Newspace parameters
Level: | \( N \) | \(=\) | \( 195 = 3 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 195.k (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.55708283941\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Relative dimension: | \(14\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
112.1 | − | 2.73623i | −0.707107 | + | 0.707107i | −5.48694 | −1.07675 | + | 1.95975i | 1.93480 | + | 1.93480i | −2.18253 | 9.54105i | − | 1.00000i | 5.36231 | + | 2.94624i | ||||||||
112.2 | − | 2.56480i | 0.707107 | − | 0.707107i | −4.57821 | 1.71342 | − | 1.43673i | −1.81359 | − | 1.81359i | −1.73944 | 6.61261i | − | 1.00000i | −3.68494 | − | 4.39458i | ||||||||
112.3 | − | 1.94332i | −0.707107 | + | 0.707107i | −1.77647 | 2.16194 | − | 0.570984i | 1.37413 | + | 1.37413i | 2.33552 | − | 0.434380i | − | 1.00000i | −1.10960 | − | 4.20133i | |||||||
112.4 | − | 1.67997i | 0.707107 | − | 0.707107i | −0.822299 | 1.30099 | + | 1.81863i | −1.18792 | − | 1.18792i | 2.35789 | − | 1.97850i | − | 1.00000i | 3.05525 | − | 2.18562i | |||||||
112.5 | − | 1.38150i | −0.707107 | + | 0.707107i | 0.0914500 | −0.843366 | − | 2.07093i | 0.976870 | + | 0.976870i | −3.94352 | − | 2.88934i | − | 1.00000i | −2.86099 | + | 1.16511i | |||||||
112.6 | − | 0.792814i | 0.707107 | − | 0.707107i | 1.37145 | −2.23324 | + | 0.112444i | −0.560604 | − | 0.560604i | 1.67222 | − | 2.67293i | − | 1.00000i | 0.0891476 | + | 1.77054i | |||||||
112.7 | − | 0.470635i | 0.707107 | − | 0.707107i | 1.77850 | 0.0206478 | − | 2.23597i | −0.332789 | − | 0.332789i | −1.17941 | − | 1.77829i | − | 1.00000i | −1.05233 | − | 0.00971759i | |||||||
112.8 | − | 0.147953i | −0.707107 | + | 0.707107i | 1.97811 | 2.11069 | + | 0.738223i | 0.104618 | + | 0.104618i | −1.74764 | − | 0.588572i | − | 1.00000i | 0.109222 | − | 0.312283i | |||||||
112.9 | 0.709689i | 0.707107 | − | 0.707107i | 1.49634 | 2.19848 | + | 0.408252i | 0.501826 | + | 0.501826i | −3.37036 | 2.48132i | − | 1.00000i | −0.289732 | + | 1.56024i | |||||||||
112.10 | 0.750656i | −0.707107 | + | 0.707107i | 1.43651 | −0.411007 | − | 2.19797i | −0.530794 | − | 0.530794i | 3.56892 | 2.57964i | − | 1.00000i | 1.64992 | − | 0.308525i | |||||||||
112.11 | 1.58074i | 0.707107 | − | 0.707107i | −0.498726 | −1.18571 | + | 1.89581i | 1.11775 | + | 1.11775i | 0.974287 | 2.37312i | − | 1.00000i | −2.99677 | − | 1.87430i | |||||||||
112.12 | 1.97160i | −0.707107 | + | 0.707107i | −1.88719 | 0.644677 | + | 2.14112i | −1.39413 | − | 1.39413i | −0.616758 | 0.222418i | − | 1.00000i | −4.22142 | + | 1.27104i | |||||||||
112.13 | 2.21780i | 0.707107 | − | 0.707107i | −2.91862 | 1.59963 | − | 1.56243i | 1.56822 | + | 1.56822i | 4.11325 | − | 2.03732i | − | 1.00000i | 3.46515 | + | 3.54765i | ||||||||
112.14 | 2.48675i | −0.707107 | + | 0.707107i | −4.18390 | −2.00040 | − | 0.999208i | −1.75839 | − | 1.75839i | −0.242414 | − | 5.43081i | − | 1.00000i | 2.48478 | − | 4.97448i | ||||||||
148.1 | − | 2.48675i | −0.707107 | − | 0.707107i | −4.18390 | −2.00040 | + | 0.999208i | −1.75839 | + | 1.75839i | −0.242414 | 5.43081i | 1.00000i | 2.48478 | + | 4.97448i | |||||||||
148.2 | − | 2.21780i | 0.707107 | + | 0.707107i | −2.91862 | 1.59963 | + | 1.56243i | 1.56822 | − | 1.56822i | 4.11325 | 2.03732i | 1.00000i | 3.46515 | − | 3.54765i | |||||||||
148.3 | − | 1.97160i | −0.707107 | − | 0.707107i | −1.88719 | 0.644677 | − | 2.14112i | −1.39413 | + | 1.39413i | −0.616758 | − | 0.222418i | 1.00000i | −4.22142 | − | 1.27104i | ||||||||
148.4 | − | 1.58074i | 0.707107 | + | 0.707107i | −0.498726 | −1.18571 | − | 1.89581i | 1.11775 | − | 1.11775i | 0.974287 | − | 2.37312i | 1.00000i | −2.99677 | + | 1.87430i | ||||||||
148.5 | − | 0.750656i | −0.707107 | − | 0.707107i | 1.43651 | −0.411007 | + | 2.19797i | −0.530794 | + | 0.530794i | 3.56892 | − | 2.57964i | 1.00000i | 1.64992 | + | 0.308525i | ||||||||
148.6 | − | 0.709689i | 0.707107 | + | 0.707107i | 1.49634 | 2.19848 | − | 0.408252i | 0.501826 | − | 0.501826i | −3.37036 | − | 2.48132i | 1.00000i | −0.289732 | − | 1.56024i | ||||||||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
65.f | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 195.2.k.a | ✓ | 28 |
3.b | odd | 2 | 1 | 585.2.n.g | 28 | ||
5.b | even | 2 | 1 | 975.2.k.d | 28 | ||
5.c | odd | 4 | 1 | 195.2.t.a | yes | 28 | |
5.c | odd | 4 | 1 | 975.2.t.d | 28 | ||
13.d | odd | 4 | 1 | 195.2.t.a | yes | 28 | |
15.e | even | 4 | 1 | 585.2.w.g | 28 | ||
39.f | even | 4 | 1 | 585.2.w.g | 28 | ||
65.f | even | 4 | 1 | inner | 195.2.k.a | ✓ | 28 |
65.g | odd | 4 | 1 | 975.2.t.d | 28 | ||
65.k | even | 4 | 1 | 975.2.k.d | 28 | ||
195.u | odd | 4 | 1 | 585.2.n.g | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
195.2.k.a | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
195.2.k.a | ✓ | 28 | 65.f | even | 4 | 1 | inner |
195.2.t.a | yes | 28 | 5.c | odd | 4 | 1 | |
195.2.t.a | yes | 28 | 13.d | odd | 4 | 1 | |
585.2.n.g | 28 | 3.b | odd | 2 | 1 | ||
585.2.n.g | 28 | 195.u | odd | 4 | 1 | ||
585.2.w.g | 28 | 15.e | even | 4 | 1 | ||
585.2.w.g | 28 | 39.f | even | 4 | 1 | ||
975.2.k.d | 28 | 5.b | even | 2 | 1 | ||
975.2.k.d | 28 | 65.k | even | 4 | 1 | ||
975.2.t.d | 28 | 5.c | odd | 4 | 1 | ||
975.2.t.d | 28 | 65.g | odd | 4 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(195, [\chi])\).