Properties

Label 185.2.u.a.23.12
Level $185$
Weight $2$
Character 185.23
Analytic conductor $1.477$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [185,2,Mod(8,185)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("185.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(185, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.u (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47723243739\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 23.12
Character \(\chi\) \(=\) 185.23
Dual form 185.2.u.a.177.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.983757 + 0.567972i) q^{2} +(1.02118 + 0.273625i) q^{3} +(-0.354815 - 0.614557i) q^{4} +(0.885178 + 2.05340i) q^{5} +(0.849185 + 0.849185i) q^{6} +(1.57806 + 0.422839i) q^{7} -3.07799i q^{8} +(-1.63013 - 0.941157i) q^{9} +(-0.295475 + 2.52281i) q^{10} +1.92257i q^{11} +(-0.194173 - 0.724662i) q^{12} +(-1.32247 + 0.763528i) q^{13} +(1.31226 + 1.31226i) q^{14} +(0.342067 + 2.33911i) q^{15} +(1.03858 - 1.79888i) q^{16} +(0.660110 - 1.14334i) q^{17} +(-1.06910 - 1.85174i) q^{18} +(-2.17790 - 0.583566i) q^{19} +(0.947859 - 1.27257i) q^{20} +(1.49579 + 0.863592i) q^{21} +(-1.09196 + 1.89134i) q^{22} -4.57925i q^{23} +(0.842216 - 3.14319i) q^{24} +(-3.43292 + 3.63525i) q^{25} -1.73465 q^{26} +(-3.64981 - 3.64981i) q^{27} +(-0.300059 - 1.11984i) q^{28} +(-0.241089 - 0.241089i) q^{29} +(-0.992038 + 2.49540i) q^{30} +(-1.00617 + 1.00617i) q^{31} +(-3.28781 + 1.89822i) q^{32} +(-0.526063 + 1.96329i) q^{33} +(1.29878 - 0.749849i) q^{34} +(0.528603 + 3.61467i) q^{35} +1.33575i q^{36} +(-5.83510 - 1.71804i) q^{37} +(-1.81107 - 1.81107i) q^{38} +(-1.55940 + 0.417841i) q^{39} +(6.32035 - 2.72457i) q^{40} +(6.76304 - 3.90464i) q^{41} +(0.980993 + 1.69913i) q^{42} +5.46568i q^{43} +(1.18153 - 0.682155i) q^{44} +(0.489616 - 4.18041i) q^{45} +(2.60089 - 4.50487i) q^{46} +(1.79140 - 1.79140i) q^{47} +(1.55280 - 1.55280i) q^{48} +(-3.75071 - 2.16547i) q^{49} +(-5.44188 + 1.62640i) q^{50} +(0.986942 - 0.986942i) q^{51} +(0.938463 + 0.541822i) q^{52} +(3.24893 - 0.870548i) q^{53} +(-1.51754 - 5.66352i) q^{54} +(-3.94780 + 1.70181i) q^{55} +(1.30149 - 4.85724i) q^{56} +(-2.06436 - 1.19186i) q^{57} +(-0.100241 - 0.374105i) q^{58} +(1.40987 + 5.26170i) q^{59} +(1.31614 - 1.04017i) q^{60} +(10.4583 + 2.80230i) q^{61} +(-1.56131 + 0.418352i) q^{62} +(-2.17448 - 2.17448i) q^{63} -8.46687 q^{64} +(-2.73845 - 2.03970i) q^{65} +(-1.63261 + 1.63261i) q^{66} +(-2.53340 + 9.45477i) q^{67} -0.936868 q^{68} +(1.25300 - 4.67625i) q^{69} +(-1.53302 + 3.85619i) q^{70} +(1.65295 + 2.86299i) q^{71} +(-2.89687 + 5.01753i) q^{72} +(-1.78634 + 1.78634i) q^{73} +(-4.76452 - 5.00430i) q^{74} +(-4.50034 + 2.77293i) q^{75} +(0.414116 + 1.54550i) q^{76} +(-0.812936 + 3.03392i) q^{77} +(-1.77140 - 0.474644i) q^{78} +(12.3408 + 3.30670i) q^{79} +(4.61315 + 0.540301i) q^{80} +(0.0950223 + 0.164583i) q^{81} +8.87092 q^{82} +(-8.57952 + 2.29888i) q^{83} -1.22566i q^{84} +(2.93206 + 0.343408i) q^{85} +(-3.10436 + 5.37690i) q^{86} +(-0.180228 - 0.312164i) q^{87} +5.91764 q^{88} +(16.4223 - 4.40035i) q^{89} +(2.85602 - 3.83442i) q^{90} +(-2.40978 + 0.645698i) q^{91} +(-2.81421 + 1.62479i) q^{92} +(-1.30280 + 0.752174i) q^{93} +(2.77976 - 0.744835i) q^{94} +(-0.729532 - 4.98866i) q^{95} +(-3.87685 + 1.03880i) q^{96} +15.4196 q^{97} +(-2.45986 - 4.26060i) q^{98} +(1.80944 - 3.13404i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q - 6 q^{2} - 4 q^{3} + 30 q^{4} - 8 q^{6} - 2 q^{7} - 6 q^{10} - 10 q^{12} - 6 q^{13} - 16 q^{15} - 26 q^{16} - 10 q^{17} - 8 q^{18} - 4 q^{19} - 28 q^{20} - 12 q^{21} - 14 q^{22} + 20 q^{25} - 24 q^{26}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/185\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(112\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.983757 + 0.567972i 0.695621 + 0.401617i 0.805714 0.592304i \(-0.201782\pi\)
−0.110093 + 0.993921i \(0.535115\pi\)
\(3\) 1.02118 + 0.273625i 0.589581 + 0.157978i 0.541262 0.840854i \(-0.317947\pi\)
0.0483191 + 0.998832i \(0.484614\pi\)
\(4\) −0.354815 0.614557i −0.177407 0.307279i
\(5\) 0.885178 + 2.05340i 0.395864 + 0.918309i
\(6\) 0.849185 + 0.849185i 0.346678 + 0.346678i
\(7\) 1.57806 + 0.422839i 0.596449 + 0.159818i 0.544399 0.838826i \(-0.316758\pi\)
0.0520501 + 0.998644i \(0.483424\pi\)
\(8\) 3.07799i 1.08823i
\(9\) −1.63013 0.941157i −0.543377 0.313719i
\(10\) −0.295475 + 2.52281i −0.0934375 + 0.797781i
\(11\) 1.92257i 0.579676i 0.957076 + 0.289838i \(0.0936014\pi\)
−0.957076 + 0.289838i \(0.906399\pi\)
\(12\) −0.194173 0.724662i −0.0560528 0.209192i
\(13\) −1.32247 + 0.763528i −0.366787 + 0.211764i −0.672054 0.740502i \(-0.734588\pi\)
0.305267 + 0.952267i \(0.401254\pi\)
\(14\) 1.31226 + 1.31226i 0.350717 + 0.350717i
\(15\) 0.342067 + 2.33911i 0.0883212 + 0.603955i
\(16\) 1.03858 1.79888i 0.259646 0.449720i
\(17\) 0.660110 1.14334i 0.160100 0.277302i −0.774804 0.632201i \(-0.782152\pi\)
0.934904 + 0.354899i \(0.115485\pi\)
\(18\) −1.06910 1.85174i −0.251990 0.436459i
\(19\) −2.17790 0.583566i −0.499644 0.133879i 0.000190628 1.00000i \(-0.499939\pi\)
−0.499835 + 0.866121i \(0.666606\pi\)
\(20\) 0.947859 1.27257i 0.211948 0.284555i
\(21\) 1.49579 + 0.863592i 0.326407 + 0.188451i
\(22\) −1.09196 + 1.89134i −0.232808 + 0.403235i
\(23\) 4.57925i 0.954839i −0.878675 0.477420i \(-0.841572\pi\)
0.878675 0.477420i \(-0.158428\pi\)
\(24\) 0.842216 3.14319i 0.171917 0.641601i
\(25\) −3.43292 + 3.63525i −0.686584 + 0.727051i
\(26\) −1.73465 −0.340193
\(27\) −3.64981 3.64981i −0.702407 0.702407i
\(28\) −0.300059 1.11984i −0.0567058 0.211629i
\(29\) −0.241089 0.241089i −0.0447691 0.0447691i 0.684368 0.729137i \(-0.260078\pi\)
−0.729137 + 0.684368i \(0.760078\pi\)
\(30\) −0.992038 + 2.49540i −0.181121 + 0.455595i
\(31\) −1.00617 + 1.00617i −0.180714 + 0.180714i −0.791667 0.610953i \(-0.790787\pi\)
0.610953 + 0.791667i \(0.290787\pi\)
\(32\) −3.28781 + 1.89822i −0.581208 + 0.335560i
\(33\) −0.526063 + 1.96329i −0.0915758 + 0.341766i
\(34\) 1.29878 0.749849i 0.222738 0.128598i
\(35\) 0.528603 + 3.61467i 0.0893502 + 0.610991i
\(36\) 1.33575i 0.222624i
\(37\) −5.83510 1.71804i −0.959284 0.282443i
\(38\) −1.81107 1.81107i −0.293795 0.293795i
\(39\) −1.55940 + 0.417841i −0.249704 + 0.0669081i
\(40\) 6.32035 2.72457i 0.999335 0.430792i
\(41\) 6.76304 3.90464i 1.05621 0.609803i 0.131828 0.991273i \(-0.457915\pi\)
0.924381 + 0.381470i \(0.124582\pi\)
\(42\) 0.980993 + 1.69913i 0.151370 + 0.262181i
\(43\) 5.46568i 0.833509i 0.909019 + 0.416754i \(0.136832\pi\)
−0.909019 + 0.416754i \(0.863168\pi\)
\(44\) 1.18153 0.682155i 0.178122 0.102839i
\(45\) 0.489616 4.18041i 0.0729877 0.623178i
\(46\) 2.60089 4.50487i 0.383480 0.664207i
\(47\) 1.79140 1.79140i 0.261302 0.261302i −0.564281 0.825583i \(-0.690846\pi\)
0.825583 + 0.564281i \(0.190846\pi\)
\(48\) 1.55280 1.55280i 0.224128 0.224128i
\(49\) −3.75071 2.16547i −0.535816 0.309353i
\(50\) −5.44188 + 1.62640i −0.769598 + 0.230008i
\(51\) 0.986942 0.986942i 0.138200 0.138200i
\(52\) 0.938463 + 0.541822i 0.130141 + 0.0751372i
\(53\) 3.24893 0.870548i 0.446275 0.119579i −0.0286809 0.999589i \(-0.509131\pi\)
0.474956 + 0.880010i \(0.342464\pi\)
\(54\) −1.51754 5.66352i −0.206511 0.770708i
\(55\) −3.94780 + 1.70181i −0.532322 + 0.229473i
\(56\) 1.30149 4.85724i 0.173919 0.649076i
\(57\) −2.06436 1.19186i −0.273431 0.157865i
\(58\) −0.100241 0.374105i −0.0131623 0.0491223i
\(59\) 1.40987 + 5.26170i 0.183549 + 0.685016i 0.994936 + 0.100506i \(0.0320463\pi\)
−0.811387 + 0.584509i \(0.801287\pi\)
\(60\) 1.31614 1.04017i 0.169914 0.134285i
\(61\) 10.4583 + 2.80230i 1.33905 + 0.358797i 0.856081 0.516841i \(-0.172892\pi\)
0.482968 + 0.875638i \(0.339559\pi\)
\(62\) −1.56131 + 0.418352i −0.198287 + 0.0531307i
\(63\) −2.17448 2.17448i −0.273959 0.273959i
\(64\) −8.46687 −1.05836
\(65\) −2.73845 2.03970i −0.339663 0.252994i
\(66\) −1.63261 + 1.63261i −0.200961 + 0.200961i
\(67\) −2.53340 + 9.45477i −0.309504 + 1.15508i 0.619495 + 0.785001i \(0.287338\pi\)
−0.928999 + 0.370083i \(0.879329\pi\)
\(68\) −0.936868 −0.113612
\(69\) 1.25300 4.67625i 0.150843 0.562955i
\(70\) −1.53302 + 3.85619i −0.183231 + 0.460903i
\(71\) 1.65295 + 2.86299i 0.196169 + 0.339774i 0.947283 0.320398i \(-0.103817\pi\)
−0.751114 + 0.660172i \(0.770483\pi\)
\(72\) −2.89687 + 5.01753i −0.341399 + 0.591321i
\(73\) −1.78634 + 1.78634i −0.209075 + 0.209075i −0.803874 0.594799i \(-0.797232\pi\)
0.594799 + 0.803874i \(0.297232\pi\)
\(74\) −4.76452 5.00430i −0.553864 0.581739i
\(75\) −4.50034 + 2.77293i −0.519654 + 0.320190i
\(76\) 0.414116 + 1.54550i 0.0475023 + 0.177281i
\(77\) −0.812936 + 3.03392i −0.0926427 + 0.345747i
\(78\) −1.77140 0.474644i −0.200571 0.0537429i
\(79\) 12.3408 + 3.30670i 1.38844 + 0.372032i 0.874181 0.485600i \(-0.161399\pi\)
0.514263 + 0.857633i \(0.328066\pi\)
\(80\) 4.61315 + 0.540301i 0.515766 + 0.0604074i
\(81\) 0.0950223 + 0.164583i 0.0105580 + 0.0182871i
\(82\) 8.87092 0.979629
\(83\) −8.57952 + 2.29888i −0.941725 + 0.252334i −0.696847 0.717220i \(-0.745414\pi\)
−0.244878 + 0.969554i \(0.578748\pi\)
\(84\) 1.22566i 0.133731i
\(85\) 2.93206 + 0.343408i 0.318027 + 0.0372479i
\(86\) −3.10436 + 5.37690i −0.334751 + 0.579806i
\(87\) −0.180228 0.312164i −0.0193225 0.0334675i
\(88\) 5.91764 0.630823
\(89\) 16.4223 4.40035i 1.74076 0.466436i 0.758146 0.652085i \(-0.226106\pi\)
0.982616 + 0.185650i \(0.0594390\pi\)
\(90\) 2.85602 3.83442i 0.301051 0.404183i
\(91\) −2.40978 + 0.645698i −0.252613 + 0.0676876i
\(92\) −2.81421 + 1.62479i −0.293402 + 0.169396i
\(93\) −1.30280 + 0.752174i −0.135094 + 0.0779968i
\(94\) 2.77976 0.744835i 0.286711 0.0768239i
\(95\) −0.729532 4.98866i −0.0748485 0.511826i
\(96\) −3.87685 + 1.03880i −0.395680 + 0.106022i
\(97\) 15.4196 1.56563 0.782814 0.622256i \(-0.213784\pi\)
0.782814 + 0.622256i \(0.213784\pi\)
\(98\) −2.45986 4.26060i −0.248483 0.430385i
\(99\) 1.80944 3.13404i 0.181855 0.314983i
\(100\) 3.45212 + 0.819884i 0.345212 + 0.0819884i
\(101\) 0.767212i 0.0763405i −0.999271 0.0381702i \(-0.987847\pi\)
0.999271 0.0381702i \(-0.0121529\pi\)
\(102\) 1.53147 0.410355i 0.151638 0.0406312i
\(103\) −4.78539 −0.471518 −0.235759 0.971812i \(-0.575758\pi\)
−0.235759 + 0.971812i \(0.575758\pi\)
\(104\) 2.35013 + 4.07054i 0.230449 + 0.399150i
\(105\) −0.449265 + 3.83588i −0.0438438 + 0.374344i
\(106\) 3.69061 + 0.988895i 0.358463 + 0.0960500i
\(107\) −12.5674 3.36743i −1.21494 0.325542i −0.406240 0.913766i \(-0.633160\pi\)
−0.808698 + 0.588225i \(0.799827\pi\)
\(108\) −0.948011 + 3.53803i −0.0912224 + 0.340447i
\(109\) 3.42875 + 12.7963i 0.328414 + 1.22566i 0.910835 + 0.412771i \(0.135439\pi\)
−0.582421 + 0.812888i \(0.697894\pi\)
\(110\) −4.85026 0.568071i −0.462454 0.0541635i
\(111\) −5.48861 3.35106i −0.520955 0.318069i
\(112\) 2.39958 2.39958i 0.226739 0.226739i
\(113\) −7.28470 + 12.6175i −0.685287 + 1.18695i 0.288060 + 0.957612i \(0.406990\pi\)
−0.973347 + 0.229339i \(0.926343\pi\)
\(114\) −1.35388 2.34499i −0.126803 0.219629i
\(115\) 9.40304 4.05345i 0.876838 0.377986i
\(116\) −0.0626210 + 0.233705i −0.00581421 + 0.0216989i
\(117\) 2.87440 0.265738
\(118\) −1.60153 + 5.97701i −0.147433 + 0.550228i
\(119\) 1.52514 1.52514i 0.139810 0.139810i
\(120\) 7.19975 1.05288i 0.657244 0.0961141i
\(121\) 7.30374 0.663976
\(122\) 8.69681 + 8.69681i 0.787372 + 0.787372i
\(123\) 7.97471 2.13682i 0.719056 0.192670i
\(124\) 0.975357 + 0.261346i 0.0875896 + 0.0234696i
\(125\) −10.5034 3.83132i −0.939451 0.342683i
\(126\) −0.904116 3.37421i −0.0805450 0.300598i
\(127\) −1.32394 4.94102i −0.117481 0.438445i 0.881980 0.471288i \(-0.156211\pi\)
−0.999461 + 0.0328428i \(0.989544\pi\)
\(128\) −1.75373 1.01252i −0.155009 0.0894947i
\(129\) −1.49555 + 5.58146i −0.131676 + 0.491421i
\(130\) −1.53547 3.56193i −0.134670 0.312402i
\(131\) −0.824339 3.07647i −0.0720228 0.268793i 0.920519 0.390698i \(-0.127766\pi\)
−0.992542 + 0.121905i \(0.961100\pi\)
\(132\) 1.39321 0.373310i 0.121263 0.0324924i
\(133\) −3.19009 1.84180i −0.276616 0.159704i
\(134\) −7.86230 + 7.86230i −0.679199 + 0.679199i
\(135\) 4.26380 10.7253i 0.366969 0.923084i
\(136\) −3.51920 2.03181i −0.301769 0.174227i
\(137\) 15.2791 15.2791i 1.30538 1.30538i 0.380674 0.924709i \(-0.375692\pi\)
0.924709 0.380674i \(-0.124308\pi\)
\(138\) 3.88863 3.88863i 0.331022 0.331022i
\(139\) −8.97537 + 15.5458i −0.761281 + 1.31858i 0.180910 + 0.983500i \(0.442096\pi\)
−0.942191 + 0.335077i \(0.891238\pi\)
\(140\) 2.03387 1.60740i 0.171893 0.135850i
\(141\) 2.31952 1.33917i 0.195339 0.112779i
\(142\) 3.75532i 0.315139i
\(143\) −1.46793 2.54253i −0.122755 0.212617i
\(144\) −3.38605 + 1.95494i −0.282171 + 0.162912i
\(145\) 0.281646 0.708459i 0.0233894 0.0588343i
\(146\) −2.77191 + 0.742732i −0.229405 + 0.0614689i
\(147\) −3.23763 3.23763i −0.267036 0.267036i
\(148\) 1.01455 + 4.19559i 0.0833952 + 0.344875i
\(149\) 16.8891i 1.38361i −0.722084 0.691805i \(-0.756816\pi\)
0.722084 0.691805i \(-0.243184\pi\)
\(150\) −6.00218 + 0.171819i −0.490076 + 0.0140290i
\(151\) −19.2569 + 11.1180i −1.56711 + 0.904770i −0.570603 + 0.821226i \(0.693290\pi\)
−0.996504 + 0.0835434i \(0.973376\pi\)
\(152\) −1.79621 + 6.70355i −0.145692 + 0.543730i
\(153\) −2.15213 + 1.24253i −0.173990 + 0.100453i
\(154\) −2.52291 + 2.52291i −0.203302 + 0.203302i
\(155\) −2.95672 1.17544i −0.237490 0.0944133i
\(156\) 0.810087 + 0.810087i 0.0648588 + 0.0648588i
\(157\) 1.34884 + 5.03393i 0.107649 + 0.401751i 0.998632 0.0522849i \(-0.0166504\pi\)
−0.890983 + 0.454036i \(0.849984\pi\)
\(158\) 10.2622 + 10.2622i 0.816417 + 0.816417i
\(159\) 3.55596 0.282006
\(160\) −6.80809 5.07093i −0.538227 0.400892i
\(161\) 1.93628 7.22631i 0.152601 0.569513i
\(162\) 0.215880i 0.0169611i
\(163\) 7.33603 12.7064i 0.574603 0.995241i −0.421482 0.906837i \(-0.638490\pi\)
0.996085 0.0884042i \(-0.0281767\pi\)
\(164\) −4.79925 2.77085i −0.374759 0.216367i
\(165\) −4.49709 + 0.657646i −0.350098 + 0.0511977i
\(166\) −9.74586 2.61140i −0.756426 0.202684i
\(167\) −10.7921 18.6925i −0.835120 1.44647i −0.893933 0.448201i \(-0.852065\pi\)
0.0588131 0.998269i \(-0.481268\pi\)
\(168\) 2.65813 4.60401i 0.205079 0.355207i
\(169\) −5.33405 + 9.23885i −0.410312 + 0.710681i
\(170\) 2.68939 + 2.00316i 0.206267 + 0.153635i
\(171\) 3.00103 + 3.00103i 0.229495 + 0.229495i
\(172\) 3.35897 1.93930i 0.256119 0.147871i
\(173\) −0.213654 0.797367i −0.0162438 0.0606227i 0.957328 0.289003i \(-0.0933237\pi\)
−0.973572 + 0.228380i \(0.926657\pi\)
\(174\) 0.409458i 0.0310409i
\(175\) −6.95447 + 4.28506i −0.525708 + 0.323920i
\(176\) 3.45847 + 1.99675i 0.260692 + 0.150510i
\(177\) 5.75894i 0.432869i
\(178\) 18.6548 + 4.99855i 1.39824 + 0.374657i
\(179\) 16.5150 + 16.5150i 1.23439 + 1.23439i 0.962262 + 0.272124i \(0.0877261\pi\)
0.272124 + 0.962262i \(0.412274\pi\)
\(180\) −2.74282 + 1.18237i −0.204438 + 0.0881288i
\(181\) −10.0502 17.4074i −0.747024 1.29388i −0.949243 0.314544i \(-0.898148\pi\)
0.202219 0.979340i \(-0.435185\pi\)
\(182\) −2.73738 0.733478i −0.202908 0.0543690i
\(183\) 9.91307 + 5.72332i 0.732796 + 0.423080i
\(184\) −14.0949 −1.03909
\(185\) −1.63728 13.5026i −0.120375 0.992728i
\(186\) −1.70886 −0.125299
\(187\) 2.19816 + 1.26911i 0.160745 + 0.0928063i
\(188\) −1.73653 0.465302i −0.126649 0.0339356i
\(189\) −4.21633 7.30289i −0.306693 0.531207i
\(190\) 2.11574 5.32199i 0.153492 0.386097i
\(191\) −12.5389 12.5389i −0.907285 0.907285i 0.0887670 0.996052i \(-0.471707\pi\)
−0.996052 + 0.0887670i \(0.971707\pi\)
\(192\) −8.64623 2.31675i −0.623988 0.167197i
\(193\) 17.1943i 1.23767i −0.785519 0.618837i \(-0.787604\pi\)
0.785519 0.618837i \(-0.212396\pi\)
\(194\) 15.1692 + 8.75793i 1.08908 + 0.628783i
\(195\) −2.23835 2.83222i −0.160291 0.202819i
\(196\) 3.07337i 0.219526i
\(197\) −2.30767 8.61235i −0.164415 0.613604i −0.998114 0.0613857i \(-0.980448\pi\)
0.833699 0.552219i \(-0.186219\pi\)
\(198\) 3.56009 2.05542i 0.253005 0.146072i
\(199\) −7.61077 7.61077i −0.539513 0.539513i 0.383873 0.923386i \(-0.374590\pi\)
−0.923386 + 0.383873i \(0.874590\pi\)
\(200\) 11.1893 + 10.5665i 0.791201 + 0.747164i
\(201\) −5.17413 + 8.96186i −0.364955 + 0.632121i
\(202\) 0.435755 0.754750i 0.0306596 0.0531041i
\(203\) −0.278510 0.482393i −0.0195476 0.0338574i
\(204\) −0.956714 0.256351i −0.0669834 0.0179481i
\(205\) 14.0043 + 10.4309i 0.978102 + 0.728528i
\(206\) −4.70766 2.71797i −0.327998 0.189370i
\(207\) −4.30979 + 7.46478i −0.299551 + 0.518838i
\(208\) 3.17195i 0.219935i
\(209\) 1.12195 4.18716i 0.0776066 0.289632i
\(210\) −2.62064 + 3.51841i −0.180842 + 0.242793i
\(211\) 1.64325 0.113126 0.0565629 0.998399i \(-0.481986\pi\)
0.0565629 + 0.998399i \(0.481986\pi\)
\(212\) −1.68777 1.68777i −0.115917 0.115917i
\(213\) 0.904577 + 3.37593i 0.0619806 + 0.231315i
\(214\) −10.4507 10.4507i −0.714393 0.714393i
\(215\) −11.2232 + 4.83810i −0.765419 + 0.329956i
\(216\) −11.2341 + 11.2341i −0.764383 + 0.764383i
\(217\) −2.01325 + 1.16235i −0.136668 + 0.0789054i
\(218\) −3.89487 + 14.5358i −0.263794 + 0.984491i
\(219\) −2.31297 + 1.33539i −0.156296 + 0.0902374i
\(220\) 2.44660 + 1.82232i 0.164950 + 0.122861i
\(221\) 2.01605i 0.135614i
\(222\) −3.49615 6.41401i −0.234646 0.430480i
\(223\) −13.8186 13.8186i −0.925365 0.925365i 0.0720369 0.997402i \(-0.477050\pi\)
−0.997402 + 0.0720369i \(0.977050\pi\)
\(224\) −5.99098 + 1.60528i −0.400289 + 0.107257i
\(225\) 9.01745 2.69502i 0.601163 0.179668i
\(226\) −14.3327 + 8.27502i −0.953400 + 0.550446i
\(227\) −10.6242 18.4016i −0.705151 1.22136i −0.966637 0.256150i \(-0.917546\pi\)
0.261487 0.965207i \(-0.415787\pi\)
\(228\) 1.69155i 0.112026i
\(229\) 3.48912 2.01445i 0.230568 0.133118i −0.380266 0.924877i \(-0.624168\pi\)
0.610834 + 0.791759i \(0.290834\pi\)
\(230\) 11.5526 + 1.35306i 0.761753 + 0.0892178i
\(231\) −1.66031 + 2.87575i −0.109241 + 0.189210i
\(232\) −0.742069 + 0.742069i −0.0487192 + 0.0487192i
\(233\) −2.25220 + 2.25220i −0.147547 + 0.147547i −0.777021 0.629475i \(-0.783270\pi\)
0.629475 + 0.777021i \(0.283270\pi\)
\(234\) 2.82771 + 1.63258i 0.184853 + 0.106725i
\(235\) 5.26416 + 2.09275i 0.343396 + 0.136516i
\(236\) 2.73338 2.73338i 0.177928 0.177928i
\(237\) 11.6974 + 6.75349i 0.759827 + 0.438686i
\(238\) 2.36661 0.634131i 0.153404 0.0411046i
\(239\) 5.13865 + 19.1777i 0.332392 + 1.24050i 0.906669 + 0.421843i \(0.138617\pi\)
−0.574277 + 0.818661i \(0.694717\pi\)
\(240\) 4.56304 + 1.81402i 0.294543 + 0.117095i
\(241\) 2.89066 10.7881i 0.186204 0.694922i −0.808166 0.588955i \(-0.799539\pi\)
0.994370 0.105967i \(-0.0337939\pi\)
\(242\) 7.18510 + 4.14832i 0.461876 + 0.266664i
\(243\) 4.05977 + 15.1513i 0.260435 + 0.971955i
\(244\) −1.98859 7.42153i −0.127307 0.475114i
\(245\) 1.12654 9.61854i 0.0719720 0.614506i
\(246\) 9.05883 + 2.42731i 0.577570 + 0.154759i
\(247\) 3.32577 0.891138i 0.211614 0.0567017i
\(248\) 3.09699 + 3.09699i 0.196659 + 0.196659i
\(249\) −9.39030 −0.595086
\(250\) −8.15669 9.73471i −0.515875 0.615677i
\(251\) −6.77562 + 6.77562i −0.427673 + 0.427673i −0.887835 0.460162i \(-0.847791\pi\)
0.460162 + 0.887835i \(0.347791\pi\)
\(252\) −0.564805 + 2.10788i −0.0355794 + 0.132784i
\(253\) 8.80391 0.553497
\(254\) 1.50393 5.61273i 0.0943647 0.352174i
\(255\) 2.90021 + 1.15297i 0.181618 + 0.0722017i
\(256\) 7.31671 + 12.6729i 0.457294 + 0.792057i
\(257\) 0.176949 0.306484i 0.0110378 0.0191180i −0.860454 0.509529i \(-0.829820\pi\)
0.871492 + 0.490411i \(0.163153\pi\)
\(258\) −4.64137 + 4.64137i −0.288959 + 0.288959i
\(259\) −8.48166 5.17846i −0.527025 0.321774i
\(260\) −0.281871 + 2.40665i −0.0174809 + 0.149254i
\(261\) 0.166104 + 0.619909i 0.0102816 + 0.0383714i
\(262\) 0.936403 3.49470i 0.0578512 0.215904i
\(263\) 19.4898 + 5.22227i 1.20179 + 0.322019i 0.803536 0.595256i \(-0.202949\pi\)
0.398255 + 0.917275i \(0.369616\pi\)
\(264\) 6.04300 + 1.61922i 0.371921 + 0.0996559i
\(265\) 4.66347 + 5.90077i 0.286475 + 0.362481i
\(266\) −2.09218 3.62377i −0.128280 0.222187i
\(267\) 17.9742 1.10001
\(268\) 6.70939 1.79777i 0.409841 0.109817i
\(269\) 6.49930i 0.396269i 0.980175 + 0.198135i \(0.0634883\pi\)
−0.980175 + 0.198135i \(0.936512\pi\)
\(270\) 10.2862 8.12934i 0.625998 0.494736i
\(271\) −2.12937 + 3.68817i −0.129350 + 0.224040i −0.923425 0.383779i \(-0.874622\pi\)
0.794075 + 0.607820i \(0.207956\pi\)
\(272\) −1.37116 2.37492i −0.0831388 0.144001i
\(273\) −2.63751 −0.159629
\(274\) 23.7091 6.35282i 1.43232 0.383788i
\(275\) −6.98902 6.60002i −0.421454 0.397996i
\(276\) −3.31841 + 0.889165i −0.199745 + 0.0535214i
\(277\) 0.494657 0.285590i 0.0297211 0.0171595i −0.485066 0.874478i \(-0.661204\pi\)
0.514787 + 0.857318i \(0.327871\pi\)
\(278\) −17.6592 + 10.1955i −1.05913 + 0.611487i
\(279\) 2.58716 0.693228i 0.154889 0.0415025i
\(280\) 11.1259 1.62703i 0.664901 0.0972338i
\(281\) 30.2609 8.10837i 1.80521 0.483705i 0.810439 0.585823i \(-0.199229\pi\)
0.994772 + 0.102118i \(0.0325620\pi\)
\(282\) 3.04245 0.181176
\(283\) 0.308111 + 0.533664i 0.0183153 + 0.0317230i 0.875038 0.484055i \(-0.160836\pi\)
−0.856722 + 0.515778i \(0.827503\pi\)
\(284\) 1.17298 2.03166i 0.0696036 0.120557i
\(285\) 0.620038 5.29396i 0.0367279 0.313587i
\(286\) 3.33498i 0.197202i
\(287\) 12.3235 3.30207i 0.727433 0.194915i
\(288\) 7.14608 0.421087
\(289\) 7.62851 + 13.2130i 0.448736 + 0.777233i
\(290\) 0.679456 0.536984i 0.0398990 0.0315328i
\(291\) 15.7463 + 4.21920i 0.923063 + 0.247334i
\(292\) 1.73163 + 0.463988i 0.101336 + 0.0271528i
\(293\) 2.55888 9.54988i 0.149492 0.557910i −0.850023 0.526746i \(-0.823412\pi\)
0.999514 0.0311641i \(-0.00992144\pi\)
\(294\) −1.34616 5.02393i −0.0785096 0.293002i
\(295\) −9.55641 + 7.55258i −0.556396 + 0.439728i
\(296\) −5.28810 + 17.9604i −0.307364 + 1.04393i
\(297\) 7.01701 7.01701i 0.407168 0.407168i
\(298\) 9.59255 16.6148i 0.555682 0.962469i
\(299\) 3.49638 + 6.05591i 0.202201 + 0.350222i
\(300\) 3.30091 + 1.78184i 0.190578 + 0.102875i
\(301\) −2.31110 + 8.62515i −0.133210 + 0.497146i
\(302\) −25.2589 −1.45348
\(303\) 0.209929 0.783464i 0.0120601 0.0450089i
\(304\) −3.31170 + 3.31170i −0.189939 + 0.189939i
\(305\) 3.50323 + 23.9556i 0.200594 + 1.37170i
\(306\) −2.82290 −0.161375
\(307\) 12.7533 + 12.7533i 0.727869 + 0.727869i 0.970195 0.242326i \(-0.0779104\pi\)
−0.242326 + 0.970195i \(0.577910\pi\)
\(308\) 2.15296 0.576883i 0.122676 0.0328710i
\(309\) −4.88676 1.30940i −0.277998 0.0744893i
\(310\) −2.24108 2.83568i −0.127285 0.161056i
\(311\) 6.30945 + 23.5472i 0.357776 + 1.33524i 0.876955 + 0.480572i \(0.159571\pi\)
−0.519179 + 0.854665i \(0.673762\pi\)
\(312\) 1.28611 + 4.79983i 0.0728116 + 0.271737i
\(313\) 0.801929 + 0.462994i 0.0453277 + 0.0261700i 0.522493 0.852644i \(-0.325002\pi\)
−0.477165 + 0.878814i \(0.658336\pi\)
\(314\) −1.53220 + 5.71826i −0.0864673 + 0.322700i
\(315\) 2.54028 6.38989i 0.143129 0.360029i
\(316\) −2.34653 8.75737i −0.132003 0.492640i
\(317\) −25.5685 + 6.85107i −1.43607 + 0.384794i −0.891156 0.453696i \(-0.850105\pi\)
−0.544916 + 0.838491i \(0.683438\pi\)
\(318\) 3.49820 + 2.01969i 0.196169 + 0.113258i
\(319\) 0.463509 0.463509i 0.0259515 0.0259515i
\(320\) −7.49469 17.3859i −0.418966 0.971901i
\(321\) −11.9122 6.87752i −0.664875 0.383866i
\(322\) 6.00918 6.00918i 0.334878 0.334878i
\(323\) −2.10487 + 2.10487i −0.117118 + 0.117118i
\(324\) 0.0674306 0.116793i 0.00374615 0.00648852i
\(325\) 1.76431 7.42864i 0.0978664 0.412067i
\(326\) 14.4338 8.33333i 0.799412 0.461540i
\(327\) 14.0055i 0.774507i
\(328\) −12.0184 20.8166i −0.663608 1.14940i
\(329\) 3.58440 2.06945i 0.197614 0.114093i
\(330\) −4.79757 1.90726i −0.264097 0.104991i
\(331\) −9.40727 + 2.52067i −0.517070 + 0.138549i −0.507911 0.861410i \(-0.669582\pi\)
−0.00915915 + 0.999958i \(0.502915\pi\)
\(332\) 4.45693 + 4.45693i 0.244606 + 0.244606i
\(333\) 7.89503 + 8.29237i 0.432645 + 0.454419i
\(334\) 24.5185i 1.34159i
\(335\) −21.6570 + 3.16707i −1.18325 + 0.173036i
\(336\) 3.10700 1.79382i 0.169501 0.0978612i
\(337\) −5.14226 + 19.1912i −0.280117 + 1.04541i 0.672217 + 0.740354i \(0.265342\pi\)
−0.952334 + 0.305057i \(0.901325\pi\)
\(338\) −10.4948 + 6.05919i −0.570843 + 0.329576i
\(339\) −10.8915 + 10.8915i −0.591544 + 0.591544i
\(340\) −0.829295 1.92377i −0.0449748 0.104331i
\(341\) −1.93444 1.93444i −0.104756 0.104756i
\(342\) 1.24778 + 4.65679i 0.0674724 + 0.251810i
\(343\) −13.0897 13.0897i −0.706778 0.706778i
\(344\) 16.8233 0.907052
\(345\) 10.7114 1.56641i 0.576680 0.0843326i
\(346\) 0.242699 0.905765i 0.0130476 0.0486942i
\(347\) 10.3295i 0.554517i 0.960795 + 0.277258i \(0.0894258\pi\)
−0.960795 + 0.277258i \(0.910574\pi\)
\(348\) −0.127895 + 0.221521i −0.00685589 + 0.0118748i
\(349\) −13.7141 7.91783i −0.734098 0.423832i 0.0858212 0.996311i \(-0.472649\pi\)
−0.819920 + 0.572479i \(0.805982\pi\)
\(350\) −9.27530 + 0.265515i −0.495786 + 0.0141924i
\(351\) 7.61350 + 2.04003i 0.406378 + 0.108889i
\(352\) −3.64945 6.32103i −0.194516 0.336912i
\(353\) −4.35227 + 7.53835i −0.231648 + 0.401226i −0.958293 0.285787i \(-0.907745\pi\)
0.726645 + 0.687013i \(0.241078\pi\)
\(354\) −3.27092 + 5.66540i −0.173847 + 0.301113i
\(355\) −4.41572 + 5.92842i −0.234362 + 0.314648i
\(356\) −8.53114 8.53114i −0.452150 0.452150i
\(357\) 1.97477 1.14013i 0.104516 0.0603422i
\(358\) 6.86667 + 25.6268i 0.362915 + 1.35442i
\(359\) 9.85969i 0.520375i −0.965558 0.260187i \(-0.916216\pi\)
0.965558 0.260187i \(-0.0837843\pi\)
\(360\) −12.8672 1.50703i −0.678163 0.0794277i
\(361\) −12.0518 6.95810i −0.634305 0.366216i
\(362\) 22.8329i 1.20007i
\(363\) 7.45845 + 1.99849i 0.391467 + 0.104893i
\(364\) 1.25184 + 1.25184i 0.0656144 + 0.0656144i
\(365\) −5.24930 2.08684i −0.274761 0.109230i
\(366\) 6.50137 + 11.2607i 0.339832 + 0.588606i
\(367\) −19.5857 5.24797i −1.02236 0.273942i −0.291577 0.956547i \(-0.594180\pi\)
−0.730787 + 0.682606i \(0.760847\pi\)
\(368\) −8.23752 4.75593i −0.429410 0.247920i
\(369\) −14.6995 −0.765227
\(370\) 6.05840 14.2132i 0.314961 0.738908i
\(371\) 5.49510 0.285291
\(372\) 0.924507 + 0.533765i 0.0479335 + 0.0276744i
\(373\) −2.29926 0.616084i −0.119051 0.0318996i 0.198802 0.980040i \(-0.436295\pi\)
−0.317853 + 0.948140i \(0.602962\pi\)
\(374\) 1.44163 + 2.49698i 0.0745452 + 0.129116i
\(375\) −9.67753 6.78647i −0.499746 0.350452i
\(376\) −5.51390 5.51390i −0.284358 0.284358i
\(377\) 0.502910 + 0.134754i 0.0259012 + 0.00694021i
\(378\) 9.57903i 0.492692i
\(379\) 14.3987 + 8.31312i 0.739614 + 0.427016i 0.821929 0.569590i \(-0.192898\pi\)
−0.0823151 + 0.996606i \(0.526231\pi\)
\(380\) −2.80697 + 2.21839i −0.143994 + 0.113801i
\(381\) 5.40795i 0.277058i
\(382\) −5.21350 19.4570i −0.266746 0.995508i
\(383\) −7.80032 + 4.50352i −0.398578 + 0.230119i −0.685870 0.727724i \(-0.740578\pi\)
0.287292 + 0.957843i \(0.407245\pi\)
\(384\) −1.51383 1.51383i −0.0772523 0.0772523i
\(385\) −6.94945 + 1.01627i −0.354177 + 0.0517941i
\(386\) 9.76590 16.9150i 0.497071 0.860953i
\(387\) 5.14406 8.90978i 0.261487 0.452910i
\(388\) −5.47112 9.47625i −0.277754 0.481084i
\(389\) −11.4603 3.07078i −0.581061 0.155695i −0.0436964 0.999045i \(-0.513913\pi\)
−0.537365 + 0.843350i \(0.680580\pi\)
\(390\) −0.593366 4.05753i −0.0300463 0.205461i
\(391\) −5.23566 3.02281i −0.264779 0.152870i
\(392\) −6.66530 + 11.5446i −0.336649 + 0.583093i
\(393\) 3.36720i 0.169853i
\(394\) 2.62139 9.78315i 0.132064 0.492868i
\(395\) 4.13379 + 28.2676i 0.207994 + 1.42230i
\(396\) −2.56806 −0.129050
\(397\) −1.62569 1.62569i −0.0815913 0.0815913i 0.665133 0.746725i \(-0.268375\pi\)
−0.746725 + 0.665133i \(0.768375\pi\)
\(398\) −3.16444 11.8099i −0.158619 0.591974i
\(399\) −2.75371 2.75371i −0.137858 0.137858i
\(400\) 2.97401 + 9.95092i 0.148700 + 0.497546i
\(401\) 16.9699 16.9699i 0.847436 0.847436i −0.142377 0.989813i \(-0.545474\pi\)
0.989813 + 0.142377i \(0.0454744\pi\)
\(402\) −10.1802 + 5.87753i −0.507741 + 0.293144i
\(403\) 0.562392 2.09888i 0.0280147 0.104552i
\(404\) −0.471496 + 0.272218i −0.0234578 + 0.0135434i
\(405\) −0.253844 + 0.340805i −0.0126136 + 0.0169347i
\(406\) 0.632744i 0.0314026i
\(407\) 3.30304 11.2184i 0.163726 0.556074i
\(408\) −3.03780 3.03780i −0.150393 0.150393i
\(409\) −24.9023 + 6.67256i −1.23134 + 0.329937i −0.815102 0.579318i \(-0.803319\pi\)
−0.416240 + 0.909255i \(0.636652\pi\)
\(410\) 7.85234 + 18.2156i 0.387800 + 0.899602i
\(411\) 19.7835 11.4220i 0.975850 0.563407i
\(412\) 1.69793 + 2.94089i 0.0836508 + 0.144887i
\(413\) 8.89941i 0.437911i
\(414\) −8.47957 + 4.89568i −0.416748 + 0.240610i
\(415\) −12.3149 15.5823i −0.604516 0.764905i
\(416\) 2.89868 5.02066i 0.142120 0.246158i
\(417\) −13.4192 + 13.4192i −0.657142 + 0.657142i
\(418\) 3.48191 3.48191i 0.170306 0.170306i
\(419\) 29.0354 + 16.7636i 1.41847 + 0.818955i 0.996165 0.0874987i \(-0.0278874\pi\)
0.422306 + 0.906453i \(0.361221\pi\)
\(420\) 2.51677 1.08493i 0.122806 0.0529391i
\(421\) −0.954366 + 0.954366i −0.0465130 + 0.0465130i −0.729981 0.683468i \(-0.760471\pi\)
0.683468 + 0.729981i \(0.260471\pi\)
\(422\) 1.61656 + 0.933319i 0.0786927 + 0.0454333i
\(423\) −4.60620 + 1.23423i −0.223961 + 0.0600102i
\(424\) −2.67954 10.0002i −0.130130 0.485651i
\(425\) 1.89024 + 6.32468i 0.0916902 + 0.306792i
\(426\) −1.02755 + 3.83487i −0.0497849 + 0.185800i
\(427\) 15.3189 + 8.84436i 0.741333 + 0.428009i
\(428\) 2.38963 + 8.91821i 0.115507 + 0.431078i
\(429\) −0.803327 2.99806i −0.0387850 0.144748i
\(430\) −13.7889 1.61497i −0.664957 0.0778810i
\(431\) −12.1677 3.26032i −0.586097 0.157044i −0.0464282 0.998922i \(-0.514784\pi\)
−0.539669 + 0.841877i \(0.681451\pi\)
\(432\) −10.3562 + 2.77494i −0.498263 + 0.133509i
\(433\) −13.7322 13.7322i −0.659928 0.659928i 0.295435 0.955363i \(-0.404535\pi\)
−0.955363 + 0.295435i \(0.904535\pi\)
\(434\) −2.64073 −0.126759
\(435\) 0.481464 0.646401i 0.0230844 0.0309926i
\(436\) 6.64746 6.64746i 0.318356 0.318356i
\(437\) −2.67230 + 9.97314i −0.127833 + 0.477080i
\(438\) −3.03386 −0.144963
\(439\) 8.00818 29.8869i 0.382210 1.42643i −0.460309 0.887759i \(-0.652261\pi\)
0.842519 0.538667i \(-0.181072\pi\)
\(440\) 5.23817 + 12.1513i 0.249720 + 0.579290i
\(441\) 4.07610 + 7.06001i 0.194100 + 0.336191i
\(442\) −1.14506 + 1.98330i −0.0544650 + 0.0943361i
\(443\) 13.3025 13.3025i 0.632023 0.632023i −0.316552 0.948575i \(-0.602525\pi\)
0.948575 + 0.316552i \(0.102525\pi\)
\(444\) −0.111980 + 4.56207i −0.00531432 + 0.216506i
\(445\) 23.5723 + 29.8265i 1.11744 + 1.41391i
\(446\) −5.74558 21.4428i −0.272061 1.01535i
\(447\) 4.62129 17.2469i 0.218580 0.815750i
\(448\) −13.3612 3.58012i −0.631257 0.169145i
\(449\) 28.3423 + 7.59430i 1.33756 + 0.358397i 0.855527 0.517758i \(-0.173233\pi\)
0.482029 + 0.876155i \(0.339900\pi\)
\(450\) 10.4017 + 2.47041i 0.490340 + 0.116456i
\(451\) 7.50694 + 13.0024i 0.353488 + 0.612259i
\(452\) 10.3389 0.486300
\(453\) −22.7070 + 6.08433i −1.06687 + 0.285867i
\(454\) 24.1369i 1.13280i
\(455\) −3.45896 4.37669i −0.162159 0.205182i
\(456\) −3.66852 + 6.35407i −0.171794 + 0.297556i
\(457\) 3.20861 + 5.55747i 0.150092 + 0.259968i 0.931261 0.364352i \(-0.118710\pi\)
−0.781169 + 0.624320i \(0.785376\pi\)
\(458\) 4.57660 0.213850
\(459\) −6.58228 + 1.76372i −0.307234 + 0.0823232i
\(460\) −5.82741 4.34048i −0.271705 0.202376i
\(461\) 25.3037 6.78010i 1.17851 0.315781i 0.384175 0.923260i \(-0.374486\pi\)
0.794335 + 0.607479i \(0.207819\pi\)
\(462\) −3.26669 + 1.88602i −0.151980 + 0.0877458i
\(463\) −33.0936 + 19.1066i −1.53799 + 0.887960i −0.539035 + 0.842283i \(0.681211\pi\)
−0.998956 + 0.0456763i \(0.985456\pi\)
\(464\) −0.684081 + 0.183299i −0.0317576 + 0.00850944i
\(465\) −2.69773 2.00937i −0.125104 0.0931823i
\(466\) −3.49481 + 0.936431i −0.161894 + 0.0433793i
\(467\) 13.5181 0.625544 0.312772 0.949828i \(-0.398742\pi\)
0.312772 + 0.949828i \(0.398742\pi\)
\(468\) −1.01988 1.76648i −0.0471439 0.0816556i
\(469\) −7.99569 + 13.8489i −0.369207 + 0.639485i
\(470\) 3.99003 + 5.04866i 0.184046 + 0.232877i
\(471\) 5.50964i 0.253871i
\(472\) 16.1955 4.33956i 0.745457 0.199745i
\(473\) −10.5081 −0.483165
\(474\) 7.67159 + 13.2876i 0.352368 + 0.610319i
\(475\) 9.59796 5.91388i 0.440385 0.271347i
\(476\) −1.47843 0.396144i −0.0677637 0.0181572i
\(477\) −6.11551 1.63865i −0.280010 0.0750284i
\(478\) −5.83723 + 21.7848i −0.266989 + 0.996415i
\(479\) 0.466920 + 1.74257i 0.0213341 + 0.0796200i 0.975772 0.218789i \(-0.0702107\pi\)
−0.954438 + 0.298409i \(0.903544\pi\)
\(480\) −5.56478 7.04122i −0.253996 0.321386i
\(481\) 9.02850 2.18321i 0.411664 0.0995457i
\(482\) 8.97105 8.97105i 0.408620 0.408620i
\(483\) 3.95460 6.84957i 0.179941 0.311666i
\(484\) −2.59147 4.48856i −0.117794 0.204026i
\(485\) 13.6491 + 31.6627i 0.619775 + 1.43773i
\(486\) −4.61168 + 17.2110i −0.209190 + 0.780708i
\(487\) 4.70678 0.213285 0.106642 0.994297i \(-0.465990\pi\)
0.106642 + 0.994297i \(0.465990\pi\)
\(488\) 8.62544 32.1906i 0.390455 1.45720i
\(489\) 10.9682 10.9682i 0.496000 0.496000i
\(490\) 6.57131 8.82247i 0.296862 0.398558i
\(491\) 22.3671 1.00941 0.504707 0.863291i \(-0.331601\pi\)
0.504707 + 0.863291i \(0.331601\pi\)
\(492\) −4.14274 4.14274i −0.186769 0.186769i
\(493\) −0.434793 + 0.116502i −0.0195821 + 0.00524700i
\(494\) 3.77789 + 1.01228i 0.169975 + 0.0455448i
\(495\) 8.03711 + 0.941320i 0.361241 + 0.0423092i
\(496\) 0.764990 + 2.85498i 0.0343491 + 0.128192i
\(497\) 1.39786 + 5.21689i 0.0627026 + 0.234009i
\(498\) −9.23777 5.33343i −0.413954 0.238997i
\(499\) 4.04934 15.1123i 0.181273 0.676521i −0.814124 0.580691i \(-0.802783\pi\)
0.995398 0.0958307i \(-0.0305507\pi\)
\(500\) 1.37219 + 7.81434i 0.0613663 + 0.349468i
\(501\) −5.90600 22.0415i −0.263860 0.984741i
\(502\) −10.5139 + 2.81720i −0.469260 + 0.125738i
\(503\) 8.84970 + 5.10938i 0.394589 + 0.227816i 0.684146 0.729345i \(-0.260175\pi\)
−0.289558 + 0.957161i \(0.593508\pi\)
\(504\) −6.69303 + 6.69303i −0.298131 + 0.298131i
\(505\) 1.57540 0.679120i 0.0701042 0.0302204i
\(506\) 8.66091 + 5.00038i 0.385024 + 0.222294i
\(507\) −7.97503 + 7.97503i −0.354183 + 0.354183i
\(508\) −2.56679 + 2.56679i −0.113883 + 0.113883i
\(509\) 3.43610 5.95149i 0.152302 0.263795i −0.779771 0.626065i \(-0.784665\pi\)
0.932073 + 0.362269i \(0.117998\pi\)
\(510\) 2.19825 + 2.78148i 0.0973399 + 0.123166i
\(511\) −3.57427 + 2.06361i −0.158117 + 0.0912886i
\(512\) 20.6728i 0.913618i
\(513\) 5.81902 + 10.0788i 0.256916 + 0.444991i
\(514\) 0.348149 0.201004i 0.0153562 0.00886591i
\(515\) −4.23592 9.82632i −0.186657 0.433000i
\(516\) 3.96077 1.06129i 0.174363 0.0467205i
\(517\) 3.44408 + 3.44408i 0.151471 + 0.151471i
\(518\) −5.40267 9.91170i −0.237379 0.435495i
\(519\) 0.872719i 0.0383081i
\(520\) −6.27818 + 8.42892i −0.275316 + 0.369633i
\(521\) −19.6337 + 11.3355i −0.860166 + 0.496617i −0.864068 0.503375i \(-0.832091\pi\)
0.00390182 + 0.999992i \(0.498758\pi\)
\(522\) −0.188685 + 0.704182i −0.00825852 + 0.0308212i
\(523\) 7.34396 4.24004i 0.321129 0.185404i −0.330767 0.943713i \(-0.607307\pi\)
0.651896 + 0.758309i \(0.273974\pi\)
\(524\) −1.59818 + 1.59818i −0.0698169 + 0.0698169i
\(525\) −8.27429 + 2.47292i −0.361119 + 0.107927i
\(526\) 16.2071 + 16.2071i 0.706663 + 0.706663i
\(527\) 0.486218 + 1.81459i 0.0211800 + 0.0790448i
\(528\) 2.98537 + 2.98537i 0.129921 + 0.129921i
\(529\) 2.03048 0.0882817
\(530\) 1.23625 + 8.45365i 0.0536991 + 0.367203i
\(531\) 2.65382 9.90418i 0.115166 0.429805i
\(532\) 2.61399i 0.113331i
\(533\) −5.96260 + 10.3275i −0.258269 + 0.447335i
\(534\) 17.6823 + 10.2089i 0.765187 + 0.441781i
\(535\) −4.20972 28.7867i −0.182002 1.24456i
\(536\) 29.1017 + 7.79777i 1.25700 + 0.336813i
\(537\) 12.3459 + 21.3837i 0.532765 + 0.922776i
\(538\) −3.69142 + 6.39373i −0.159148 + 0.275653i
\(539\) 4.16327 7.21099i 0.179325 0.310599i
\(540\) −8.10415 + 1.18514i −0.348747 + 0.0510001i
\(541\) −9.87420 9.87420i −0.424525 0.424525i 0.462233 0.886758i \(-0.347048\pi\)
−0.886758 + 0.462233i \(0.847048\pi\)
\(542\) −4.18956 + 2.41884i −0.179957 + 0.103898i
\(543\) −5.49997 20.5262i −0.236026 0.880862i
\(544\) 5.01213i 0.214893i
\(545\) −23.2408 + 18.3676i −0.995527 + 0.786780i
\(546\) −2.59466 1.49803i −0.111041 0.0641098i
\(547\) 16.2777i 0.695983i −0.937498 0.347992i \(-0.886864\pi\)
0.937498 0.347992i \(-0.113136\pi\)
\(548\) −14.8112 3.96864i −0.632701 0.169532i
\(549\) −14.4110 14.4110i −0.615047 0.615047i
\(550\) −3.12687 10.4624i −0.133330 0.446117i
\(551\) 0.384376 + 0.665758i 0.0163750 + 0.0283623i
\(552\) −14.3935 3.85672i −0.612626 0.164153i
\(553\) 18.0762 + 10.4363i 0.768679 + 0.443797i
\(554\) 0.648830 0.0275661
\(555\) 2.02268 14.2366i 0.0858580 0.604310i
\(556\) 12.7384 0.540227
\(557\) 11.0303 + 6.36833i 0.467368 + 0.269835i 0.715137 0.698984i \(-0.246364\pi\)
−0.247769 + 0.968819i \(0.579698\pi\)
\(558\) 2.93887 + 0.787469i 0.124412 + 0.0333362i
\(559\) −4.17320 7.22819i −0.176508 0.305720i
\(560\) 7.05136 + 2.80325i 0.297974 + 0.118459i
\(561\) 1.89746 + 1.89746i 0.0801109 + 0.0801109i
\(562\) 34.3747 + 9.21066i 1.45001 + 0.388528i
\(563\) 9.88042i 0.416410i −0.978085 0.208205i \(-0.933238\pi\)
0.978085 0.208205i \(-0.0667622\pi\)
\(564\) −1.64600 0.950317i −0.0693090 0.0400156i
\(565\) −32.3570 3.78971i −1.36127 0.159434i
\(566\) 0.699994i 0.0294229i
\(567\) 0.0803582 + 0.299901i 0.00337473 + 0.0125947i
\(568\) 8.81225 5.08776i 0.369754 0.213478i
\(569\) −28.2430 28.2430i −1.18401 1.18401i −0.978697 0.205312i \(-0.934179\pi\)
−0.205312 0.978697i \(-0.565821\pi\)
\(570\) 3.61679 4.85580i 0.151491 0.203387i
\(571\) −18.9395 + 32.8041i −0.792592 + 1.37281i 0.131765 + 0.991281i \(0.457936\pi\)
−0.924357 + 0.381529i \(0.875398\pi\)
\(572\) −1.04169 + 1.80426i −0.0435552 + 0.0754398i
\(573\) −9.37358 16.2355i −0.391587 0.678249i
\(574\) 13.9988 + 3.75097i 0.584299 + 0.156562i
\(575\) 16.6467 + 15.7202i 0.694217 + 0.655577i
\(576\) 13.8021 + 7.96865i 0.575088 + 0.332027i
\(577\) −13.6089 + 23.5713i −0.566547 + 0.981288i 0.430357 + 0.902659i \(0.358388\pi\)
−0.996904 + 0.0786291i \(0.974946\pi\)
\(578\) 17.3311i 0.720880i
\(579\) 4.70480 17.5586i 0.195525 0.729709i
\(580\) −0.535321 + 0.0782843i −0.0222280 + 0.00325058i
\(581\) −14.5110 −0.602019
\(582\) 13.0941 + 13.0941i 0.542769 + 0.542769i
\(583\) 1.67369 + 6.24629i 0.0693171 + 0.258695i
\(584\) 5.49833 + 5.49833i 0.227522 + 0.227522i
\(585\) 2.54435 + 5.90229i 0.105196 + 0.244030i
\(586\) 7.94139 7.94139i 0.328056 0.328056i
\(587\) 10.5112 6.06864i 0.433843 0.250480i −0.267139 0.963658i \(-0.586078\pi\)
0.700983 + 0.713178i \(0.252745\pi\)
\(588\) −0.840951 + 3.13847i −0.0346802 + 0.129428i
\(589\) 2.77851 1.60418i 0.114487 0.0660989i
\(590\) −13.6908 + 2.00212i −0.563643 + 0.0824261i
\(591\) 9.42622i 0.387743i
\(592\) −9.15077 + 8.71231i −0.376095 + 0.358074i
\(593\) −22.9652 22.9652i −0.943070 0.943070i 0.0553950 0.998465i \(-0.482358\pi\)
−0.998465 + 0.0553950i \(0.982358\pi\)
\(594\) 10.8885 2.91757i 0.446761 0.119709i
\(595\) 4.48175 + 1.78171i 0.183734 + 0.0730429i
\(596\) −10.3793 + 5.99251i −0.425154 + 0.245463i
\(597\) −5.68949 9.85449i −0.232855 0.403317i
\(598\) 7.94340i 0.324830i
\(599\) 2.59862 1.50032i 0.106177 0.0613013i −0.445971 0.895047i \(-0.647142\pi\)
0.552148 + 0.833746i \(0.313808\pi\)
\(600\) 8.53504 + 13.8520i 0.348442 + 0.565505i
\(601\) 7.76062 13.4418i 0.316562 0.548302i −0.663206 0.748437i \(-0.730805\pi\)
0.979768 + 0.200135i \(0.0641380\pi\)
\(602\) −7.17241 + 7.17241i −0.292326 + 0.292326i
\(603\) 13.0282 13.0282i 0.530549 0.530549i
\(604\) 13.6653 + 7.88966i 0.556033 + 0.321026i
\(605\) 6.46511 + 14.9975i 0.262844 + 0.609735i
\(606\) 0.651505 0.651505i 0.0264656 0.0264656i
\(607\) −32.0701 18.5157i −1.30169 0.751529i −0.320994 0.947081i \(-0.604017\pi\)
−0.980693 + 0.195552i \(0.937350\pi\)
\(608\) 8.26824 2.21547i 0.335322 0.0898492i
\(609\) −0.152415 0.568820i −0.00617616 0.0230497i
\(610\) −10.1598 + 25.5563i −0.411359 + 1.03474i
\(611\) −1.00129 + 3.73685i −0.0405077 + 0.151177i
\(612\) 1.52722 + 0.881739i 0.0617341 + 0.0356422i
\(613\) 4.51123 + 16.8361i 0.182207 + 0.680005i 0.995211 + 0.0977478i \(0.0311638\pi\)
−0.813004 + 0.582258i \(0.802169\pi\)
\(614\) 5.30262 + 19.7897i 0.213996 + 0.798645i
\(615\) 11.4468 + 14.4838i 0.461579 + 0.584044i
\(616\) 9.33837 + 2.50221i 0.376254 + 0.100817i
\(617\) −23.0967 + 6.18875i −0.929839 + 0.249150i −0.691786 0.722103i \(-0.743176\pi\)
−0.238053 + 0.971252i \(0.576509\pi\)
\(618\) −4.06368 4.06368i −0.163465 0.163465i
\(619\) 6.37727 0.256324 0.128162 0.991753i \(-0.459092\pi\)
0.128162 + 0.991753i \(0.459092\pi\)
\(620\) 0.326716 + 2.23414i 0.0131212 + 0.0897251i
\(621\) −16.7134 + 16.7134i −0.670686 + 0.670686i
\(622\) −7.16718 + 26.7483i −0.287378 + 1.07251i
\(623\) 27.7760 1.11282
\(624\) −0.867925 + 3.23914i −0.0347448 + 0.129669i
\(625\) −1.43013 24.9591i −0.0572052 0.998362i
\(626\) 0.525936 + 0.910947i 0.0210206 + 0.0364088i
\(627\) 2.29142 3.96886i 0.0915107 0.158501i
\(628\) 2.61505 2.61505i 0.104352 0.104352i
\(629\) −5.81612 + 5.53743i −0.231904 + 0.220792i
\(630\) 6.12830 4.84329i 0.244157 0.192961i
\(631\) −5.89535 22.0017i −0.234690 0.875876i −0.978288 0.207249i \(-0.933549\pi\)
0.743598 0.668627i \(-0.233118\pi\)
\(632\) 10.1780 37.9847i 0.404858 1.51095i
\(633\) 1.67806 + 0.449634i 0.0666968 + 0.0178714i
\(634\) −29.0445 7.78244i −1.15350 0.309080i
\(635\) 8.97398 7.09227i 0.356121 0.281448i
\(636\) −1.26171 2.18534i −0.0500299 0.0866544i
\(637\) 6.61359 0.262040
\(638\) 0.719241 0.192720i 0.0284750 0.00762986i
\(639\) 6.22273i 0.246168i
\(640\) 0.526740 4.49737i 0.0208212 0.177774i
\(641\) −11.7520 + 20.3550i −0.464175 + 0.803976i −0.999164 0.0408839i \(-0.986983\pi\)
0.534988 + 0.844859i \(0.320316\pi\)
\(642\) −7.81249 13.5316i −0.308334 0.534051i
\(643\) 24.3699 0.961055 0.480527 0.876980i \(-0.340445\pi\)
0.480527 + 0.876980i \(0.340445\pi\)
\(644\) −5.12800 + 1.37404i −0.202072 + 0.0541449i
\(645\) −12.7848 + 1.86963i −0.503402 + 0.0736165i
\(646\) −3.26619 + 0.875173i −0.128507 + 0.0344332i
\(647\) 35.9680 20.7661i 1.41405 0.816400i 0.418280 0.908318i \(-0.362633\pi\)
0.995767 + 0.0919177i \(0.0292997\pi\)
\(648\) 0.506586 0.292478i 0.0199006 0.0114896i
\(649\) −10.1160 + 2.71057i −0.397087 + 0.106399i
\(650\) 5.95491 6.30589i 0.233571 0.247337i
\(651\) −2.37394 + 0.636096i −0.0930422 + 0.0249306i
\(652\) −10.4117 −0.407755
\(653\) 0.370684 + 0.642043i 0.0145060 + 0.0251251i 0.873187 0.487385i \(-0.162049\pi\)
−0.858681 + 0.512510i \(0.828716\pi\)
\(654\) −7.95475 + 13.7780i −0.311055 + 0.538763i
\(655\) 5.58755 4.41593i 0.218324 0.172545i
\(656\) 16.2212i 0.633331i
\(657\) 4.59319 1.23074i 0.179197 0.0480158i
\(658\) 4.70157 0.183286
\(659\) −15.9185 27.5717i −0.620098 1.07404i −0.989467 0.144759i \(-0.953759\pi\)
0.369369 0.929283i \(-0.379574\pi\)
\(660\) 1.99980 + 2.53038i 0.0778419 + 0.0984948i
\(661\) 46.6955 + 12.5120i 1.81624 + 0.486661i 0.996312 0.0858000i \(-0.0273446\pi\)
0.819932 + 0.572461i \(0.194011\pi\)
\(662\) −10.6861 2.86334i −0.415329 0.111287i
\(663\) −0.551642 + 2.05876i −0.0214240 + 0.0799555i
\(664\) 7.07592 + 26.4077i 0.274599 + 1.02482i
\(665\) 0.958157 8.18086i 0.0371557 0.317240i
\(666\) 3.05696 + 12.6418i 0.118455 + 0.489861i
\(667\) −1.10401 + 1.10401i −0.0427473 + 0.0427473i
\(668\) −7.65841 + 13.2648i −0.296313 + 0.513229i
\(669\) −10.3302 17.8925i −0.399390 0.691764i
\(670\) −23.1040 9.18492i −0.892585 0.354845i
\(671\) −5.38760 + 20.1068i −0.207986 + 0.776214i
\(672\) −6.55714 −0.252947
\(673\) 4.43056 16.5351i 0.170785 0.637380i −0.826446 0.563016i \(-0.809641\pi\)
0.997231 0.0743635i \(-0.0236925\pi\)
\(674\) −15.9588 + 15.9588i −0.614710 + 0.614710i
\(675\) 25.7975 0.738481i 0.992947 0.0284241i
\(676\) 7.57040 0.291169
\(677\) −31.1728 31.1728i −1.19807 1.19807i −0.974745 0.223322i \(-0.928310\pi\)
−0.223322 0.974745i \(-0.571690\pi\)
\(678\) −16.9006 + 4.52851i −0.649064 + 0.173916i
\(679\) 24.3331 + 6.52002i 0.933817 + 0.250216i
\(680\) 1.05701 9.02486i 0.0405344 0.346087i
\(681\) −5.81408 21.6984i −0.222796 0.831486i
\(682\) −0.804309 3.00172i −0.0307986 0.114942i
\(683\) 31.9387 + 18.4398i 1.22210 + 0.705580i 0.965365 0.260901i \(-0.0840197\pi\)
0.256736 + 0.966482i \(0.417353\pi\)
\(684\) 0.779496 2.90912i 0.0298048 0.111233i
\(685\) 44.8989 + 17.8494i 1.71550 + 0.681992i
\(686\) −5.44250 20.3117i −0.207796 0.775503i
\(687\) 4.11424 1.10241i 0.156968 0.0420595i
\(688\) 9.83210 + 5.67657i 0.374845 + 0.216417i
\(689\) −3.63192 + 3.63192i −0.138365 + 0.138365i
\(690\) 11.4270 + 4.54279i 0.435020 + 0.172941i
\(691\) −0.520289 0.300389i −0.0197927 0.0114273i 0.490071 0.871683i \(-0.336971\pi\)
−0.509864 + 0.860255i \(0.670304\pi\)
\(692\) −0.414220 + 0.414220i −0.0157463 + 0.0157463i
\(693\) 4.18059 4.18059i 0.158807 0.158807i
\(694\) −5.86687 + 10.1617i −0.222703 + 0.385734i
\(695\) −39.8666 4.66924i −1.51222 0.177114i
\(696\) −0.960837 + 0.554740i −0.0364204 + 0.0210274i
\(697\) 10.3100i 0.390518i
\(698\) −8.99422 15.5785i −0.340436 0.589653i
\(699\) −2.91617 + 1.68365i −0.110300 + 0.0636816i
\(700\) 5.10096 + 2.75351i 0.192798 + 0.104073i
\(701\) −6.15868 + 1.65021i −0.232610 + 0.0623277i −0.373241 0.927734i \(-0.621754\pi\)
0.140631 + 0.990062i \(0.455087\pi\)
\(702\) 6.33115 + 6.33115i 0.238954 + 0.238954i
\(703\) 11.7057 + 7.14687i 0.441487 + 0.269549i
\(704\) 16.2781i 0.613505i
\(705\) 4.80305 + 3.57749i 0.180893 + 0.134736i
\(706\) −8.56315 + 4.94394i −0.322278 + 0.186067i
\(707\) 0.324407 1.21070i 0.0122006 0.0455332i
\(708\) 3.53920 2.04336i 0.133011 0.0767941i
\(709\) 0.102970 0.102970i 0.00386711 0.00386711i −0.705171 0.709038i \(-0.749130\pi\)
0.709038 + 0.705171i \(0.249130\pi\)
\(710\) −7.71117 + 3.32412i −0.289395 + 0.124752i
\(711\) −17.0049 17.0049i −0.637735 0.637735i
\(712\) −13.5442 50.5477i −0.507591 1.89436i
\(713\) 4.60752 + 4.60752i 0.172553 + 0.172553i
\(714\) 2.59025 0.0969378
\(715\) 3.92146 5.26485i 0.146654 0.196894i
\(716\) 4.28964 16.0091i 0.160311 0.598290i
\(717\) 20.9900i 0.783887i
\(718\) 5.60003 9.69954i 0.208991 0.361984i
\(719\) 15.6399 + 9.02972i 0.583271 + 0.336752i 0.762432 0.647068i \(-0.224005\pi\)
−0.179161 + 0.983820i \(0.557338\pi\)
\(720\) −7.01154 5.22246i −0.261305 0.194630i
\(721\) −7.55161 2.02345i −0.281237 0.0753571i
\(722\) −7.90402 13.6902i −0.294157 0.509495i
\(723\) 5.90379 10.2257i 0.219564 0.380297i
\(724\) −7.13191 + 12.3528i −0.265055 + 0.459089i
\(725\) 1.70406 0.0487804i 0.0632871 0.00181166i
\(726\) 6.20222 + 6.20222i 0.230186 + 0.230186i
\(727\) −16.9712 + 9.79831i −0.629426 + 0.363399i −0.780530 0.625119i \(-0.785051\pi\)
0.151104 + 0.988518i \(0.451717\pi\)
\(728\) 1.98745 + 7.41727i 0.0736599 + 0.274902i
\(729\) 16.0130i 0.593073i
\(730\) −3.97876 5.03440i −0.147261 0.186332i
\(731\) 6.24916 + 3.60795i 0.231134 + 0.133445i
\(732\) 8.12287i 0.300230i
\(733\) 29.4663 + 7.89548i 1.08836 + 0.291626i 0.758018 0.652234i \(-0.226168\pi\)
0.330346 + 0.943860i \(0.392835\pi\)
\(734\) −16.2868 16.2868i −0.601158 0.601158i
\(735\) 3.78228 9.51405i 0.139512 0.350931i
\(736\) 8.69240 + 15.0557i 0.320406 + 0.554960i
\(737\) −18.1774 4.87063i −0.669574 0.179412i
\(738\) −14.4608 8.34892i −0.532308 0.307328i
\(739\) −52.1459 −1.91822 −0.959110 0.283035i \(-0.908659\pi\)
−0.959110 + 0.283035i \(0.908659\pi\)
\(740\) −7.71717 + 5.79711i −0.283689 + 0.213106i
\(741\) 3.64006 0.133721
\(742\) 5.40584 + 3.12106i 0.198455 + 0.114578i
\(743\) −25.3141 6.78290i −0.928686 0.248841i −0.237392 0.971414i \(-0.576292\pi\)
−0.691294 + 0.722573i \(0.742959\pi\)
\(744\) 2.31518 + 4.01001i 0.0848787 + 0.147014i
\(745\) 34.6801 14.9499i 1.27058 0.547721i
\(746\) −1.91199 1.91199i −0.0700030 0.0700030i
\(747\) 16.1494 + 4.32721i 0.590874 + 0.158324i
\(748\) 1.80119i 0.0658581i
\(749\) −18.4082 10.6280i −0.672621 0.388338i
\(750\) −5.66582 12.1728i −0.206886 0.444488i
\(751\) 53.1233i 1.93850i 0.246087 + 0.969248i \(0.420855\pi\)
−0.246087 + 0.969248i \(0.579145\pi\)
\(752\) −1.36199 5.08302i −0.0496667 0.185359i
\(753\) −8.77313 + 5.06517i −0.319711 + 0.184585i
\(754\) 0.418205 + 0.418205i 0.0152301 + 0.0152301i
\(755\) −39.8755 29.7008i −1.45122 1.08092i
\(756\) −2.99203 + 5.18235i −0.108819 + 0.188480i
\(757\) −7.47044 + 12.9392i −0.271518 + 0.470282i −0.969251 0.246075i \(-0.920859\pi\)
0.697733 + 0.716358i \(0.254192\pi\)
\(758\) 9.44324 + 16.3562i 0.342994 + 0.594083i
\(759\) 8.99041 + 2.40897i 0.326331 + 0.0874402i
\(760\) −15.3550 + 2.24549i −0.556986 + 0.0814526i
\(761\) −33.1931 19.1641i −1.20325 0.694697i −0.241974 0.970283i \(-0.577795\pi\)
−0.961277 + 0.275586i \(0.911128\pi\)
\(762\) 3.07157 5.32011i 0.111271 0.192727i
\(763\) 21.6430i 0.783530i
\(764\) −3.25689 + 12.1549i −0.117830 + 0.439749i
\(765\) −4.45644 3.31933i −0.161123 0.120011i
\(766\) −10.2315 −0.369679
\(767\) −5.88197 5.88197i −0.212385 0.212385i
\(768\) 4.00407 + 14.9434i 0.144485 + 0.539224i
\(769\) 22.4800 + 22.4800i 0.810650 + 0.810650i 0.984731 0.174081i \(-0.0556955\pi\)
−0.174081 + 0.984731i \(0.555696\pi\)
\(770\) −7.41378 2.94733i −0.267174 0.106214i
\(771\) 0.264559 0.264559i 0.00952786 0.00952786i
\(772\) −10.5669 + 6.10080i −0.380311 + 0.219573i
\(773\) 7.93815 29.6256i 0.285515 1.06556i −0.662947 0.748667i \(-0.730694\pi\)
0.948462 0.316891i \(-0.102639\pi\)
\(774\) 10.1210 5.84337i 0.363792 0.210036i
\(775\) −0.203583 7.11181i −0.00731292 0.255464i
\(776\) 47.4615i 1.70377i
\(777\) −7.24437 7.60896i −0.259890 0.272970i
\(778\) −9.53005 9.53005i −0.341669 0.341669i
\(779\) −17.0078 + 4.55724i −0.609369 + 0.163280i
\(780\) −0.946362 + 2.38050i −0.0338852 + 0.0852357i
\(781\) −5.50429 + 3.17790i −0.196959 + 0.113714i
\(782\) −3.43375 5.94742i −0.122790 0.212679i
\(783\) 1.75986i 0.0628922i
\(784\) −7.79085 + 4.49805i −0.278245 + 0.160645i
\(785\) −9.14272 + 7.22563i −0.326318 + 0.257894i
\(786\) 1.91248 3.31251i 0.0682159 0.118153i
\(787\) −17.9843 + 17.9843i −0.641072 + 0.641072i −0.950819 0.309747i \(-0.899756\pi\)
0.309747 + 0.950819i \(0.399756\pi\)
\(788\) −4.47398 + 4.47398i −0.159379 + 0.159379i
\(789\) 18.4737 + 10.6658i 0.657681 + 0.379712i
\(790\) −11.9885 + 30.1563i −0.426533 + 1.07291i
\(791\) −16.8308 + 16.8308i −0.598435 + 0.598435i
\(792\) −9.64653 5.56943i −0.342775 0.197901i
\(793\) −15.9704 + 4.27926i −0.567126 + 0.151961i
\(794\) −0.675939 2.52264i −0.0239882 0.0895251i
\(795\) 3.14766 + 7.30181i 0.111636 + 0.258969i
\(796\) −1.97684 + 7.37767i −0.0700672 + 0.261494i
\(797\) 24.4236 + 14.1009i 0.865127 + 0.499481i 0.865726 0.500519i \(-0.166857\pi\)
−0.000599033 1.00000i \(0.500191\pi\)
\(798\) −1.14495 4.27301i −0.0405307 0.151263i
\(799\) −0.865665 3.23070i −0.0306250 0.114294i
\(800\) 4.38628 18.4684i 0.155078 0.652958i
\(801\) −30.9119 8.28283i −1.09222 0.292659i
\(802\) 26.3327 7.05582i 0.929839 0.249150i
\(803\) −3.43435 3.43435i −0.121196 0.121196i
\(804\) 7.34343 0.258983
\(805\) 16.5525 2.42060i 0.583398 0.0853150i
\(806\) 1.74536 1.74536i 0.0614777 0.0614777i
\(807\) −1.77837 + 6.63697i −0.0626017 + 0.233633i
\(808\) −2.36147 −0.0830763
\(809\) −0.812619 + 3.03273i −0.0285701 + 0.106625i −0.978739 0.205112i \(-0.934244\pi\)
0.950168 + 0.311737i \(0.100911\pi\)
\(810\) −0.443289 + 0.191092i −0.0155756 + 0.00671430i
\(811\) −10.5095 18.2030i −0.369038 0.639192i 0.620377 0.784303i \(-0.286979\pi\)
−0.989415 + 0.145111i \(0.953646\pi\)
\(812\) −0.197639 + 0.342321i −0.00693577 + 0.0120131i
\(813\) −3.18365 + 3.18365i −0.111655 + 0.111655i
\(814\) 9.62111 9.16011i 0.337220 0.321062i
\(815\) 32.5850 + 3.81641i 1.14140 + 0.133683i
\(816\) −0.750368 2.80041i −0.0262681 0.0980340i
\(817\) 3.18959 11.9037i 0.111590 0.416458i
\(818\) −28.2877 7.57966i −0.989056 0.265017i
\(819\) 4.53596 + 1.21541i 0.158499 + 0.0424697i
\(820\) 1.44147 12.3075i 0.0503385 0.429796i
\(821\) 2.11926 + 3.67067i 0.0739627 + 0.128107i 0.900635 0.434577i \(-0.143102\pi\)
−0.826672 + 0.562684i \(0.809769\pi\)
\(822\) 25.9496 0.905096
\(823\) 0.912687 0.244554i 0.0318143 0.00852461i −0.242877 0.970057i \(-0.578091\pi\)
0.274691 + 0.961533i \(0.411424\pi\)
\(824\) 14.7294i 0.513122i
\(825\) −5.33114 8.65220i −0.185606 0.301231i
\(826\) −5.05462 + 8.75486i −0.175873 + 0.304621i
\(827\) 11.9529 + 20.7030i 0.415642 + 0.719912i 0.995496 0.0948080i \(-0.0302237\pi\)
−0.579854 + 0.814720i \(0.696890\pi\)
\(828\) 6.11671 0.212570
\(829\) 2.51032 0.672639i 0.0871871 0.0233617i −0.214962 0.976622i \(-0.568963\pi\)
0.302149 + 0.953261i \(0.402296\pi\)
\(830\) −3.26458 22.3237i −0.113315 0.774868i
\(831\) 0.583280 0.156289i 0.0202338 0.00542162i
\(832\) 11.1972 6.46469i 0.388192 0.224123i
\(833\) −4.95177 + 2.85890i −0.171569 + 0.0990551i
\(834\) −20.8230 + 5.57951i −0.721041 + 0.193202i
\(835\) 28.8303 38.7068i 0.997713 1.33950i
\(836\) −2.97133 + 0.796165i −0.102766 + 0.0275360i
\(837\) 7.34470 0.253870
\(838\) 19.0425 + 32.9826i 0.657812 + 1.13936i
\(839\) 18.2196 31.5573i 0.629012 1.08948i −0.358739 0.933438i \(-0.616793\pi\)
0.987750 0.156042i \(-0.0498736\pi\)
\(840\) 11.8068 + 1.38283i 0.407373 + 0.0477123i
\(841\) 28.8838i 0.995991i
\(842\) −1.48092 + 0.396811i −0.0510358 + 0.0136750i
\(843\) 33.1205 1.14073
\(844\) −0.583049 1.00987i −0.0200694 0.0347611i
\(845\) −23.6927 2.77493i −0.815052 0.0954603i
\(846\) −5.23239 1.40201i −0.179893 0.0482022i
\(847\) 11.5257 + 3.08830i 0.396028 + 0.106115i
\(848\) 1.80827 6.74857i 0.0620964 0.231747i
\(849\) 0.168614 + 0.629276i 0.00578681 + 0.0215967i
\(850\) −1.73270 + 7.29555i −0.0594313 + 0.250235i
\(851\) −7.86732 + 26.7204i −0.269688 + 0.915962i
\(852\) 1.75374 1.75374i 0.0600822 0.0600822i
\(853\) 12.9804 22.4827i 0.444440 0.769792i −0.553573 0.832800i \(-0.686736\pi\)
0.998013 + 0.0630083i \(0.0200695\pi\)
\(854\) 10.0467 + 17.4014i 0.343791 + 0.595464i
\(855\) −3.50588 + 8.81878i −0.119899 + 0.301596i
\(856\) −10.3649 + 38.6824i −0.354265 + 1.32214i
\(857\) 40.2792 1.37591 0.687955 0.725753i \(-0.258509\pi\)
0.687955 + 0.725753i \(0.258509\pi\)
\(858\) 0.912535 3.40563i 0.0311534 0.116266i
\(859\) −3.69657 + 3.69657i −0.126125 + 0.126125i −0.767352 0.641226i \(-0.778426\pi\)
0.641226 + 0.767352i \(0.278426\pi\)
\(860\) 6.95546 + 5.18069i 0.237179 + 0.176660i
\(861\) 13.4881 0.459672
\(862\) −10.1183 10.1183i −0.344630 0.344630i
\(863\) 6.85933 1.83795i 0.233494 0.0625646i −0.140174 0.990127i \(-0.544766\pi\)
0.373669 + 0.927562i \(0.378100\pi\)
\(864\) 18.9280 + 5.07175i 0.643944 + 0.172544i
\(865\) 1.44819 1.14453i 0.0492401 0.0389152i
\(866\) −5.70964 21.3087i −0.194021 0.724098i
\(867\) 4.17471 + 15.5802i 0.141780 + 0.529132i
\(868\) 1.42866 + 0.824838i 0.0484919 + 0.0279968i
\(869\) −6.35735 + 23.7259i −0.215658 + 0.804847i
\(870\) 0.840782 0.362443i 0.0285052 0.0122880i
\(871\) −3.86864 14.4380i −0.131084 0.489212i
\(872\) 39.3867 10.5536i 1.33380 0.357391i
\(873\) −25.1360 14.5123i −0.850726 0.491167i
\(874\) −8.29336 + 8.29336i −0.280527 + 0.280527i
\(875\) −14.9549 10.4873i −0.505568 0.354534i
\(876\) 1.64135 + 0.947633i 0.0554560 + 0.0320176i
\(877\) −26.8398 + 26.8398i −0.906315 + 0.906315i −0.995973 0.0896576i \(-0.971423\pi\)
0.0896576 + 0.995973i \(0.471423\pi\)
\(878\) 24.8531 24.8531i 0.838750 0.838750i
\(879\) 5.22618 9.05201i 0.176275 0.305317i
\(880\) −1.03876 + 8.86910i −0.0350167 + 0.298977i
\(881\) −3.79357 + 2.19022i −0.127809 + 0.0737904i −0.562541 0.826769i \(-0.690176\pi\)
0.434733 + 0.900560i \(0.356843\pi\)
\(882\) 9.26045i 0.311815i
\(883\) 29.2518 + 50.6657i 0.984402 + 1.70504i 0.644562 + 0.764552i \(0.277040\pi\)
0.339840 + 0.940483i \(0.389627\pi\)
\(884\) 1.23898 0.715324i 0.0416713 0.0240590i
\(885\) −11.8254 + 5.09769i −0.397507 + 0.171357i
\(886\) 20.6420 5.53099i 0.693480 0.185817i
\(887\) −2.53298 2.53298i −0.0850491 0.0850491i 0.663302 0.748351i \(-0.269154\pi\)
−0.748351 + 0.663302i \(0.769154\pi\)
\(888\) −10.3145 + 16.8939i −0.346133 + 0.566921i
\(889\) 8.35702i 0.280286i
\(890\) 6.24883 + 42.7305i 0.209461 + 1.43233i
\(891\) −0.316423 + 0.182687i −0.0106006 + 0.00612024i
\(892\) −3.58929 + 13.3954i −0.120178 + 0.448511i
\(893\) −4.94688 + 2.85608i −0.165541 + 0.0955752i
\(894\) 14.3420 14.3420i 0.479668 0.479668i
\(895\) −19.2932 + 48.5305i −0.644900 + 1.62220i
\(896\) −2.33935 2.33935i −0.0781523 0.0781523i
\(897\) 1.91340 + 7.14090i 0.0638865 + 0.238428i
\(898\) 23.5686 + 23.5686i 0.786494 + 0.786494i
\(899\) 0.485155 0.0161808
\(900\) −4.85577 4.58551i −0.161859 0.152850i
\(901\) 1.14932 4.28931i 0.0382893 0.142898i
\(902\) 17.0549i 0.567867i
\(903\) −4.72012 + 8.17549i −0.157076 + 0.272063i
\(904\) 38.8364 + 22.4222i 1.29168 + 0.745752i
\(905\) 26.8483 36.0457i 0.892466 1.19820i
\(906\) −25.7939 6.91146i −0.856946 0.229618i
\(907\) 6.14134 + 10.6371i 0.203920 + 0.353200i 0.949788 0.312894i \(-0.101298\pi\)
−0.745868 + 0.666094i \(0.767965\pi\)
\(908\) −7.53922 + 13.0583i −0.250198 + 0.433355i
\(909\) −0.722067 + 1.25066i −0.0239495 + 0.0414817i
\(910\) −0.916941 6.27019i −0.0303963 0.207855i
\(911\) −8.69751 8.69751i −0.288161 0.288161i 0.548191 0.836353i \(-0.315317\pi\)
−0.836353 + 0.548191i \(0.815317\pi\)
\(912\) −4.28801 + 2.47568i −0.141990 + 0.0819781i
\(913\) −4.41974 16.4947i −0.146272 0.545895i
\(914\) 7.28961i 0.241119i
\(915\) −2.97743 + 25.4217i −0.0984309 + 0.840415i
\(916\) −2.47599 1.42951i −0.0818089 0.0472324i
\(917\) 5.20341i 0.171832i
\(918\) −7.47710 2.00348i −0.246781 0.0661248i
\(919\) −25.2847 25.2847i −0.834065 0.834065i 0.154005 0.988070i \(-0.450783\pi\)
−0.988070 + 0.154005i \(0.950783\pi\)
\(920\) −12.4765 28.9425i −0.411337 0.954204i
\(921\) 9.53382 + 16.5131i 0.314150 + 0.544124i
\(922\) 28.7436 + 7.70182i 0.946620 + 0.253646i
\(923\) −4.37194 2.52414i −0.143904 0.0830832i
\(924\) 2.35642 0.0775204
\(925\) 26.2769 15.3142i 0.863980 0.503527i
\(926\) −43.4081 −1.42648
\(927\) 7.80081 + 4.50380i 0.256212 + 0.147924i
\(928\) 1.25029 + 0.335015i 0.0410428 + 0.0109974i
\(929\) 6.26098 + 10.8443i 0.205416 + 0.355791i 0.950265 0.311442i \(-0.100812\pi\)
−0.744849 + 0.667233i \(0.767479\pi\)
\(930\) −1.51264 3.50897i −0.0496015 0.115064i
\(931\) 6.90497 + 6.90497i 0.226301 + 0.226301i
\(932\) 2.18322 + 0.584992i 0.0715138 + 0.0191621i
\(933\) 25.7724i 0.843751i
\(934\) 13.2985 + 7.67791i 0.435141 + 0.251229i
\(935\) −0.660225 + 5.63709i −0.0215917 + 0.184352i
\(936\) 8.84736i 0.289185i
\(937\) −3.17302 11.8419i −0.103658 0.386857i 0.894531 0.447005i \(-0.147509\pi\)
−0.998189 + 0.0601478i \(0.980843\pi\)
\(938\) −15.7316 + 9.08266i −0.513656 + 0.296559i
\(939\) 0.692230 + 0.692230i 0.0225901 + 0.0225901i
\(940\) −0.581687 3.97767i −0.0189725 0.129737i
\(941\) −13.7869 + 23.8796i −0.449440 + 0.778452i −0.998350 0.0574293i \(-0.981710\pi\)
0.548910 + 0.835881i \(0.315043\pi\)
\(942\) −3.12932 + 5.42015i −0.101959 + 0.176598i
\(943\) −17.8803 30.9696i −0.582264 1.00851i
\(944\) 10.9294 + 2.92853i 0.355723 + 0.0953157i
\(945\) 11.2636 15.1222i 0.366404 0.491924i
\(946\) −10.3375 5.96833i −0.336100 0.194047i
\(947\) 4.48370 7.76600i 0.145701 0.252361i −0.783933 0.620845i \(-0.786790\pi\)
0.929634 + 0.368484i \(0.120123\pi\)
\(948\) 9.58495i 0.311305i
\(949\) 0.998457 3.72629i 0.0324113 0.120961i
\(950\) 12.8010 0.366442i 0.415319 0.0118889i
\(951\) −27.9848 −0.907469
\(952\) −4.69437 4.69437i −0.152145 0.152145i
\(953\) 9.63231 + 35.9483i 0.312021 + 1.16448i 0.926731 + 0.375725i \(0.122606\pi\)
−0.614710 + 0.788753i \(0.710727\pi\)
\(954\) −5.08547 5.08547i −0.164648 0.164648i
\(955\) 14.6483 36.8467i 0.474007 1.19233i
\(956\) 9.96253 9.96253i 0.322211 0.322211i
\(957\) 0.600156 0.346500i 0.0194003 0.0112008i
\(958\) −0.530395 + 1.97946i −0.0171363 + 0.0639535i
\(959\) 30.5719 17.6507i 0.987219 0.569971i
\(960\) −2.89623 19.8049i −0.0934755 0.639201i
\(961\) 28.9752i 0.934685i
\(962\) 10.1219 + 2.98019i 0.326342 + 0.0960852i
\(963\) 17.3173 + 17.3173i 0.558041 + 0.558041i
\(964\) −7.65555 + 2.05130i −0.246569 + 0.0660679i
\(965\) 35.3069 15.2200i 1.13657 0.489951i
\(966\) 7.78074 4.49221i 0.250341 0.144535i
\(967\) −28.0830 48.6411i −0.903087 1.56419i −0.823464 0.567368i \(-0.807962\pi\)
−0.0796228 0.996825i \(-0.525372\pi\)
\(968\) 22.4808i 0.722561i
\(969\) −2.72541 + 1.57351i −0.0875526 + 0.0505485i
\(970\) −4.55612 + 38.9007i −0.146288 + 1.24903i
\(971\) −19.7612 + 34.2274i −0.634167 + 1.09841i 0.352523 + 0.935803i \(0.385324\pi\)
−0.986691 + 0.162607i \(0.948010\pi\)
\(972\) 7.87086 7.87086i 0.252458 0.252458i
\(973\) −20.7370 + 20.7370i −0.664798 + 0.664798i
\(974\) 4.63033 + 2.67332i 0.148365 + 0.0856588i
\(975\) 3.83435 7.10324i 0.122797 0.227486i
\(976\) 15.9028 15.9028i 0.509037 0.509037i
\(977\) 5.20188 + 3.00331i 0.166423 + 0.0960843i 0.580898 0.813976i \(-0.302702\pi\)
−0.414475 + 0.910061i \(0.636035\pi\)
\(978\) 17.0197 4.56042i 0.544231 0.145826i
\(979\) 8.45996 + 31.5730i 0.270381 + 1.00908i
\(980\) −6.31086 + 2.72048i −0.201593 + 0.0869025i
\(981\) 6.45397 24.0866i 0.206060 0.769025i
\(982\) 22.0038 + 12.7039i 0.702169 + 0.405398i
\(983\) 6.19133 + 23.1064i 0.197473 + 0.736979i 0.991613 + 0.129244i \(0.0412550\pi\)
−0.794140 + 0.607735i \(0.792078\pi\)
\(984\) −6.57710 24.5461i −0.209670 0.782501i
\(985\) 15.6419 12.3620i 0.498393 0.393887i
\(986\) −0.493901 0.132340i −0.0157290 0.00421457i
\(987\) 4.22658 1.13251i 0.134534 0.0360482i
\(988\) −1.72769 1.72769i −0.0549651 0.0549651i
\(989\) 25.0287 0.795867
\(990\) 7.37192 + 5.49089i 0.234295 + 0.174512i
\(991\) 18.5888 18.5888i 0.590492 0.590492i −0.347272 0.937764i \(-0.612892\pi\)
0.937764 + 0.347272i \(0.112892\pi\)
\(992\) 1.39817 5.21804i 0.0443919 0.165673i
\(993\) −10.2963 −0.326742
\(994\) −1.58789 + 5.92610i −0.0503649 + 0.187964i
\(995\) 8.89108 22.3649i 0.281866 0.709013i
\(996\) 3.33182 + 5.77087i 0.105573 + 0.182857i
\(997\) 25.8150 44.7129i 0.817569 1.41607i −0.0898999 0.995951i \(-0.528655\pi\)
0.907469 0.420120i \(-0.138012\pi\)
\(998\) 12.5670 12.5670i 0.397800 0.397800i
\(999\) 15.0265 + 27.5675i 0.475417 + 0.872198i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 185.2.u.a.23.12 yes 68
5.2 odd 4 185.2.p.a.97.6 68
5.3 odd 4 925.2.t.b.282.12 68
5.4 even 2 925.2.y.b.393.6 68
37.29 odd 12 185.2.p.a.103.6 yes 68
185.29 odd 12 925.2.t.b.843.12 68
185.103 even 12 925.2.y.b.732.6 68
185.177 even 12 inner 185.2.u.a.177.12 yes 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.97.6 68 5.2 odd 4
185.2.p.a.103.6 yes 68 37.29 odd 12
185.2.u.a.23.12 yes 68 1.1 even 1 trivial
185.2.u.a.177.12 yes 68 185.177 even 12 inner
925.2.t.b.282.12 68 5.3 odd 4
925.2.t.b.843.12 68 185.29 odd 12
925.2.y.b.393.6 68 5.4 even 2
925.2.y.b.732.6 68 185.103 even 12