Properties

Label 185.2.u
Level $185$
Weight $2$
Character orbit 185.u
Rep. character $\chi_{185}(8,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $68$
Newform subspaces $1$
Sturm bound $38$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.u (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 185 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(38\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(185, [\chi])\).

Total New Old
Modular forms 84 84 0
Cusp forms 68 68 0
Eisenstein series 16 16 0

Trace form

\( 68 q - 6 q^{2} - 4 q^{3} + 30 q^{4} - 8 q^{6} - 2 q^{7} - 6 q^{10} - 10 q^{12} - 6 q^{13} - 16 q^{15} - 26 q^{16} - 10 q^{17} - 8 q^{18} - 4 q^{19} - 28 q^{20} - 12 q^{21} - 14 q^{22} + 20 q^{25} - 24 q^{26}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(185, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
185.2.u.a 185.u 185.u $68$ $1.477$ None 185.2.p.a \(-6\) \(-4\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{12}]$