\) 0 0
\(247\) −2.21730 19.8372i −0.141084 1.26221i
\(248\) 30.9236 + 30.9236i 1.96365 + 1.96365i
\(249\) 0 0
\(250\) 27.3483 + 5.00598i 1.72966 + 0.316606i
\(251\) 8.17534i 0.516023i 0.966142 + 0.258011i \(0.0830672\pi\)
−0.966142 + 0.258011i \(0.916933\pi\)
\(252\) 0 0
\(253\) −16.1540 −1.01559
\(254\) 9.54274 9.54274i 0.598765 0.598765i
\(255\) 0 0
\(256\) −32.5962 −2.03726
\(257\) 9.97233 + 9.97233i 0.622057 + 0.622057i 0.946057 0.324000i \(-0.105028\pi\)
−0.324000 + 0.946057i \(0.605028\pi\)
\(258\) 0 0
\(259\) −0.804528 −0.0499909
\(260\) −32.9848 7.05920i −2.04563 0.437793i
\(261\) 0 0
\(262\) 12.5317i 0.774212i
\(263\) −16.5535 16.5535i −1.02073 1.02073i −0.999780 0.0209533i \(-0.993330\pi\)
−0.0209533 0.999780i \(-0.506670\pi\)
\(264\) 0 0
\(265\) 6.66929 + 2.22603i 0.409691 + 0.136744i
\(266\) −2.35983 + 2.35983i −0.144690 + 0.144690i
\(267\) 0 0
\(268\) 64.0497i 3.91246i
\(269\) 16.7169i 1.01925i −0.860397 0.509625i \(-0.829784\pi\)
0.860397 0.509625i \(-0.170216\pi\)
\(270\) 0 0
\(271\) 12.5904 + 12.5904i 0.764814 + 0.764814i 0.977188 0.212374i \(-0.0681195\pi\)
−0.212374 + 0.977188i \(0.568120\pi\)
\(272\) 7.04799 + 7.04799i 0.427347 + 0.427347i
\(273\) 0 0
\(274\) 33.3101i 2.01234i
\(275\) 29.6871 4.21704i 1.79020 0.254297i
\(276\) 0 0
\(277\) −17.8939 17.8939i −1.07514 1.07514i −0.996937 0.0782056i \(-0.975081\pi\)
−0.0782056 0.996937i \(-0.524919\pi\)
\(278\) 15.0147 0.900520
\(279\) 0 0
\(280\) 1.31546 + 2.63353i 0.0786140 + 0.157384i
\(281\) 2.64673 + 2.64673i 0.157891 + 0.157891i 0.781631 0.623741i \(-0.214388\pi\)
−0.623741 + 0.781631i \(0.714388\pi\)
\(282\) 0 0
\(283\) 2.64156 2.64156i 0.157025 0.157025i −0.624222 0.781247i \(-0.714584\pi\)
0.781247 + 0.624222i \(0.214584\pi\)
\(284\) −0.326535 + 0.326535i −0.0193763 + 0.0193763i
\(285\) 0 0
\(286\) −53.4371 + 5.97293i −3.15980 + 0.353187i
\(287\) −0.367189 + 0.367189i −0.0216745 + 0.0216745i
\(288\) 0 0
\(289\) 13.2356i 0.778562i
\(290\) −28.7023 + 14.3370i −1.68546 + 0.841895i
\(291\) 0 0
\(292\) 6.08351i 0.356010i
\(293\) 8.87232i 0.518327i 0.965834 + 0.259163i \(0.0834468\pi\)
−0.965834 + 0.259163i \(0.916553\pi\)
\(294\) 0 0
\(295\) −5.28469 + 15.8332i −0.307687 + 0.921844i
\(296\) 18.0238i 1.04761i
\(297\) 0 0
\(298\) −36.7908 + 36.7908i −2.13124 + 2.13124i
\(299\) −9.65203 + 1.07885i −0.558191 + 0.0623918i
\(300\) 0 0
\(301\) −0.942012 + 0.942012i −0.0542966 + 0.0542966i
\(302\) 36.5034 36.5034i 2.10054 2.10054i
\(303\) 0 0
\(304\) −20.1104 20.1104i −1.15341 1.15341i
\(305\) 20.5013 10.2405i 1.17390 0.586370i
\(306\) 0 0
\(307\) 25.1833 1.43729 0.718644 0.695378i \(-0.244763\pi\)
0.718644 + 0.695378i \(0.244763\pi\)
\(308\) 4.30092 + 4.30092i 0.245068 + 0.245068i
\(309\) 0 0
\(310\) −42.4738 14.1766i −2.41235 0.805178i
\(311\) 7.05837i 0.400243i 0.979771 + 0.200122i \(0.0641337\pi\)
−0.979771 + 0.200122i \(0.935866\pi\)
\(312\) 0 0
\(313\) −3.85568 3.85568i −0.217936 0.217936i 0.589692 0.807628i \(-0.299249\pi\)
−0.807628 + 0.589692i \(0.799249\pi\)
\(314\) 10.6107 + 10.6107i 0.598798 + 0.598798i
\(315\) 0 0
\(316\) 31.8033i 1.78908i
\(317\) 13.9177i 0.781695i 0.920456 + 0.390847i \(0.127818\pi\)
−0.920456 + 0.390847i \(0.872182\pi\)
\(318\) 0 0
\(319\) −24.4676 + 24.4676i −1.36992 + 1.36992i
\(320\) 11.0350 5.51202i 0.616873 0.308131i
\(321\) 0 0
\(322\) 1.14820 + 1.14820i 0.0639867 + 0.0639867i
\(323\) 10.7413i 0.597660i
\(324\) 0 0
\(325\) 17.4565 4.50236i 0.968311 0.249746i
\(326\) −36.6132 −2.02782
\(327\) 0 0
\(328\) −8.22614 8.22614i −0.454213 0.454213i
\(329\) −0.408341 −0.0225126
\(330\) 0 0
\(331\) −6.88277 + 6.88277i −0.378311 + 0.378311i −0.870493 0.492181i \(-0.836200\pi\)
0.492181 + 0.870493i \(0.336200\pi\)
\(332\) 11.3787 0.624489
\(333\) 0 0
\(334\) 15.1332i 0.828054i
\(335\) −15.2965 30.6232i −0.835736 1.67313i
\(336\) 0 0
\(337\) 0.812119 + 0.812119i 0.0442389 + 0.0442389i 0.728880 0.684641i \(-0.240041\pi\)
−0.684641 + 0.728880i \(0.740041\pi\)
\(338\) −31.5299 + 7.13768i −1.71500 + 0.388238i
\(339\) 0 0
\(340\) −17.2179 5.74689i −0.933774 0.311669i
\(341\) −48.2922 −2.61517
\(342\) 0 0
\(343\) 3.37956 0.182479
\(344\) −21.1039 21.1039i −1.13785 1.13785i
\(345\) 0 0
\(346\) 28.1803 + 28.1803i 1.51498 + 1.51498i
\(347\) −25.2146 + 25.2146i −1.35359 + 1.35359i −0.471983 + 0.881608i \(0.656462\pi\)
−0.881608 + 0.471983i \(0.843538\pi\)
\(348\) 0 0
\(349\) 4.85536 4.85536i 0.259902 0.259902i −0.565112 0.825014i \(-0.691167\pi\)
0.825014 + 0.565112i \(0.191167\pi\)
\(350\) −2.40986 1.81038i −0.128812 0.0967688i
\(351\) 0 0
\(352\) −8.11377 + 8.11377i −0.432465 + 0.432465i
\(353\) −25.9459 −1.38096 −0.690480 0.723351i \(-0.742601\pi\)
−0.690480 + 0.723351i \(0.742601\pi\)
\(354\) 0 0
\(355\) 0.0781383 0.234106i 0.00414715 0.0124250i
\(356\) 3.71162 3.71162i 0.196716 0.196716i
\(357\) 0 0
\(358\) 9.94027i 0.525359i
\(359\) 2.31461 2.31461i 0.122160 0.122160i −0.643384 0.765544i \(-0.722470\pi\)
0.765544 + 0.643384i \(0.222470\pi\)
\(360\) 0 0
\(361\) 11.6486i 0.613083i
\(362\) 41.1390 2.16222
\(363\) 0 0
\(364\) 2.85705 + 2.28257i 0.149750 + 0.119639i
\(365\) −1.45287 2.90863i −0.0760470 0.152245i
\(366\) 0 0
\(367\) 10.2557 10.2557i 0.535346 0.535346i −0.386813 0.922158i \(-0.626424\pi\)
0.922158 + 0.386813i \(0.126424\pi\)
\(368\) −9.78493 + 9.78493i −0.510075 + 0.510075i
\(369\) 0 0
\(370\) 8.24651 + 16.5094i 0.428715 + 0.858280i
\(371\) −0.538982 0.538982i −0.0279826 0.0279826i
\(372\) 0 0
\(373\) 5.33438 + 5.33438i 0.276204 + 0.276204i 0.831592 0.555388i \(-0.187430\pi\)
−0.555388 + 0.831592i \(0.687430\pi\)
\(374\) −28.9346 −1.49618
\(375\) 0 0
\(376\) 9.14806i 0.471775i
\(377\) −12.9853 + 16.2535i −0.668779 + 0.837098i
\(378\) 0 0
\(379\) 4.89160 + 4.89160i 0.251265 + 0.251265i 0.821489 0.570224i \(-0.193144\pi\)
−0.570224 + 0.821489i \(0.693144\pi\)
\(380\) 49.1287 + 16.3979i 2.52025 + 0.841193i
\(381\) 0 0
\(382\) 32.4333i 1.65943i
\(383\) −0.331496 −0.0169386 −0.00846932 0.999964i \(-0.502696\pi\)
−0.00846932 + 0.999964i \(0.502696\pi\)
\(384\) 0 0
\(385\) −3.08350 1.02919i −0.157150 0.0524523i
\(386\) 23.0849 1.17499
\(387\) 0 0
\(388\) 19.9163i 1.01110i
\(389\) −6.77907 −0.343713 −0.171856 0.985122i \(-0.554976\pi\)
−0.171856 + 0.985122i \(0.554976\pi\)
\(390\) 0 0
\(391\) −5.22629 −0.264305
\(392\) 37.6965i 1.90396i
\(393\) 0 0
\(394\) 32.1097 1.61766
\(395\) 7.59533 + 15.2057i 0.382162 + 0.765082i
\(396\) 0 0
\(397\) 25.7273 1.29121 0.645607 0.763670i \(-0.276604\pi\)
0.645607 + 0.763670i \(0.276604\pi\)
\(398\) 5.85714i 0.293592i
\(399\) 0 0
\(400\) 15.4280 20.5367i 0.771399 1.02684i
\(401\) −7.72622 7.72622i −0.385829 0.385829i 0.487368 0.873197i \(-0.337957\pi\)
−0.873197 + 0.487368i \(0.837957\pi\)
\(402\) 0 0
\(403\) −28.8547 + 3.22523i −1.43735 + 0.160660i
\(404\) 47.2101i 2.34879i
\(405\) 0 0
\(406\) 3.47824 0.172622
\(407\) 14.0736 + 14.0736i 0.697601 + 0.697601i
\(408\) 0 0
\(409\) 7.15874 + 7.15874i 0.353977 + 0.353977i 0.861587 0.507610i \(-0.169471\pi\)
−0.507610 + 0.861587i \(0.669471\pi\)
\(410\) 11.2987 + 3.77119i 0.558001 + 0.186246i
\(411\) 0 0
\(412\) −41.2439 + 41.2439i −2.03194 + 2.03194i
\(413\) 1.27957 1.27957i 0.0629634 0.0629634i
\(414\) 0 0
\(415\) −5.44036 + 2.71749i −0.267057 + 0.133396i
\(416\) −4.30611 + 5.38988i −0.211124 + 0.264260i
\(417\) 0 0
\(418\) 82.5606 4.03817
\(419\) 23.1087i 1.12894i −0.825455 0.564468i \(-0.809081\pi\)
0.825455 0.564468i \(-0.190919\pi\)
\(420\) 0 0
\(421\) −0.323390 + 0.323390i −0.0157611 + 0.0157611i −0.714943 0.699182i \(-0.753548\pi\)
0.699182 + 0.714943i \(0.253548\pi\)
\(422\) 54.6612i 2.66086i
\(423\) 0 0
\(424\) 12.0748 12.0748i 0.586405 0.586405i
\(425\) 9.60467 1.36434i 0.465895 0.0661800i
\(426\) 0 0
\(427\) −2.48442 −0.120229
\(428\) −16.7460 + 16.7460i −0.809448 + 0.809448i
\(429\) 0 0
\(430\) 28.9863 + 9.67486i 1.39784 + 0.466563i
\(431\) −1.67187 + 1.67187i −0.0805312 + 0.0805312i −0.746225 0.665694i \(-0.768136\pi\)
0.665694 + 0.746225i \(0.268136\pi\)
\(432\) 0 0
\(433\) 10.8483 10.8483i 0.521337 0.521337i −0.396638 0.917975i \(-0.629823\pi\)
0.917975 + 0.396638i \(0.129823\pi\)
\(434\) 3.43254 + 3.43254i 0.164767 + 0.164767i
\(435\) 0 0
\(436\) 19.2272 + 19.2272i 0.920815 + 0.920815i
\(437\) 14.9124 0.713358
\(438\) 0 0
\(439\) −20.2491 −0.966437 −0.483219 0.875500i \(-0.660532\pi\)
−0.483219 + 0.875500i \(0.660532\pi\)
\(440\) 23.0569 69.0796i 1.09920 3.29324i
\(441\) 0 0
\(442\) −17.2885 + 1.93242i −0.822330 + 0.0919159i
\(443\) 13.2900 + 13.2900i 0.631425 + 0.631425i 0.948426 0.317000i \(-0.102676\pi\)
−0.317000 + 0.948426i \(0.602676\pi\)
\(444\) 0 0
\(445\) −0.888174 + 2.66101i −0.0421035 + 0.126144i
\(446\) 21.6849i 1.02681i
\(447\) 0 0
\(448\) −1.33725 −0.0631792
\(449\) −23.3059 + 23.3059i −1.09988 + 1.09988i −0.105451 + 0.994425i \(0.533628\pi\)
−0.994425 + 0.105451i \(0.966372\pi\)
\(450\) 0 0
\(451\) 12.8464 0.604916
\(452\) 51.5778 + 51.5778i 2.42602 + 2.42602i
\(453\) 0 0
\(454\) 45.7346 2.14643
\(455\) −1.91113 0.409009i −0.0895952 0.0191746i
\(456\) 0 0
\(457\) 15.5860i 0.729085i 0.931187 + 0.364542i \(0.118775\pi\)
−0.931187 + 0.364542i \(0.881225\pi\)
\(458\) 41.5662 + 41.5662i 1.94226 + 1.94226i
\(459\) 0 0
\(460\) 7.97857 23.9042i 0.372003 1.11454i
\(461\) −20.8994 + 20.8994i −0.973381 + 0.973381i −0.999655 0.0262742i \(-0.991636\pi\)
0.0262742 + 0.999655i \(0.491636\pi\)
\(462\) 0 0
\(463\) 8.32123i 0.386720i −0.981128 0.193360i \(-0.938061\pi\)
0.981128 0.193360i \(-0.0619386\pi\)
\(464\) 29.6414i 1.37607i
\(465\) 0 0
\(466\) −1.49436 1.49436i −0.0692251 0.0692251i
\(467\) 21.9600 + 21.9600i 1.01619 + 1.01619i 0.999867 + 0.0163185i \(0.00519457\pi\)
0.0163185 + 0.999867i \(0.494805\pi\)
\(468\) 0 0
\(469\) 3.71102i 0.171359i
\(470\) 4.18554 + 8.37937i 0.193065 + 0.386512i
\(471\) 0 0
\(472\) 28.6661 + 28.6661i 1.31947 + 1.31947i
\(473\) 32.9571 1.51537
\(474\) 0 0
\(475\) −27.4055 + 3.89293i −1.25745 + 0.178620i
\(476\) 1.39148 + 1.39148i 0.0637782 + 0.0637782i
\(477\) 0 0
\(478\) −21.6668 + 21.6668i −0.991015 + 0.991015i
\(479\) −12.9813 + 12.9813i −0.593132 + 0.593132i −0.938476 0.345344i \(-0.887762\pi\)
0.345344 + 0.938476i \(0.387762\pi\)
\(480\) 0 0
\(481\) 9.34889 + 7.46907i 0.426273 + 0.340560i
\(482\) 15.8556 15.8556i 0.722204 0.722204i
\(483\) 0 0
\(484\) 104.449i 4.74766i
\(485\) 4.75644 + 9.52231i 0.215979 + 0.432386i
\(486\) 0 0
\(487\) 12.6406i 0.572801i −0.958110 0.286400i \(-0.907541\pi\)
0.958110 0.286400i \(-0.0924587\pi\)
\(488\) 55.6584i 2.51954i
\(489\) 0 0
\(490\) −17.2474 34.5290i −0.779159 1.55986i
\(491\) 27.8197i 1.25549i 0.778421 + 0.627743i \(0.216021\pi\)
−0.778421 + 0.627743i \(0.783979\pi\)
\(492\) 0 0
\(493\) −7.91599 + 7.91599i −0.356518 + 0.356518i
\(494\) 49.3301 5.51387i 2.21947 0.248081i
\(495\) 0 0
\(496\) −29.2520 + 29.2520i −1.31345 + 1.31345i
\(497\) −0.0189194 + 0.0189194i −0.000848650 + 0.000848650i
\(498\) 0 0
\(499\) 0.152074 + 0.152074i 0.00680776 + 0.00680776i 0.710502 0.703695i \(-0.248468\pi\)
−0.703695 + 0.710502i \(0.748468\pi\)
\(500\) −8.42246 + 46.0130i −0.376664 + 2.05776i
\(501\) 0 0
\(502\) −20.3300 −0.907372
\(503\) 4.59193 + 4.59193i 0.204744 + 0.204744i 0.802029 0.597285i \(-0.203754\pi\)
−0.597285 + 0.802029i \(0.703754\pi\)
\(504\) 0 0
\(505\) −11.2748 22.5719i −0.501722 1.00444i
\(506\) 40.1708i 1.78581i
\(507\) 0 0
\(508\) 16.0555 + 16.0555i 0.712347 + 0.712347i
\(509\) 11.1303 + 11.1303i 0.493341 + 0.493341i 0.909357 0.416016i \(-0.136574\pi\)
−0.416016 + 0.909357i \(0.636574\pi\)
\(510\) 0 0
\(511\) 0.352477i 0.0155927i
\(512\) 45.9692i 2.03157i
\(513\) 0 0
\(514\) −24.7986 + 24.7986i −1.09382 + 1.09382i
\(515\) 9.86947 29.5694i 0.434901 1.30298i
\(516\) 0 0
\(517\) 7.14308 + 7.14308i 0.314152 + 0.314152i
\(518\) 2.00066i 0.0879038i
\(519\) 0 0
\(520\) 9.16302 42.8151i 0.401825 1.87756i
\(521\) 13.6076 0.596161 0.298080 0.954541i \(-0.403654\pi\)
0.298080 + 0.954541i \(0.403654\pi\)
\(522\) 0 0
\(523\) −12.9591 12.9591i −0.566664 0.566664i 0.364528 0.931192i \(-0.381230\pi\)
−0.931192 + 0.364528i \(0.881230\pi\)
\(524\) −21.0844 −0.921076
\(525\) 0 0
\(526\) 41.1644 41.1644i 1.79485 1.79485i
\(527\) −15.6240 −0.680591
\(528\) 0 0
\(529\) 15.7442i 0.684530i
\(530\) −5.53558 + 16.5848i −0.240450 + 0.720399i
\(531\) 0 0
\(532\) −3.97036 3.97036i −0.172137 0.172137i
\(533\) 7.67577 0.857959i 0.332475 0.0371623i
\(534\) 0 0
\(535\) 4.00723 12.0059i 0.173248 0.519058i
\(536\) −83.1381 −3.59102
\(537\) 0 0
\(538\) 41.5708 1.79224
\(539\) −29.4346 29.4346i −1.26784 1.26784i
\(540\) 0 0
\(541\) −24.0220 24.0220i −1.03279 1.03279i −0.999444 0.0333420i \(-0.989385\pi\)
−0.0333420 0.999444i \(-0.510615\pi\)
\(542\) −31.3092 + 31.3092i −1.34485 + 1.34485i
\(543\) 0 0
\(544\) −2.62505 + 2.62505i −0.112548 + 0.112548i
\(545\) −13.7847 4.60097i −0.590473 0.197084i
\(546\) 0 0
\(547\) −18.6456 + 18.6456i −0.797229 + 0.797229i −0.982658 0.185428i \(-0.940633\pi\)
0.185428 + 0.982658i \(0.440633\pi\)
\(548\) −56.0437 −2.39407
\(549\) 0 0
\(550\) 10.4867 + 73.8244i 0.447154 + 3.14788i
\(551\) 22.5871 22.5871i 0.962241 0.962241i
\(552\) 0 0
\(553\) 1.84268i 0.0783586i
\(554\) 44.4977 44.4977i 1.89053 1.89053i
\(555\) 0 0
\(556\) 25.2619i 1.07134i
\(557\) 1.32872 0.0562996 0.0281498 0.999604i \(-0.491038\pi\)
0.0281498 + 0.999604i \(0.491038\pi\)
\(558\) 0 0
\(559\) 19.6919 2.20106i 0.832880 0.0930951i
\(560\) −2.49117 + 1.24435i −0.105271 + 0.0525836i
\(561\) 0 0
\(562\) −6.58175 + 6.58175i −0.277634 + 0.277634i
\(563\) 15.2469 15.2469i 0.642582 0.642582i −0.308607 0.951190i \(-0.599863\pi\)
0.951190 + 0.308607i \(0.0998629\pi\)
\(564\) 0 0
\(565\) −36.9782 12.3423i −1.55568 0.519246i
\(566\) 6.56889 + 6.56889i 0.276111 + 0.276111i
\(567\) 0 0
\(568\) −0.423851 0.423851i −0.0177844 0.0177844i
\(569\) −31.7042 −1.32911 −0.664555 0.747239i \(-0.731379\pi\)
−0.664555 + 0.747239i \(0.731379\pi\)
\(570\) 0 0
\(571\) 3.77184i 0.157847i −0.996881 0.0789233i \(-0.974852\pi\)
0.996881 0.0789233i \(-0.0251482\pi\)
\(572\) −10.0493 89.9070i −0.420184 3.75920i
\(573\) 0 0
\(574\) −0.913107 0.913107i −0.0381123 0.0381123i
\(575\) 1.89415 + 13.3344i 0.0789914 + 0.556085i
\(576\) 0 0
\(577\) 38.7401i 1.61277i 0.591391 + 0.806385i \(0.298579\pi\)
−0.591391 + 0.806385i \(0.701421\pi\)
\(578\) 32.9135 1.36902
\(579\) 0 0
\(580\) −24.1217 48.2911i −1.00160 2.00518i
\(581\) 0.659281 0.0273516
\(582\) 0 0
\(583\) 18.8568i 0.780967i
\(584\) −7.89654 −0.326761
\(585\) 0 0
\(586\) −22.0632 −0.911423
\(587\) 11.4947i 0.474438i 0.971456 + 0.237219i \(0.0762358\pi\)
−0.971456 + 0.237219i \(0.923764\pi\)
\(588\) 0 0
\(589\) 44.5806 1.83691
\(590\) −39.3731 13.1417i −1.62097 0.541035i
\(591\) 0 0
\(592\) 17.0495 0.700731
\(593\) 23.5194i 0.965824i 0.875669 + 0.482912i \(0.160421\pi\)
−0.875669 + 0.482912i \(0.839579\pi\)
\(594\) 0 0
\(595\) −0.997603 0.332973i −0.0408978 0.0136506i
\(596\) −61.8999 61.8999i −2.53552 2.53552i
\(597\) 0 0
\(598\) −2.68284 24.0021i −0.109709 0.981520i
\(599\) 15.0098i 0.613282i −0.951825 0.306641i \(-0.900795\pi\)
0.951825 0.306641i \(-0.0992051\pi\)
\(600\) 0 0
\(601\) −9.20174 −0.375347 −0.187673 0.982231i \(-0.560095\pi\)
−0.187673 + 0.982231i \(0.560095\pi\)
\(602\) −2.34254 2.34254i −0.0954749 0.0954749i
\(603\) 0 0
\(604\) 61.4163 + 61.4163i 2.49900 + 2.49900i
\(605\) 24.9446 + 49.9386i 1.01414 + 2.03029i
\(606\) 0 0
\(607\) −1.90926 + 1.90926i −0.0774945 + 0.0774945i −0.744792 0.667297i \(-0.767451\pi\)
0.667297 + 0.744792i \(0.267451\pi\)
\(608\) 7.49017 7.49017i 0.303766 0.303766i
\(609\) 0 0
\(610\) 25.4656 + 50.9816i 1.03107 + 2.06418i
\(611\) 4.74506 + 3.79095i 0.191965 + 0.153365i
\(612\) 0 0
\(613\) −8.40716 −0.339562 −0.169781 0.985482i \(-0.554306\pi\)
−0.169781 + 0.985482i \(0.554306\pi\)
\(614\) 62.6245i 2.52732i
\(615\) 0 0
\(616\) −5.58270 + 5.58270i −0.224933 + 0.224933i
\(617\) 5.02106i 0.202140i −0.994879 0.101070i \(-0.967773\pi\)
0.994879 0.101070i \(-0.0322267\pi\)
\(618\) 0 0
\(619\) −28.7489 + 28.7489i −1.15552 + 1.15552i −0.170089 + 0.985429i \(0.554405\pi\)
−0.985429 + 0.170089i \(0.945595\pi\)
\(620\) 23.8519 71.4614i 0.957915 2.86996i
\(621\) 0 0
\(622\) −17.5524 −0.703786
\(623\) 0.215051 0.215051i 0.00861582 0.00861582i
\(624\) 0 0
\(625\) −6.96198 24.0111i −0.278479 0.960442i
\(626\) 9.58810 9.58810i 0.383218 0.383218i
\(627\) 0 0
\(628\) −17.8524 + 17.8524i −0.712386 + 0.712386i
\(629\) 4.55322 + 4.55322i 0.181549 + 0.181549i
\(630\) 0 0
\(631\) 21.7388 + 21.7388i 0.865407 + 0.865407i 0.991960 0.126553i \(-0.0403913\pi\)
−0.126553 + 0.991960i \(0.540391\pi\)
\(632\) 41.2815 1.64209
\(633\) 0 0
\(634\) −34.6097 −1.37453
\(635\) −11.5108 3.84200i −0.456793 0.152465i
\(636\) 0 0
\(637\) −19.5530 15.6214i −0.774719 0.618943i
\(638\) −60.8446 60.8446i −2.40886 2.40886i
\(639\) 0 0
\(640\) 17.5307 + 35.0962i 0.692962 + 1.38730i
\(641\) 8.55187i 0.337779i −0.985635 0.168889i \(-0.945982\pi\)
0.985635 0.168889i \(-0.0540181\pi\)
\(642\) 0 0
\(643\) −3.11521 −0.122852 −0.0614259 0.998112i \(-0.519565\pi\)
−0.0614259 + 0.998112i \(0.519565\pi\)
\(644\) −1.93183 + 1.93183i −0.0761246 + 0.0761246i
\(645\) 0 0
\(646\) 26.7108 1.05092
\(647\) −26.4560 26.4560i −1.04009 1.04009i −0.999162 0.0409311i \(-0.986968\pi\)
−0.0409311 0.999162i \(-0.513032\pi\)
\(648\) 0 0
\(649\) −44.7668 −1.75725
\(650\) 11.1962 + 43.4098i 0.439152 + 1.70267i
\(651\) 0 0
\(652\) 61.6010i 2.41248i
\(653\) 9.61272 + 9.61272i 0.376175 + 0.376175i 0.869720 0.493545i \(-0.164299\pi\)
−0.493545 + 0.869720i \(0.664299\pi\)
\(654\) 0 0
\(655\) 10.0808 5.03542i 0.393890 0.196750i
\(656\) 7.78146 7.78146i 0.303815 0.303815i
\(657\) 0 0
\(658\) 1.01544i 0.0395860i
\(659\) 15.1490i 0.590122i 0.955478 + 0.295061i \(0.0953400\pi\)
−0.955478 + 0.295061i \(0.904660\pi\)
\(660\) 0 0
\(661\) 18.9976 + 18.9976i 0.738920 + 0.738920i 0.972369 0.233449i \(-0.0750013\pi\)
−0.233449 + 0.972369i \(0.575001\pi\)
\(662\) −17.1157 17.1157i −0.665220 0.665220i
\(663\) 0 0
\(664\) 14.7699i 0.573182i
\(665\) 2.84651 + 0.950089i 0.110383 + 0.0368429i
\(666\) 0 0
\(667\) −10.9900 10.9900i −0.425534 0.425534i
\(668\) 25.4614 0.985131
\(669\) 0 0
\(670\) 76.1522 38.0384i 2.94202 1.46955i
\(671\) 43.4597 + 43.4597i 1.67774 + 1.67774i
\(672\) 0 0
\(673\) 26.4650 26.4650i 1.02015 1.02015i 0.0203584 0.999793i \(-0.493519\pi\)
0.999793 0.0203584i \(-0.00648074\pi\)
\(674\) −2.01953 + 2.01953i −0.0777895 + 0.0777895i
\(675\) 0 0
\(676\) −12.0090 53.0484i −0.461885 2.04032i
\(677\) 13.7029 13.7029i 0.526645 0.526645i −0.392925 0.919570i \(-0.628537\pi\)
0.919570 + 0.392925i \(0.128537\pi\)
\(678\) 0 0
\(679\) 1.15394i 0.0442843i
\(680\) 7.45960 22.3493i 0.286063 0.857057i
\(681\) 0 0
\(682\) 120.090i 4.59850i
\(683\) 14.6506i 0.560588i 0.959914 + 0.280294i \(0.0904320\pi\)
−0.959914 + 0.280294i \(0.909568\pi\)
\(684\) 0 0
\(685\) 26.7954 13.3845i 1.02380 0.511394i
\(686\) 8.40410i 0.320870i
\(687\) 0 0
\(688\) 19.9631 19.9631i 0.761085 0.761085i
\(689\) 1.25936 + 11.2670i 0.0479779 + 0.429237i
\(690\) 0 0
\(691\) −34.7630 + 34.7630i −1.32245 + 1.32245i −0.410660 + 0.911789i \(0.634702\pi\)
−0.911789 + 0.410660i \(0.865298\pi\)
\(692\) −47.4128 + 47.4128i −1.80236 + 1.80236i
\(693\) 0 0
\(694\) −62.7023 62.7023i −2.38015 2.38015i
\(695\) −6.03310 12.0781i −0.228848 0.458150i
\(696\) 0 0
\(697\) 4.15621 0.157428
\(698\) 12.0740 + 12.0740i 0.457009 + 0.457009i
\(699\) 0 0
\(700\) 3.04593 4.05454i 0.115125 0.153247i
\(701\) 13.7058i 0.517659i −0.965923 0.258830i \(-0.916663\pi\)
0.965923 0.258830i \(-0.0833369\pi\)
\(702\) 0 0
\(703\) −12.9919 12.9919i −0.489999 0.489999i
\(704\) 23.3925 + 23.3925i 0.881636 + 0.881636i
\(705\) 0 0
\(706\) 64.5208i 2.42827i
\(707\) 2.73534i 0.102873i
\(708\) 0 0
\(709\) −4.33781 + 4.33781i −0.162910 + 0.162910i −0.783854 0.620945i \(-0.786749\pi\)
0.620945 + 0.783854i \(0.286749\pi\)
\(710\) 0.582162 + 0.194310i 0.0218481 + 0.00729232i
\(711\) 0 0
\(712\) 4.81778 + 4.81778i 0.180554 + 0.180554i
\(713\) 21.6912i 0.812342i
\(714\) 0 0
\(715\) 26.2765 + 40.5861i 0.982687 + 1.51783i
\(716\) 16.7243 0.625017
\(717\) 0 0
\(718\) 5.75584 + 5.75584i 0.214806 + 0.214806i
\(719\) 27.4328 1.02307 0.511536 0.859262i \(-0.329077\pi\)
0.511536 + 0.859262i \(0.329077\pi\)
\(720\) 0 0
\(721\) −2.38966 + 2.38966i −0.0889957 + 0.0889957i
\(722\) −28.9670 −1.07804
\(723\) 0 0
\(724\) 69.2157i 2.57238i
\(725\) 23.0660 + 17.3280i 0.856648 + 0.643547i
\(726\) 0 0
\(727\) 27.8372 + 27.8372i 1.03243 + 1.03243i 0.999456 + 0.0329694i \(0.0104964\pi\)
0.0329694 + 0.999456i \(0.489504\pi\)
\(728\) −2.96283 + 3.70852i −0.109810 + 0.137447i
\(729\) 0 0
\(730\) 7.23302 3.61293i 0.267706 0.133721i
\(731\) 10.6626 0.394371
\(732\) 0 0
\(733\) 16.0974 0.594571 0.297285 0.954789i \(-0.403919\pi\)
0.297285 + 0.954789i \(0.403919\pi\)
\(734\) 25.5034 + 25.5034i 0.941349 + 0.941349i
\(735\) 0 0
\(736\) −3.64443 3.64443i −0.134335 0.134335i
\(737\) 64.9167 64.9167i 2.39124 2.39124i
\(738\) 0 0
\(739\) −9.67318 + 9.67318i −0.355834 + 0.355834i −0.862275 0.506441i \(-0.830961\pi\)
0.506441 + 0.862275i \(0.330961\pi\)
\(740\) −27.7767 + 13.8746i −1.02109 + 0.510040i
\(741\) 0 0
\(742\) 1.34031 1.34031i 0.0492044 0.0492044i
\(743\) 0.660092 0.0242164 0.0121082 0.999927i \(-0.496146\pi\)
0.0121082 + 0.999927i \(0.496146\pi\)
\(744\) 0 0
\(745\) 44.3784 + 14.8123i 1.62590 + 0.542682i
\(746\) −13.2653 + 13.2653i −0.485675 + 0.485675i
\(747\) 0 0
\(748\) 48.6820i 1.77999i
\(749\) −0.970259 + 0.970259i −0.0354525 + 0.0354525i
\(750\) 0 0
\(751\) 35.4818i 1.29475i −0.762171 0.647375i \(-0.775867\pi\)
0.762171 0.647375i \(-0.224133\pi\)
\(752\) 8.65354 0.315562
\(753\) 0 0
\(754\) −40.4183 32.2912i −1.47195 1.17598i
\(755\) −44.0318 14.6966i −1.60248 0.534865i
\(756\) 0 0
\(757\) 10.5506 10.5506i 0.383469 0.383469i −0.488881 0.872350i \(-0.662595\pi\)
0.872350 + 0.488881i \(0.162595\pi\)
\(758\) −12.1642 + 12.1642i −0.441823 + 0.441823i
\(759\) 0 0
\(760\) −21.2848 + 63.7703i −0.772082 + 2.31319i
\(761\) −22.4488 22.4488i −0.813767 0.813767i 0.171429 0.985196i \(-0.445161\pi\)
−0.985196 + 0.171429i \(0.945161\pi\)
\(762\) 0 0
\(763\) 1.11402 + 1.11402i 0.0403302 + 0.0403302i
\(764\) 54.5685 1.97422
\(765\) 0 0
\(766\) 0.824345i 0.0297848i
\(767\) −26.7482 + 2.98978i −0.965822 + 0.107955i
\(768\) 0 0
\(769\) −3.44776 3.44776i −0.124329 0.124329i 0.642204 0.766534i \(-0.278020\pi\)
−0.766534 + 0.642204i \(0.778020\pi\)
\(770\) 2.55933 7.66787i 0.0922319 0.276331i
\(771\) 0 0
\(772\) 38.8399i 1.39788i
\(773\) −25.5316 −0.918307 −0.459154 0.888357i \(-0.651847\pi\)
−0.459154 + 0.888357i \(0.651847\pi\)
\(774\) 0 0
\(775\) 5.66255 + 39.8633i 0.203405 + 1.43193i
\(776\) 25.8518 0.928026
\(777\) 0 0
\(778\) 16.8578i 0.604383i
\(779\) −11.8591 −0.424896
\(780\) 0 0
\(781\) 0.661911 0.0236850
\(782\) 12.9965i 0.464752i
\(783\) 0 0
\(784\) −35.6588 −1.27353
\(785\) 4.27198 12.7991i 0.152474 0.456818i
\(786\) 0 0
\(787\) −15.5693 −0.554986 −0.277493 0.960728i \(-0.589504\pi\)
−0.277493 + 0.960728i \(0.589504\pi\)
\(788\) 54.0240i 1.92453i
\(789\) 0 0
\(790\) −37.8127 + 18.8876i −1.34532 + 0.671992i
\(791\) 2.98841 + 2.98841i 0.106256 + 0.106256i
\(792\) 0 0
\(793\) 28.8698 + 23.0648i 1.02520 + 0.819055i
\(794\) 63.9772i 2.27046i
\(795\) 0 0
\(796\) −9.85453 −0.349285
\(797\) 7.35388 + 7.35388i 0.260488 + 0.260488i 0.825252 0.564764i \(-0.191033\pi\)
−0.564764 + 0.825252i \(0.691033\pi\)
\(798\) 0 0
\(799\) 2.31100 + 2.31100i 0.0817573 + 0.0817573i
\(800\) 7.64897 + 5.74620i 0.270432 + 0.203159i
\(801\) 0 0
\(802\) 19.2132 19.2132i 0.678440 0.678440i
\(803\) 6.16586 6.16586i 0.217588 0.217588i
\(804\) 0 0
\(805\) 0.462277 1.38500i 0.0162931 0.0488149i
\(806\) −8.02033 71.7543i −0.282504 2.52744i
\(807\) 0 0
\(808\) −61.2798 −2.15582
\(809\) 32.8074i 1.15345i −0.816939 0.576724i \(-0.804331\pi\)
0.816939 0.576724i \(-0.195669\pi\)
\(810\) 0 0
\(811\) −23.4835 + 23.4835i −0.824618 + 0.824618i −0.986766 0.162149i \(-0.948158\pi\)
0.162149 + 0.986766i \(0.448158\pi\)
\(812\) 5.85207i 0.205368i
\(813\) 0 0
\(814\) −34.9974 + 34.9974i −1.22666 + 1.22666i
\(815\) 14.7117 + 29.4525i 0.515328 + 1.03168i
\(816\) 0 0
\(817\) −30.4241 −1.06440
\(818\) −17.8020 + 17.8020i −0.622431 + 0.622431i
\(819\) 0 0
\(820\) −6.34496 + 19.0098i −0.221576 + 0.663850i
\(821\) −28.3481 + 28.3481i −0.989357 + 0.989357i −0.999944 0.0105868i \(-0.996630\pi\)
0.0105868 + 0.999944i \(0.496630\pi\)
\(822\) 0 0
\(823\) −33.0457 + 33.0457i −1.15190 + 1.15190i −0.165729 + 0.986171i \(0.552998\pi\)
−0.986171 + 0.165729i \(0.947002\pi\)
\(824\) −53.5356 53.5356i −1.86500 1.86500i
\(825\) 0 0
\(826\) 3.18196 + 3.18196i 0.110714 + 0.110714i
\(827\) −50.1300 −1.74319 −0.871596 0.490225i \(-0.836915\pi\)
−0.871596 + 0.490225i \(0.836915\pi\)
\(828\) 0 0
\(829\) 28.1449 0.977512 0.488756 0.872420i \(-0.337451\pi\)
0.488756 + 0.872420i \(0.337451\pi\)
\(830\) −6.75771 13.5288i −0.234563 0.469592i
\(831\) 0 0
\(832\) 15.5393 + 12.4148i 0.538729 + 0.430404i
\(833\) −9.52297 9.52297i −0.329951 0.329951i
\(834\) 0 0
\(835\) −12.1735 + 6.08074i −0.421282 + 0.210433i
\(836\) 138.907i 4.80419i
\(837\) 0 0
\(838\) 57.4655 1.98511
\(839\) 25.8159 25.8159i 0.891264 0.891264i −0.103378 0.994642i \(-0.532965\pi\)
0.994642 + 0.103378i \(0.0329651\pi\)
\(840\) 0 0
\(841\) −4.29196 −0.147999
\(842\) −0.804189 0.804189i −0.0277142 0.0277142i
\(843\) 0 0
\(844\) 91.9664 3.16561
\(845\) 18.4108 + 22.4953i 0.633352 + 0.773864i
\(846\) 0 0
\(847\) 6.05173i 0.207940i
\(848\) 11.4221 + 11.4221i 0.392236 + 0.392236i
\(849\) 0 0
\(850\) 3.39276 + 23.8844i 0.116371 + 0.819227i
\(851\) −6.32136 + 6.32136i −0.216694 + 0.216694i
\(852\) 0 0
\(853\) 6.25026i 0.214005i 0.994259 + 0.107002i \(0.0341253\pi\)
−0.994259 + 0.107002i \(0.965875\pi\)
\(854\) 6.17811i 0.211411i
\(855\) 0 0
\(856\) −21.7367 21.7367i −0.742945 0.742945i
\(857\) 12.2252 + 12.2252i 0.417607 + 0.417607i 0.884378 0.466771i \(-0.154583\pi\)
−0.466771 + 0.884378i \(0.654583\pi\)
\(858\) 0 0
\(859\) 25.0493i 0.854670i −0.904093 0.427335i \(-0.859452\pi\)
0.904093 0.427335i \(-0.140548\pi\)
\(860\) −16.2778 + 48.7689i −0.555067 + 1.66301i
\(861\) 0 0
\(862\) −4.15752 4.15752i −0.141606 0.141606i
\(863\) 25.4480 0.866261 0.433130 0.901331i \(-0.357409\pi\)
0.433130 + 0.901331i \(0.357409\pi\)
\(864\) 0 0
\(865\) 11.3456 33.9921i 0.385763 1.15576i
\(866\) 26.9770 + 26.9770i 0.916716 + 0.916716i
\(867\) 0 0
\(868\) −5.77519 + 5.77519i −0.196023 + 0.196023i
\(869\) −32.2338 + 32.2338i −1.09346 + 1.09346i
\(870\) 0 0
\(871\) 34.4524 43.1234i 1.16737 1.46118i
\(872\) −24.9574 + 24.9574i −0.845163 + 0.845163i
\(873\) 0 0
\(874\) 37.0834i 1.25436i
\(875\) −0.487996 + 2.66598i −0.0164973 + 0.0901266i
\(876\) 0 0
\(877\) 21.2930i 0.719015i 0.933142 + 0.359507i \(0.117055\pi\)
−0.933142 + 0.359507i \(0.882945\pi\)
\(878\) 50.3544i 1.69938i
\(879\) 0 0
\(880\) 65.3454 + 21.8105i 2.20279 + 0.735233i
\(881\) 10.5084i 0.354037i 0.984208 + 0.177018i \(0.0566452\pi\)
−0.984208 + 0.177018i \(0.943355\pi\)
\(882\) 0 0
\(883\) 9.86276 9.86276i 0.331908 0.331908i −0.521403 0.853311i \(-0.674591\pi\)
0.853311 + 0.521403i \(0.174591\pi\)
\(884\) −3.25126 29.0876i −0.109352 0.978321i
\(885\) 0 0
\(886\) −33.0488 + 33.0488i −1.11030 + 1.11030i
\(887\) −21.5847 + 21.5847i −0.724745 + 0.724745i −0.969568 0.244823i \(-0.921270\pi\)
0.244823 + 0.969568i \(0.421270\pi\)
\(888\) 0 0
\(889\) 0.930252 + 0.930252i 0.0311996 + 0.0311996i
\(890\) −6.61725 2.20866i −0.221811 0.0740345i
\(891\) 0 0
\(892\) 36.4845 1.22159
\(893\) −6.59408 6.59408i −0.220663 0.220663i
\(894\) 0 0
\(895\) −7.99618 + 3.99413i −0.267283 + 0.133509i
\(896\) 4.25307i 0.142085i
\(897\) 0 0
\(898\) −57.9559 57.9559i −1.93401 1.93401i
\(899\) −32.8546 32.8546i −1.09576 1.09576i
\(900\) 0 0
\(901\) 6.10073i 0.203245i
\(902\) 31.9458i 1.06368i
\(903\) 0 0
\(904\) −66.9493 + 66.9493i −2.22670 + 2.22670i
\(905\) −16.5302 33.0932i −0.549483 1.10005i
\(906\) 0 0
\(907\) 14.1974 + 14.1974i 0.471417 + 0.471417i 0.902373 0.430956i \(-0.141823\pi\)
−0.430956 + 0.902373i \(0.641823\pi\)
\(908\) 76.9475i 2.55359i
\(909\) 0 0
\(910\) 1.01710 4.75250i 0.0337166 0.157544i
\(911\) 6.62609 0.219532 0.109766 0.993957i \(-0.464990\pi\)
0.109766 + 0.993957i \(0.464990\pi\)
\(912\) 0 0
\(913\) −11.5328 11.5328i −0.381679 0.381679i
\(914\) −38.7585 −1.28202
\(915\) 0 0
\(916\) −69.9344 + 69.9344i −2.31070 + 2.31070i
\(917\) −1.22162 −0.0403416
\(918\) 0 0
\(919\) 56.0617i 1.84930i −0.380813 0.924652i \(-0.624356\pi\)
0.380813 0.924652i \(-0.375644\pi\)
\(920\) 31.0282 + 10.3564i 1.02297 + 0.341440i
\(921\) 0 0
\(922\) −51.9714 51.9714i −1.71159 1.71159i
\(923\) 0.395493 0.0442062i 0.0130178 0.00145507i
\(924\) 0 0
\(925\) 9.96695 13.2674i 0.327711 0.436228i
\(926\) 20.6928 0.680007
\(927\) 0 0
\(928\) −11.0400 −0.362407
\(929\) 16.7396 + 16.7396i 0.549210 + 0.549210i 0.926212 0.377003i \(-0.123045\pi\)
−0.377003 + 0.926212i \(0.623045\pi\)
\(930\) 0 0
\(931\) 27.1723 + 27.1723i 0.890537 + 0.890537i
\(932\) 2.51424 2.51424i 0.0823567 0.0823567i
\(933\) 0 0
\(934\) −54.6088 + 54.6088i −1.78685 + 1.78685i
\(935\) 11.6263 + 23.2757i 0.380222 + 0.761197i
\(936\) 0 0
\(937\) 12.3582 12.3582i 0.403724 0.403724i −0.475819 0.879543i \(-0.657848\pi\)
0.879543 + 0.475819i \(0.157848\pi\)
\(938\) −9.22837 −0.301317
\(939\) 0 0
\(940\) −14.0981 + 7.04210i −0.459831 + 0.229688i
\(941\) −18.8531 + 18.8531i −0.614594 + 0.614594i −0.944140 0.329545i \(-0.893105\pi\)
0.329545 + 0.944140i \(0.393105\pi\)
\(942\) 0 0
\(943\) 5.77018i 0.187903i
\(944\) −27.1165 + 27.1165i −0.882568 + 0.882568i
\(945\) 0 0
\(946\) 81.9559i 2.66462i
\(947\) −13.5380 −0.439926 −0.219963 0.975508i \(-0.570594\pi\)
−0.219963 + 0.975508i \(0.570594\pi\)
\(948\) 0 0
\(949\) 3.27232 4.09590i 0.106224 0.132959i
\(950\) −9.68071 68.1504i −0.314084 2.21109i
\(951\) 0 0
\(952\) −1.80617 + 1.80617i −0.0585383 + 0.0585383i
\(953\) 10.8161 10.8161i 0.350369 0.350369i −0.509878 0.860247i \(-0.670309\pi\)
0.860247 + 0.509878i \(0.170309\pi\)
\(954\) 0 0
\(955\) −26.0901 + 13.0322i −0.844257 + 0.421711i
\(956\) −36.4540 36.4540i −1.17901 1.17901i
\(957\) 0 0
\(958\) −32.2812 32.2812i −1.04296 1.04296i
\(959\) −3.24716 −0.104856
\(960\) 0 0
\(961\) 33.8458i 1.09180i
\(962\) −18.5737 + 23.2483i −0.598839 + 0.749556i
\(963\) 0 0
\(964\) 26.6768 + 26.6768i 0.859202 + 0.859202i
\(965\) −9.27582 18.5700i −0.298599 0.597790i
\(966\) 0 0
\(967\) 16.5180i 0.531183i 0.964086 + 0.265591i \(0.0855672\pi\)
−0.964086 + 0.265591i \(0.914433\pi\)
\(968\) 135.577 4.35760
\(969\) 0 0
\(970\) −23.6796 + 11.8281i −0.760305 + 0.379776i
\(971\) 40.8913 1.31226 0.656132 0.754646i \(-0.272191\pi\)
0.656132 + 0.754646i \(0.272191\pi\)
\(972\) 0 0
\(973\) 1.46367i 0.0469231i
\(974\) 31.4340 1.00721
\(975\) 0 0
\(976\) 52.6497 1.68527
\(977\) 1.92441i 0.0615674i −0.999526 0.0307837i \(-0.990200\pi\)
0.999526 0.0307837i \(-0.00980030\pi\)
\(978\) 0 0
\(979\) −7.52374 −0.240460
\(980\) 58.0944 29.0185i 1.85576 0.926961i
\(981\) 0 0
\(982\) −69.1805 −2.20764
\(983\) 59.7525i 1.90581i −0.303273 0.952904i \(-0.598079\pi\)
0.303273 0.952904i \(-0.401921\pi\)
\(984\) 0 0
\(985\) −12.9021 25.8298i −0.411096 0.823006i
\(986\) −19.6851 19.6851i −0.626900 0.626900i
\(987\) 0 0
\(988\) 9.27698 + 82.9970i 0.295140 + 2.64049i
\(989\) 14.8032i 0.470714i
\(990\) 0 0
\(991\) 29.3438 0.932136 0.466068 0.884749i \(-0.345670\pi\)
0.466068 + 0.884749i \(0.345670\pi\)
\(992\) −10.8950 10.8950i −0.345917 0.345917i
\(993\) 0 0
\(994\) −0.0470477 0.0470477i −0.00149226 0.00149226i
\(995\) 4.71162 2.35348i 0.149368 0.0746103i
\(996\) 0 0
\(997\) −34.3919 + 34.3919i −1.08920 + 1.08920i −0.0935912 + 0.995611i \(0.529835\pi\)
−0.995611 + 0.0935912i \(0.970165\pi\)
\(998\) −0.378169 + 0.378169i −0.0119707 + 0.0119707i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.2.n.g.343.14 28
3.2 odd 2 195.2.k.a.148.1 yes 28
5.2 odd 4 585.2.w.g.577.1 28
13.8 odd 4 585.2.w.g.73.1 28
15.2 even 4 195.2.t.a.187.14 yes 28
15.8 even 4 975.2.t.d.382.1 28
15.14 odd 2 975.2.k.d.343.14 28
39.8 even 4 195.2.t.a.73.14 yes 28
65.47 even 4 inner 585.2.n.g.307.1 28
195.8 odd 4 975.2.k.d.307.1 28
195.47 odd 4 195.2.k.a.112.14 28
195.164 even 4 975.2.t.d.268.1 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.k.a.112.14 28 195.47 odd 4
195.2.k.a.148.1 yes 28 3.2 odd 2
195.2.t.a.73.14 yes 28 39.8 even 4
195.2.t.a.187.14 yes 28 15.2 even 4
585.2.n.g.307.1 28 65.47 even 4 inner
585.2.n.g.343.14 28 1.1 even 1 trivial
585.2.w.g.73.1 28 13.8 odd 4
585.2.w.g.577.1 28 5.2 odd 4
975.2.k.d.307.1 28 195.8 odd 4
975.2.k.d.343.14 28 15.14 odd 2
975.2.t.d.268.1 28 195.164 even 4
975.2.t.d.382.1 28 15.8 even 4