Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [185,2,Mod(8,185)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(185, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([9, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("185.8");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 185 = 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 185.u (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.47723243739\) |
Analytic rank: | \(0\) |
Dimension: | \(68\) |
Relative dimension: | \(17\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8.1 | −2.38259 | + | 1.37559i | 0.185681 | + | 0.692973i | 2.78450 | − | 4.82289i | −1.62458 | − | 1.53647i | −1.39565 | − | 1.39565i | 0.502511 | + | 1.87540i | 9.81895i | 2.15234 | − | 1.24266i | 5.98426 | + | 1.42604i | ||
8.2 | −2.10315 | + | 1.21425i | 0.180195 | + | 0.672498i | 1.94883 | − | 3.37547i | 2.14998 | + | 0.614465i | −1.19556 | − | 1.19556i | −1.19887 | − | 4.47423i | 4.60849i | 2.17829 | − | 1.25764i | −5.26786 | + | 1.31832i | ||
8.3 | −1.90916 | + | 1.10225i | −0.817378 | − | 3.05050i | 1.42993 | − | 2.47671i | 1.22028 | − | 1.87374i | 4.92293 | + | 4.92293i | 0.0394498 | + | 0.147229i | 1.89556i | −6.03934 | + | 3.48681i | −0.264372 | + | 4.92234i | ||
8.4 | −1.72086 | + | 0.993536i | 0.630160 | + | 2.35179i | 0.974229 | − | 1.68741i | −0.468054 | + | 2.18653i | −3.42100 | − | 3.42100i | 0.704548 | + | 2.62941i | − | 0.102418i | −2.53574 | + | 1.46401i | −1.36695 | − | 4.22774i | |
8.5 | −1.54509 | + | 0.892058i | −0.471934 | − | 1.76128i | 0.591534 | − | 1.02457i | −0.319125 | + | 2.21318i | 2.30034 | + | 2.30034i | −0.134169 | − | 0.500724i | − | 1.45750i | −0.281310 | + | 0.162414i | −1.48121 | − | 3.70424i | |
8.6 | −1.25283 | + | 0.723320i | −0.212077 | − | 0.791482i | 0.0463849 | − | 0.0803411i | −2.18370 | − | 0.481096i | 0.838191 | + | 0.838191i | 0.425785 | + | 1.58905i | − | 2.75908i | 2.01661 | − | 1.16429i | 3.08379 | − | 0.976784i | |
8.7 | −0.713738 | + | 0.412077i | 0.475172 | + | 1.77336i | −0.660386 | + | 1.14382i | 2.23300 | − | 0.117085i | −1.06991 | − | 1.06991i | 0.320840 | + | 1.19739i | − | 2.73682i | −0.320958 | + | 0.185305i | −1.54553 | + | 1.00374i | |
8.8 | −0.614089 | + | 0.354544i | −0.0751630 | − | 0.280512i | −0.748597 | + | 1.29661i | 0.0904746 | − | 2.23424i | 0.145611 | + | 0.145611i | −0.977086 | − | 3.64653i | − | 2.47982i | 2.52504 | − | 1.45783i | 0.736577 | + | 1.40410i | |
8.9 | −0.212566 | + | 0.122725i | −0.491666 | − | 1.83492i | −0.969877 | + | 1.67988i | 2.03028 | + | 0.937007i | 0.329702 | + | 0.329702i | 1.00868 | + | 3.76446i | − | 0.967013i | −0.527123 | + | 0.304334i | −0.546561 | + | 0.0499898i | |
8.10 | −0.138202 | + | 0.0797909i | 0.607844 | + | 2.26850i | −0.987267 | + | 1.71000i | −2.23170 | + | 0.139678i | −0.265011 | − | 0.265011i | −0.345018 | − | 1.28763i | − | 0.634263i | −2.17856 | + | 1.25779i | 0.297280 | − | 0.197373i | |
8.11 | 0.407096 | − | 0.235037i | −0.838017 | − | 3.12752i | −0.889515 | + | 1.54069i | −2.02380 | + | 0.950915i | −1.07624 | − | 1.07624i | −0.968227 | − | 3.61347i | 1.77643i | −6.48105 | + | 3.74183i | −0.600381 | + | 0.862782i | ||
8.12 | 0.877658 | − | 0.506716i | 0.458707 | + | 1.71192i | −0.486478 | + | 0.842604i | −0.241001 | − | 2.22304i | 1.27004 | + | 1.27004i | 1.12037 | + | 4.18129i | 3.01289i | −0.122169 | + | 0.0705344i | −1.33797 | − | 1.82895i | ||
8.13 | 0.971183 | − | 0.560713i | 0.168506 | + | 0.628874i | −0.371203 | + | 0.642942i | 0.550691 | + | 2.16720i | 0.516268 | + | 0.516268i | −0.377247 | − | 1.40791i | 3.07540i | 2.23099 | − | 1.28806i | 1.75000 | + | 1.79596i | ||
8.14 | 1.11517 | − | 0.643846i | −0.352022 | − | 1.31376i | −0.170924 | + | 0.296050i | 1.94466 | − | 1.10377i | −1.23843 | − | 1.23843i | −0.459253 | − | 1.71395i | 3.01558i | 0.996020 | − | 0.575052i | 1.45798 | − | 2.48295i | ||
8.15 | 1.80193 | − | 1.04034i | −0.294240 | − | 1.09812i | 1.16463 | − | 2.01721i | −1.89677 | − | 1.18417i | −1.67262 | − | 1.67262i | −0.0206204 | − | 0.0769563i | − | 0.685107i | 1.47879 | − | 0.853779i | −4.64979 | − | 0.160500i | |
8.16 | 2.08716 | − | 1.20502i | −0.740695 | − | 2.76431i | 1.90415 | − | 3.29809i | 0.749673 | + | 2.10665i | −4.87700 | − | 4.87700i | 0.856324 | + | 3.19584i | − | 4.35808i | −4.49471 | + | 2.59502i | 4.10325 | + | 3.49355i | |
8.17 | 2.10002 | − | 1.21245i | 0.586925 | + | 2.19044i | 1.94006 | − | 3.36028i | −1.71236 | + | 1.43799i | 3.88834 | + | 3.88834i | −0.132002 | − | 0.492639i | − | 4.55908i | −1.85545 | + | 1.07124i | −1.85251 | + | 5.09596i | |
23.1 | −2.34255 | − | 1.35247i | −0.438550 | − | 0.117509i | 2.65837 | + | 4.60443i | 1.31482 | + | 1.80866i | 0.868398 | + | 0.868398i | −3.48545 | − | 0.933922i | − | 8.97159i | −2.41956 | − | 1.39693i | −0.633857 | − | 6.01514i | |
23.2 | −1.89659 | − | 1.09500i | 2.68684 | + | 0.719938i | 1.39805 | + | 2.42149i | −1.55121 | + | 1.61051i | −4.30752 | − | 4.30752i | 2.04761 | + | 0.548654i | − | 1.74345i | 4.10274 | + | 2.36872i | 4.70553 | − | 1.35592i | |
23.3 | −1.85990 | − | 1.07382i | −2.04873 | − | 0.548954i | 1.30616 | + | 2.26234i | −2.22787 | − | 0.191263i | 3.22096 | + | 3.22096i | −0.905285 | − | 0.242570i | − | 1.31504i | 1.29785 | + | 0.749313i | 3.93825 | + | 2.74806i | |
See all 68 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
185.u | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 185.2.u.a | yes | 68 |
5.b | even | 2 | 1 | 925.2.y.b | 68 | ||
5.c | odd | 4 | 1 | 185.2.p.a | ✓ | 68 | |
5.c | odd | 4 | 1 | 925.2.t.b | 68 | ||
37.g | odd | 12 | 1 | 185.2.p.a | ✓ | 68 | |
185.p | even | 12 | 1 | 925.2.y.b | 68 | ||
185.q | odd | 12 | 1 | 925.2.t.b | 68 | ||
185.u | even | 12 | 1 | inner | 185.2.u.a | yes | 68 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
185.2.p.a | ✓ | 68 | 5.c | odd | 4 | 1 | |
185.2.p.a | ✓ | 68 | 37.g | odd | 12 | 1 | |
185.2.u.a | yes | 68 | 1.a | even | 1 | 1 | trivial |
185.2.u.a | yes | 68 | 185.u | even | 12 | 1 | inner |
925.2.t.b | 68 | 5.c | odd | 4 | 1 | ||
925.2.t.b | 68 | 185.q | odd | 12 | 1 | ||
925.2.y.b | 68 | 5.b | even | 2 | 1 | ||
925.2.y.b | 68 | 185.p | even | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(185, [\chi])\).