Properties

Label 184.4.i.a.41.6
Level $184$
Weight $4$
Character 184.41
Analytic conductor $10.856$
Analytic rank $0$
Dimension $90$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [184,4,Mod(9,184)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(184, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([0, 0, 10])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("184.9"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 184 = 2^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 184.i (of order \(11\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [90,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8563514411\)
Analytic rank: \(0\)
Dimension: \(90\)
Relative dimension: \(9\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 41.6
Character \(\chi\) \(=\) 184.41
Dual form 184.4.i.a.9.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.658159 - 0.759556i) q^{3} +(-1.68723 + 11.7349i) q^{5} +(-15.1088 - 33.0837i) q^{7} +(3.69875 + 25.7254i) q^{9} +(68.8010 - 20.2018i) q^{11} +(8.11313 - 17.7653i) q^{13} +(7.80288 + 9.00501i) q^{15} +(59.0342 - 37.9390i) q^{17} +(54.4857 + 35.0158i) q^{19} +(-35.0729 - 10.2983i) q^{21} +(25.1929 + 107.389i) q^{23} +(-14.9255 - 4.38253i) q^{25} +(44.8025 + 28.7928i) q^{27} +(115.270 - 74.0793i) q^{29} +(-127.201 - 146.798i) q^{31} +(29.9376 - 65.5543i) q^{33} +(413.727 - 121.481i) q^{35} +(-14.5321 - 101.073i) q^{37} +(-8.15400 - 17.8548i) q^{39} +(17.3882 - 120.938i) q^{41} +(207.528 - 239.500i) q^{43} -308.126 q^{45} +367.725 q^{47} +(-641.637 + 740.488i) q^{49} +(10.0371 - 69.8096i) q^{51} +(-22.1707 - 48.5472i) q^{53} +(120.984 + 841.461i) q^{55} +(62.4567 - 18.3389i) q^{57} +(-193.862 + 424.498i) q^{59} +(89.7639 + 103.593i) q^{61} +(795.206 - 511.048i) q^{63} +(194.786 + 125.181i) q^{65} +(-804.280 - 236.158i) q^{67} +(98.1487 + 51.5433i) q^{69} +(-877.383 - 257.623i) q^{71} +(176.420 + 113.378i) q^{73} +(-13.1521 + 8.45237i) q^{75} +(-1707.85 - 1970.97i) q^{77} +(115.785 - 253.534i) q^{79} +(-621.946 + 182.620i) q^{81} +(10.6358 + 73.9737i) q^{83} +(345.607 + 756.775i) q^{85} +(19.5984 - 136.310i) q^{87} +(-247.380 + 285.492i) q^{89} -710.321 q^{91} -195.220 q^{93} +(-502.838 + 580.307i) q^{95} +(-64.5225 + 448.764i) q^{97} +(774.176 + 1695.21i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 90 q - 2 q^{3} - 87 q^{7} - 113 q^{9} - 6 q^{11} - 8 q^{13} - 6 q^{15} + 306 q^{17} + 275 q^{19} + 350 q^{21} - 23 q^{23} - 289 q^{25} + 511 q^{27} + 309 q^{29} - 314 q^{31} - 1444 q^{33} - 1895 q^{35}+ \cdots + 5967 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/184\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(93\) \(97\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{6}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.658159 0.759556i 0.126663 0.146177i −0.688876 0.724879i \(-0.741895\pi\)
0.815538 + 0.578703i \(0.196441\pi\)
\(4\) 0 0
\(5\) −1.68723 + 11.7349i −0.150910 + 1.04961i 0.763788 + 0.645468i \(0.223337\pi\)
−0.914698 + 0.404138i \(0.867572\pi\)
\(6\) 0 0
\(7\) −15.1088 33.0837i −0.815799 1.78635i −0.580144 0.814514i \(-0.697004\pi\)
−0.235656 0.971837i \(-0.575724\pi\)
\(8\) 0 0
\(9\) 3.69875 + 25.7254i 0.136991 + 0.952791i
\(10\) 0 0
\(11\) 68.8010 20.2018i 1.88584 0.553734i 0.890789 0.454417i \(-0.150153\pi\)
0.995056 0.0993166i \(-0.0316656\pi\)
\(12\) 0 0
\(13\) 8.11313 17.7653i 0.173091 0.379016i −0.803127 0.595808i \(-0.796832\pi\)
0.976218 + 0.216792i \(0.0695594\pi\)
\(14\) 0 0
\(15\) 7.80288 + 9.00501i 0.134313 + 0.155006i
\(16\) 0 0
\(17\) 59.0342 37.9390i 0.842229 0.541268i −0.0469131 0.998899i \(-0.514938\pi\)
0.889142 + 0.457631i \(0.151302\pi\)
\(18\) 0 0
\(19\) 54.4857 + 35.0158i 0.657888 + 0.422799i 0.826541 0.562877i \(-0.190305\pi\)
−0.168653 + 0.985675i \(0.553942\pi\)
\(20\) 0 0
\(21\) −35.0729 10.2983i −0.364454 0.107013i
\(22\) 0 0
\(23\) 25.1929 + 107.389i 0.228395 + 0.973568i
\(24\) 0 0
\(25\) −14.9255 4.38253i −0.119404 0.0350602i
\(26\) 0 0
\(27\) 44.8025 + 28.7928i 0.319342 + 0.205229i
\(28\) 0 0
\(29\) 115.270 74.0793i 0.738105 0.474351i −0.116787 0.993157i \(-0.537260\pi\)
0.854892 + 0.518806i \(0.173623\pi\)
\(30\) 0 0
\(31\) −127.201 146.798i −0.736969 0.850508i 0.256269 0.966606i \(-0.417507\pi\)
−0.993238 + 0.116098i \(0.962961\pi\)
\(32\) 0 0
\(33\) 29.9376 65.5543i 0.157923 0.345804i
\(34\) 0 0
\(35\) 413.727 121.481i 1.99808 0.586688i
\(36\) 0 0
\(37\) −14.5321 101.073i −0.0645693 0.449089i −0.996300 0.0859400i \(-0.972611\pi\)
0.931731 0.363149i \(-0.118298\pi\)
\(38\) 0 0
\(39\) −8.15400 17.8548i −0.0334791 0.0733090i
\(40\) 0 0
\(41\) 17.3882 120.938i 0.0662339 0.460667i −0.929532 0.368741i \(-0.879789\pi\)
0.995766 0.0919253i \(-0.0293021\pi\)
\(42\) 0 0
\(43\) 207.528 239.500i 0.735993 0.849381i −0.257140 0.966374i \(-0.582780\pi\)
0.993133 + 0.116993i \(0.0373256\pi\)
\(44\) 0 0
\(45\) −308.126 −1.02073
\(46\) 0 0
\(47\) 367.725 1.14124 0.570619 0.821215i \(-0.306703\pi\)
0.570619 + 0.821215i \(0.306703\pi\)
\(48\) 0 0
\(49\) −641.637 + 740.488i −1.87066 + 2.15886i
\(50\) 0 0
\(51\) 10.0371 69.8096i 0.0275584 0.191673i
\(52\) 0 0
\(53\) −22.1707 48.5472i −0.0574601 0.125820i 0.878724 0.477330i \(-0.158395\pi\)
−0.936184 + 0.351510i \(0.885668\pi\)
\(54\) 0 0
\(55\) 120.984 + 841.461i 0.296608 + 2.06296i
\(56\) 0 0
\(57\) 62.4567 18.3389i 0.145133 0.0426150i
\(58\) 0 0
\(59\) −193.862 + 424.498i −0.427774 + 0.936694i 0.565909 + 0.824468i \(0.308525\pi\)
−0.993683 + 0.112226i \(0.964202\pi\)
\(60\) 0 0
\(61\) 89.7639 + 103.593i 0.188411 + 0.217438i 0.842094 0.539330i \(-0.181323\pi\)
−0.653683 + 0.756768i \(0.726777\pi\)
\(62\) 0 0
\(63\) 795.206 511.048i 1.59026 1.02200i
\(64\) 0 0
\(65\) 194.786 + 125.181i 0.371696 + 0.238874i
\(66\) 0 0
\(67\) −804.280 236.158i −1.46654 0.430616i −0.551570 0.834129i \(-0.685971\pi\)
−0.914974 + 0.403513i \(0.867789\pi\)
\(68\) 0 0
\(69\) 98.1487 + 51.5433i 0.171242 + 0.0899288i
\(70\) 0 0
\(71\) −877.383 257.623i −1.46657 0.430623i −0.551584 0.834119i \(-0.685977\pi\)
−0.914981 + 0.403497i \(0.867795\pi\)
\(72\) 0 0
\(73\) 176.420 + 113.378i 0.282854 + 0.181779i 0.674373 0.738391i \(-0.264414\pi\)
−0.391519 + 0.920170i \(0.628050\pi\)
\(74\) 0 0
\(75\) −13.1521 + 8.45237i −0.0202491 + 0.0130133i
\(76\) 0 0
\(77\) −1707.85 1970.97i −2.52763 2.91704i
\(78\) 0 0
\(79\) 115.785 253.534i 0.164897 0.361073i −0.809088 0.587688i \(-0.800038\pi\)
0.973985 + 0.226614i \(0.0727657\pi\)
\(80\) 0 0
\(81\) −621.946 + 182.620i −0.853149 + 0.250507i
\(82\) 0 0
\(83\) 10.6358 + 73.9737i 0.0140654 + 0.0978273i 0.995645 0.0932273i \(-0.0297183\pi\)
−0.981579 + 0.191055i \(0.938809\pi\)
\(84\) 0 0
\(85\) 345.607 + 756.775i 0.441016 + 0.965691i
\(86\) 0 0
\(87\) 19.5984 136.310i 0.0241514 0.167976i
\(88\) 0 0
\(89\) −247.380 + 285.492i −0.294632 + 0.340024i −0.883695 0.468064i \(-0.844952\pi\)
0.589062 + 0.808088i \(0.299497\pi\)
\(90\) 0 0
\(91\) −710.321 −0.818262
\(92\) 0 0
\(93\) −195.220 −0.217671
\(94\) 0 0
\(95\) −502.838 + 580.307i −0.543054 + 0.626718i
\(96\) 0 0
\(97\) −64.5225 + 448.764i −0.0675388 + 0.469743i 0.927782 + 0.373122i \(0.121713\pi\)
−0.995321 + 0.0966212i \(0.969196\pi\)
\(98\) 0 0
\(99\) 774.176 + 1695.21i 0.785936 + 1.72096i
\(100\) 0 0
\(101\) 147.146 + 1023.42i 0.144966 + 1.00826i 0.924304 + 0.381656i \(0.124646\pi\)
−0.779339 + 0.626603i \(0.784445\pi\)
\(102\) 0 0
\(103\) 1639.53 481.410i 1.56843 0.460531i 0.621883 0.783110i \(-0.286368\pi\)
0.946543 + 0.322579i \(0.104550\pi\)
\(104\) 0 0
\(105\) 180.026 394.203i 0.167322 0.366384i
\(106\) 0 0
\(107\) 368.269 + 425.005i 0.332728 + 0.383989i 0.897319 0.441382i \(-0.145512\pi\)
−0.564591 + 0.825371i \(0.690966\pi\)
\(108\) 0 0
\(109\) −1227.67 + 788.973i −1.07880 + 0.693302i −0.954280 0.298915i \(-0.903375\pi\)
−0.124519 + 0.992217i \(0.539739\pi\)
\(110\) 0 0
\(111\) −86.3350 55.4842i −0.0738249 0.0474444i
\(112\) 0 0
\(113\) −475.381 139.584i −0.395753 0.116203i 0.0777999 0.996969i \(-0.475210\pi\)
−0.473553 + 0.880765i \(0.657029\pi\)
\(114\) 0 0
\(115\) −1302.71 + 114.448i −1.05633 + 0.0928032i
\(116\) 0 0
\(117\) 487.027 + 143.004i 0.384834 + 0.112998i
\(118\) 0 0
\(119\) −2147.10 1379.86i −1.65398 1.06295i
\(120\) 0 0
\(121\) 3205.76 2060.22i 2.40854 1.54787i
\(122\) 0 0
\(123\) −80.4149 92.8037i −0.0589493 0.0680312i
\(124\) 0 0
\(125\) −539.014 + 1180.28i −0.385687 + 0.844536i
\(126\) 0 0
\(127\) 1355.19 397.919i 0.946878 0.278029i 0.228392 0.973569i \(-0.426653\pi\)
0.718487 + 0.695541i \(0.244835\pi\)
\(128\) 0 0
\(129\) −45.3273 315.258i −0.0309368 0.215170i
\(130\) 0 0
\(131\) −531.051 1162.84i −0.354184 0.775555i −0.999928 0.0120010i \(-0.996180\pi\)
0.645744 0.763554i \(-0.276547\pi\)
\(132\) 0 0
\(133\) 335.238 2331.63i 0.218563 1.52014i
\(134\) 0 0
\(135\) −413.474 + 477.174i −0.263601 + 0.304212i
\(136\) 0 0
\(137\) 1644.88 1.02578 0.512890 0.858454i \(-0.328575\pi\)
0.512890 + 0.858454i \(0.328575\pi\)
\(138\) 0 0
\(139\) 195.877 0.119525 0.0597627 0.998213i \(-0.480966\pi\)
0.0597627 + 0.998213i \(0.480966\pi\)
\(140\) 0 0
\(141\) 242.021 279.308i 0.144552 0.166822i
\(142\) 0 0
\(143\) 199.301 1386.17i 0.116548 0.810611i
\(144\) 0 0
\(145\) 674.830 + 1477.67i 0.386494 + 0.846303i
\(146\) 0 0
\(147\) 140.143 + 974.718i 0.0786315 + 0.546894i
\(148\) 0 0
\(149\) 140.702 41.3137i 0.0773606 0.0227151i −0.242823 0.970071i \(-0.578074\pi\)
0.320184 + 0.947355i \(0.396255\pi\)
\(150\) 0 0
\(151\) −634.731 + 1389.87i −0.342077 + 0.749044i −0.999992 0.00404809i \(-0.998711\pi\)
0.657915 + 0.753092i \(0.271439\pi\)
\(152\) 0 0
\(153\) 1194.35 + 1378.35i 0.631093 + 0.728320i
\(154\) 0 0
\(155\) 1937.29 1245.02i 1.00391 0.645176i
\(156\) 0 0
\(157\) −196.367 126.197i −0.0998202 0.0641505i 0.489778 0.871847i \(-0.337078\pi\)
−0.589599 + 0.807696i \(0.700714\pi\)
\(158\) 0 0
\(159\) −51.4662 15.1118i −0.0256700 0.00753740i
\(160\) 0 0
\(161\) 3172.18 2455.99i 1.55281 1.20223i
\(162\) 0 0
\(163\) 517.617 + 151.986i 0.248730 + 0.0730336i 0.403721 0.914882i \(-0.367717\pi\)
−0.154991 + 0.987916i \(0.549535\pi\)
\(164\) 0 0
\(165\) 718.764 + 461.921i 0.339125 + 0.217943i
\(166\) 0 0
\(167\) −2895.65 + 1860.92i −1.34175 + 0.862290i −0.997075 0.0764321i \(-0.975647\pi\)
−0.344675 + 0.938722i \(0.612011\pi\)
\(168\) 0 0
\(169\) 1188.95 + 1372.12i 0.541168 + 0.624541i
\(170\) 0 0
\(171\) −699.266 + 1531.18i −0.312715 + 0.684749i
\(172\) 0 0
\(173\) −2999.71 + 880.795i −1.31829 + 0.387084i −0.863875 0.503707i \(-0.831969\pi\)
−0.454413 + 0.890791i \(0.650151\pi\)
\(174\) 0 0
\(175\) 80.5167 + 560.006i 0.0347800 + 0.241900i
\(176\) 0 0
\(177\) 194.838 + 426.636i 0.0827398 + 0.181175i
\(178\) 0 0
\(179\) 433.458 3014.77i 0.180996 1.25885i −0.673420 0.739260i \(-0.735175\pi\)
0.854415 0.519591i \(-0.173916\pi\)
\(180\) 0 0
\(181\) 307.276 354.616i 0.126186 0.145626i −0.689141 0.724627i \(-0.742012\pi\)
0.815327 + 0.579001i \(0.196557\pi\)
\(182\) 0 0
\(183\) 137.764 0.0556491
\(184\) 0 0
\(185\) 1210.60 0.481110
\(186\) 0 0
\(187\) 3295.18 3802.84i 1.28859 1.48712i
\(188\) 0 0
\(189\) 275.660 1917.26i 0.106092 0.737883i
\(190\) 0 0
\(191\) 444.557 + 973.445i 0.168414 + 0.368775i 0.974955 0.222403i \(-0.0713902\pi\)
−0.806541 + 0.591178i \(0.798663\pi\)
\(192\) 0 0
\(193\) −131.728 916.185i −0.0491293 0.341702i −0.999530 0.0306721i \(-0.990235\pi\)
0.950400 0.311030i \(-0.100674\pi\)
\(194\) 0 0
\(195\) 223.282 65.5616i 0.0819978 0.0240767i
\(196\) 0 0
\(197\) 1773.56 3883.55i 0.641425 1.40452i −0.257438 0.966295i \(-0.582878\pi\)
0.898863 0.438230i \(-0.144394\pi\)
\(198\) 0 0
\(199\) 1658.97 + 1914.55i 0.590961 + 0.682005i 0.969924 0.243406i \(-0.0782648\pi\)
−0.378963 + 0.925412i \(0.623719\pi\)
\(200\) 0 0
\(201\) −708.719 + 455.466i −0.248702 + 0.159831i
\(202\) 0 0
\(203\) −4192.41 2694.30i −1.44950 0.931539i
\(204\) 0 0
\(205\) 1389.86 + 408.100i 0.473523 + 0.139039i
\(206\) 0 0
\(207\) −2669.43 + 1045.30i −0.896319 + 0.350983i
\(208\) 0 0
\(209\) 4456.05 + 1308.42i 1.47479 + 0.433038i
\(210\) 0 0
\(211\) −1728.83 1111.05i −0.564065 0.362503i 0.227321 0.973820i \(-0.427003\pi\)
−0.791385 + 0.611317i \(0.790640\pi\)
\(212\) 0 0
\(213\) −773.136 + 496.865i −0.248706 + 0.159834i
\(214\) 0 0
\(215\) 2460.37 + 2839.42i 0.780446 + 0.900682i
\(216\) 0 0
\(217\) −2934.76 + 6426.24i −0.918086 + 2.01033i
\(218\) 0 0
\(219\) 202.229 59.3799i 0.0623990 0.0183220i
\(220\) 0 0
\(221\) −195.044 1356.56i −0.0593670 0.412906i
\(222\) 0 0
\(223\) −482.552 1056.64i −0.144906 0.317300i 0.823237 0.567698i \(-0.192166\pi\)
−0.968143 + 0.250398i \(0.919439\pi\)
\(224\) 0 0
\(225\) 57.5364 400.174i 0.0170478 0.118570i
\(226\) 0 0
\(227\) −1979.71 + 2284.71i −0.578847 + 0.668025i −0.967356 0.253420i \(-0.918445\pi\)
0.388510 + 0.921445i \(0.372990\pi\)
\(228\) 0 0
\(229\) −4445.95 −1.28295 −0.641477 0.767143i \(-0.721678\pi\)
−0.641477 + 0.767143i \(0.721678\pi\)
\(230\) 0 0
\(231\) −2621.10 −0.746561
\(232\) 0 0
\(233\) 840.045 969.464i 0.236194 0.272582i −0.625262 0.780415i \(-0.715008\pi\)
0.861456 + 0.507833i \(0.169553\pi\)
\(234\) 0 0
\(235\) −620.436 + 4315.23i −0.172225 + 1.19785i
\(236\) 0 0
\(237\) −116.368 254.811i −0.0318942 0.0698386i
\(238\) 0 0
\(239\) −611.697 4254.44i −0.165554 1.15145i −0.887939 0.459961i \(-0.847863\pi\)
0.722385 0.691491i \(-0.243046\pi\)
\(240\) 0 0
\(241\) −3804.72 + 1117.17i −1.01694 + 0.298602i −0.747391 0.664384i \(-0.768694\pi\)
−0.269553 + 0.962986i \(0.586876\pi\)
\(242\) 0 0
\(243\) −867.968 + 1900.59i −0.229137 + 0.501739i
\(244\) 0 0
\(245\) −7607.00 8778.94i −1.98365 2.28925i
\(246\) 0 0
\(247\) 1064.12 683.865i 0.274122 0.176167i
\(248\) 0 0
\(249\) 63.1872 + 40.6080i 0.0160816 + 0.0103350i
\(250\) 0 0
\(251\) 5468.20 + 1605.61i 1.37510 + 0.403765i 0.884060 0.467373i \(-0.154799\pi\)
0.491038 + 0.871138i \(0.336618\pi\)
\(252\) 0 0
\(253\) 3902.74 + 6879.51i 0.969816 + 1.70953i
\(254\) 0 0
\(255\) 802.277 + 235.570i 0.197022 + 0.0578508i
\(256\) 0 0
\(257\) −852.015 547.557i −0.206799 0.132901i 0.433142 0.901326i \(-0.357405\pi\)
−0.639941 + 0.768424i \(0.721041\pi\)
\(258\) 0 0
\(259\) −3124.30 + 2007.87i −0.749555 + 0.481710i
\(260\) 0 0
\(261\) 2332.07 + 2691.35i 0.553071 + 0.638278i
\(262\) 0 0
\(263\) 1049.87 2298.90i 0.246152 0.538997i −0.745717 0.666263i \(-0.767893\pi\)
0.991869 + 0.127266i \(0.0406202\pi\)
\(264\) 0 0
\(265\) 607.105 178.262i 0.140733 0.0413229i
\(266\) 0 0
\(267\) 54.0317 + 375.799i 0.0123846 + 0.0861367i
\(268\) 0 0
\(269\) −2702.04 5916.64i −0.612440 1.34106i −0.920893 0.389816i \(-0.872539\pi\)
0.308453 0.951240i \(-0.400189\pi\)
\(270\) 0 0
\(271\) −487.316 + 3389.36i −0.109234 + 0.759738i 0.859411 + 0.511286i \(0.170831\pi\)
−0.968644 + 0.248452i \(0.920078\pi\)
\(272\) 0 0
\(273\) −467.504 + 539.528i −0.103643 + 0.119611i
\(274\) 0 0
\(275\) −1115.43 −0.244592
\(276\) 0 0
\(277\) 1155.56 0.250653 0.125327 0.992116i \(-0.460002\pi\)
0.125327 + 0.992116i \(0.460002\pi\)
\(278\) 0 0
\(279\) 3305.95 3815.27i 0.709398 0.818689i
\(280\) 0 0
\(281\) −1067.50 + 7424.63i −0.226625 + 1.57621i 0.485548 + 0.874210i \(0.338620\pi\)
−0.712173 + 0.702004i \(0.752289\pi\)
\(282\) 0 0
\(283\) −1090.42 2387.70i −0.229042 0.501533i 0.759862 0.650084i \(-0.225266\pi\)
−0.988905 + 0.148551i \(0.952539\pi\)
\(284\) 0 0
\(285\) 109.828 + 763.868i 0.0228268 + 0.158764i
\(286\) 0 0
\(287\) −4263.79 + 1251.96i −0.876946 + 0.257494i
\(288\) 0 0
\(289\) 4.73546 10.3692i 0.000963863 0.00211057i
\(290\) 0 0
\(291\) 298.395 + 344.366i 0.0601108 + 0.0693715i
\(292\) 0 0
\(293\) −3844.61 + 2470.78i −0.766568 + 0.492643i −0.864551 0.502545i \(-0.832397\pi\)
0.0979832 + 0.995188i \(0.468761\pi\)
\(294\) 0 0
\(295\) −4654.37 2991.18i −0.918604 0.590351i
\(296\) 0 0
\(297\) 3664.12 + 1075.88i 0.715872 + 0.210199i
\(298\) 0 0
\(299\) 2112.18 + 423.698i 0.408531 + 0.0819502i
\(300\) 0 0
\(301\) −11059.0 3247.23i −2.11771 0.621817i
\(302\) 0 0
\(303\) 874.191 + 561.808i 0.165746 + 0.106518i
\(304\) 0 0
\(305\) −1367.11 + 878.589i −0.256658 + 0.164944i
\(306\) 0 0
\(307\) −5432.85 6269.84i −1.01000 1.16560i −0.986145 0.165884i \(-0.946952\pi\)
−0.0238519 0.999716i \(-0.507593\pi\)
\(308\) 0 0
\(309\) 713.415 1562.16i 0.131342 0.287599i
\(310\) 0 0
\(311\) −3494.70 + 1026.14i −0.637191 + 0.187096i −0.584343 0.811507i \(-0.698648\pi\)
−0.0528473 + 0.998603i \(0.516830\pi\)
\(312\) 0 0
\(313\) 1330.17 + 9251.50i 0.240209 + 1.67069i 0.651090 + 0.759001i \(0.274312\pi\)
−0.410881 + 0.911689i \(0.634779\pi\)
\(314\) 0 0
\(315\) 4655.42 + 10194.0i 0.832709 + 1.82338i
\(316\) 0 0
\(317\) −277.552 + 1930.41i −0.0491762 + 0.342028i 0.950348 + 0.311189i \(0.100727\pi\)
−0.999524 + 0.0308393i \(0.990182\pi\)
\(318\) 0 0
\(319\) 6434.14 7425.39i 1.12929 1.30327i
\(320\) 0 0
\(321\) 565.195 0.0982744
\(322\) 0 0
\(323\) 4544.98 0.782940
\(324\) 0 0
\(325\) −198.950 + 229.600i −0.0339561 + 0.0391875i
\(326\) 0 0
\(327\) −208.730 + 1451.75i −0.0352991 + 0.245511i
\(328\) 0 0
\(329\) −5555.88 12165.7i −0.931020 2.03865i
\(330\) 0 0
\(331\) 413.129 + 2873.37i 0.0686030 + 0.477145i 0.994942 + 0.100453i \(0.0320292\pi\)
−0.926339 + 0.376691i \(0.877062\pi\)
\(332\) 0 0
\(333\) 2546.39 747.687i 0.419043 0.123042i
\(334\) 0 0
\(335\) 4128.30 9039.72i 0.673294 1.47431i
\(336\) 0 0
\(337\) −331.111 382.123i −0.0535216 0.0617672i 0.728357 0.685197i \(-0.240284\pi\)
−0.781879 + 0.623430i \(0.785739\pi\)
\(338\) 0 0
\(339\) −418.898 + 269.210i −0.0671134 + 0.0431312i
\(340\) 0 0
\(341\) −11717.2 7530.17i −1.86076 1.19584i
\(342\) 0 0
\(343\) 22222.7 + 6525.18i 3.49829 + 1.02719i
\(344\) 0 0
\(345\) −770.458 + 1064.80i −0.120232 + 0.166165i
\(346\) 0 0
\(347\) 448.061 + 131.562i 0.0693174 + 0.0203534i 0.316207 0.948690i \(-0.397590\pi\)
−0.246890 + 0.969044i \(0.579409\pi\)
\(348\) 0 0
\(349\) 8381.49 + 5386.46i 1.28553 + 0.826162i 0.991560 0.129652i \(-0.0413861\pi\)
0.293973 + 0.955814i \(0.405022\pi\)
\(350\) 0 0
\(351\) 875.001 562.329i 0.133060 0.0855125i
\(352\) 0 0
\(353\) −432.848 499.534i −0.0652640 0.0753187i 0.722179 0.691707i \(-0.243141\pi\)
−0.787443 + 0.616388i \(0.788595\pi\)
\(354\) 0 0
\(355\) 4503.53 9861.37i 0.673304 1.47433i
\(356\) 0 0
\(357\) −2461.21 + 722.676i −0.364877 + 0.107137i
\(358\) 0 0
\(359\) 1101.69 + 7662.40i 0.161963 + 1.12648i 0.894927 + 0.446212i \(0.147227\pi\)
−0.732964 + 0.680267i \(0.761864\pi\)
\(360\) 0 0
\(361\) −1106.75 2423.45i −0.161357 0.353323i
\(362\) 0 0
\(363\) 545.050 3790.91i 0.0788091 0.548129i
\(364\) 0 0
\(365\) −1628.15 + 1878.98i −0.233482 + 0.269453i
\(366\) 0 0
\(367\) −8772.23 −1.24770 −0.623851 0.781544i \(-0.714433\pi\)
−0.623851 + 0.781544i \(0.714433\pi\)
\(368\) 0 0
\(369\) 3175.49 0.447992
\(370\) 0 0
\(371\) −1271.15 + 1466.98i −0.177883 + 0.205288i
\(372\) 0 0
\(373\) −220.234 + 1531.76i −0.0305718 + 0.212632i −0.999381 0.0351757i \(-0.988801\pi\)
0.968809 + 0.247807i \(0.0797100\pi\)
\(374\) 0 0
\(375\) 541.728 + 1186.22i 0.0745993 + 0.163350i
\(376\) 0 0
\(377\) −380.842 2648.81i −0.0520275 0.361859i
\(378\) 0 0
\(379\) −9160.42 + 2689.74i −1.24153 + 0.364546i −0.835590 0.549354i \(-0.814874\pi\)
−0.405939 + 0.913900i \(0.633056\pi\)
\(380\) 0 0
\(381\) 589.688 1291.24i 0.0792930 0.173627i
\(382\) 0 0
\(383\) 4169.90 + 4812.32i 0.556324 + 0.642032i 0.962345 0.271832i \(-0.0876294\pi\)
−0.406021 + 0.913864i \(0.633084\pi\)
\(384\) 0 0
\(385\) 26010.7 16716.1i 3.44319 2.21281i
\(386\) 0 0
\(387\) 6928.81 + 4452.88i 0.910107 + 0.584890i
\(388\) 0 0
\(389\) 2561.36 + 752.083i 0.333846 + 0.0980260i 0.444359 0.895849i \(-0.353431\pi\)
−0.110513 + 0.993875i \(0.535250\pi\)
\(390\) 0 0
\(391\) 5561.46 + 5383.80i 0.719322 + 0.696345i
\(392\) 0 0
\(393\) −1232.76 361.970i −0.158230 0.0464605i
\(394\) 0 0
\(395\) 2779.85 + 1786.50i 0.354100 + 0.227566i
\(396\) 0 0
\(397\) −2857.12 + 1836.16i −0.361196 + 0.232127i −0.708634 0.705576i \(-0.750688\pi\)
0.347438 + 0.937703i \(0.387052\pi\)
\(398\) 0 0
\(399\) −1550.37 1789.22i −0.194525 0.224494i
\(400\) 0 0
\(401\) −3660.17 + 8014.65i −0.455811 + 0.998086i 0.532612 + 0.846360i \(0.321211\pi\)
−0.988422 + 0.151727i \(0.951517\pi\)
\(402\) 0 0
\(403\) −3639.91 + 1068.77i −0.449918 + 0.132108i
\(404\) 0 0
\(405\) −1093.67 7606.62i −0.134184 0.933274i
\(406\) 0 0
\(407\) −3041.68 6660.35i −0.370444 0.811158i
\(408\) 0 0
\(409\) −680.807 + 4735.12i −0.0823074 + 0.572461i 0.906379 + 0.422465i \(0.138835\pi\)
−0.988687 + 0.149996i \(0.952074\pi\)
\(410\) 0 0
\(411\) 1082.60 1249.38i 0.129928 0.149945i
\(412\) 0 0
\(413\) 16973.0 2.02224
\(414\) 0 0
\(415\) −886.022 −0.104803
\(416\) 0 0
\(417\) 128.918 148.779i 0.0151394 0.0174718i
\(418\) 0 0
\(419\) 679.878 4728.66i 0.0792702 0.551337i −0.911024 0.412353i \(-0.864707\pi\)
0.990295 0.138984i \(-0.0443837\pi\)
\(420\) 0 0
\(421\) 3727.98 + 8163.13i 0.431569 + 0.945004i 0.993070 + 0.117528i \(0.0374970\pi\)
−0.561501 + 0.827476i \(0.689776\pi\)
\(422\) 0 0
\(423\) 1360.12 + 9459.85i 0.156339 + 1.08736i
\(424\) 0 0
\(425\) −1047.38 + 307.540i −0.119543 + 0.0351009i
\(426\) 0 0
\(427\) 2071.01 4534.89i 0.234715 0.513955i
\(428\) 0 0
\(429\) −921.702 1063.70i −0.103730 0.119711i
\(430\) 0 0
\(431\) 42.8501 27.5381i 0.00478890 0.00307764i −0.538244 0.842789i \(-0.680912\pi\)
0.543033 + 0.839711i \(0.317276\pi\)
\(432\) 0 0
\(433\) 7315.93 + 4701.66i 0.811966 + 0.521819i 0.879500 0.475898i \(-0.157877\pi\)
−0.0675344 + 0.997717i \(0.521513\pi\)
\(434\) 0 0
\(435\) 1566.52 + 459.972i 0.172664 + 0.0506988i
\(436\) 0 0
\(437\) −2387.65 + 6733.29i −0.261365 + 0.737064i
\(438\) 0 0
\(439\) −15849.0 4653.70i −1.72308 0.505943i −0.737530 0.675314i \(-0.764008\pi\)
−0.985552 + 0.169371i \(0.945826\pi\)
\(440\) 0 0
\(441\) −21422.6 13767.5i −2.31320 1.48661i
\(442\) 0 0
\(443\) 10145.5 6520.15i 1.08810 0.699281i 0.131688 0.991291i \(-0.457960\pi\)
0.956415 + 0.292010i \(0.0943240\pi\)
\(444\) 0 0
\(445\) −2932.85 3384.69i −0.312428 0.360561i
\(446\) 0 0
\(447\) 61.2240 134.062i 0.00647829 0.0141855i
\(448\) 0 0
\(449\) −4384.08 + 1287.28i −0.460796 + 0.135302i −0.503888 0.863769i \(-0.668097\pi\)
0.0430917 + 0.999071i \(0.486279\pi\)
\(450\) 0 0
\(451\) −1246.84 8671.93i −0.130180 0.905422i
\(452\) 0 0
\(453\) 637.928 + 1396.87i 0.0661644 + 0.144880i
\(454\) 0 0
\(455\) 1198.47 8335.57i 0.123484 0.858852i
\(456\) 0 0
\(457\) −273.221 + 315.314i −0.0279666 + 0.0322752i −0.769561 0.638574i \(-0.779525\pi\)
0.741594 + 0.670849i \(0.234070\pi\)
\(458\) 0 0
\(459\) 3737.25 0.380043
\(460\) 0 0
\(461\) −3064.26 −0.309581 −0.154790 0.987947i \(-0.549470\pi\)
−0.154790 + 0.987947i \(0.549470\pi\)
\(462\) 0 0
\(463\) −5853.22 + 6754.98i −0.587521 + 0.678036i −0.969204 0.246257i \(-0.920799\pi\)
0.381683 + 0.924293i \(0.375345\pi\)
\(464\) 0 0
\(465\) 329.381 2290.90i 0.0328488 0.228468i
\(466\) 0 0
\(467\) −4152.02 9091.65i −0.411418 0.900881i −0.995984 0.0895340i \(-0.971462\pi\)
0.584565 0.811347i \(-0.301265\pi\)
\(468\) 0 0
\(469\) 4338.74 + 30176.6i 0.427174 + 2.97106i
\(470\) 0 0
\(471\) −225.094 + 66.0937i −0.0220208 + 0.00646589i
\(472\) 0 0
\(473\) 9439.80 20670.3i 0.917637 2.00934i
\(474\) 0 0
\(475\) −659.770 761.415i −0.0637312 0.0735497i
\(476\) 0 0
\(477\) 1166.89 749.914i 0.112009 0.0719837i
\(478\) 0 0
\(479\) −1759.13 1130.53i −0.167801 0.107839i 0.454045 0.890979i \(-0.349981\pi\)
−0.621846 + 0.783140i \(0.713617\pi\)
\(480\) 0 0
\(481\) −1913.49 561.852i −0.181388 0.0532604i
\(482\) 0 0
\(483\) 222.334 4025.88i 0.0209453 0.379262i
\(484\) 0 0
\(485\) −5157.35 1514.34i −0.482852 0.141778i
\(486\) 0 0
\(487\) −10119.2 6503.22i −0.941572 0.605111i −0.0227316 0.999742i \(-0.507236\pi\)
−0.918840 + 0.394630i \(0.870873\pi\)
\(488\) 0 0
\(489\) 456.117 293.128i 0.0421806 0.0271078i
\(490\) 0 0
\(491\) 1120.43 + 1293.05i 0.102982 + 0.118848i 0.804901 0.593409i \(-0.202218\pi\)
−0.701919 + 0.712257i \(0.747673\pi\)
\(492\) 0 0
\(493\) 3994.36 8746.43i 0.364902 0.799025i
\(494\) 0 0
\(495\) −21199.4 + 6224.71i −1.92493 + 0.565212i
\(496\) 0 0
\(497\) 4733.10 + 32919.4i 0.427180 + 2.97110i
\(498\) 0 0
\(499\) 4576.91 + 10022.0i 0.410602 + 0.899093i 0.996084 + 0.0884080i \(0.0281779\pi\)
−0.585482 + 0.810685i \(0.699095\pi\)
\(500\) 0 0
\(501\) −492.324 + 3424.19i −0.0439031 + 0.305353i
\(502\) 0 0
\(503\) −155.458 + 179.408i −0.0137804 + 0.0159034i −0.762598 0.646873i \(-0.776076\pi\)
0.748818 + 0.662776i \(0.230622\pi\)
\(504\) 0 0
\(505\) −12258.1 −1.08015
\(506\) 0 0
\(507\) 1824.72 0.159839
\(508\) 0 0
\(509\) 10566.6 12194.5i 0.920148 1.06191i −0.0777415 0.996974i \(-0.524771\pi\)
0.997890 0.0649340i \(-0.0206837\pi\)
\(510\) 0 0
\(511\) 1085.47 7549.62i 0.0939695 0.653573i
\(512\) 0 0
\(513\) 1432.89 + 3137.59i 0.123321 + 0.270035i
\(514\) 0 0
\(515\) 2883.05 + 20052.1i 0.246684 + 1.71573i
\(516\) 0 0
\(517\) 25299.8 7428.70i 2.15220 0.631942i
\(518\) 0 0
\(519\) −1305.27 + 2858.15i −0.110395 + 0.241732i
\(520\) 0 0
\(521\) 10634.6 + 12272.9i 0.894258 + 1.03203i 0.999294 + 0.0375599i \(0.0119585\pi\)
−0.105037 + 0.994468i \(0.533496\pi\)
\(522\) 0 0
\(523\) −38.0081 + 24.4263i −0.00317778 + 0.00204223i −0.542229 0.840231i \(-0.682419\pi\)
0.539051 + 0.842273i \(0.318783\pi\)
\(524\) 0 0
\(525\) 478.349 + 307.416i 0.0397654 + 0.0255557i
\(526\) 0 0
\(527\) −13078.6 3840.22i −1.08105 0.317425i
\(528\) 0 0
\(529\) −10897.6 + 5410.87i −0.895671 + 0.444717i
\(530\) 0 0
\(531\) −11637.4 3417.05i −0.951075 0.279261i
\(532\) 0 0
\(533\) −2007.42 1290.09i −0.163135 0.104841i
\(534\) 0 0
\(535\) −5608.76 + 3604.53i −0.453249 + 0.291285i
\(536\) 0 0
\(537\) −2004.60 2313.43i −0.161089 0.185907i
\(538\) 0 0
\(539\) −29186.1 + 63908.6i −2.33234 + 5.10712i
\(540\) 0 0
\(541\) −12859.0 + 3775.76i −1.02191 + 0.300060i −0.749417 0.662098i \(-0.769666\pi\)
−0.272493 + 0.962158i \(0.587848\pi\)
\(542\) 0 0
\(543\) −67.1139 466.787i −0.00530411 0.0368909i
\(544\) 0 0
\(545\) −7187.20 15737.8i −0.564891 1.23694i
\(546\) 0 0
\(547\) 2614.27 18182.7i 0.204348 1.42127i −0.586843 0.809701i \(-0.699629\pi\)
0.791191 0.611570i \(-0.209462\pi\)
\(548\) 0 0
\(549\) −2332.96 + 2692.37i −0.181363 + 0.209304i
\(550\) 0 0
\(551\) 8874.50 0.686146
\(552\) 0 0
\(553\) −10137.2 −0.779526
\(554\) 0 0
\(555\) 796.771 919.522i 0.0609388 0.0703271i
\(556\) 0 0
\(557\) 2652.03 18445.3i 0.201742 1.40315i −0.597371 0.801965i \(-0.703788\pi\)
0.799113 0.601181i \(-0.205303\pi\)
\(558\) 0 0
\(559\) −2571.08 5629.88i −0.194535 0.425973i
\(560\) 0 0
\(561\) −719.717 5005.74i −0.0541649 0.376725i
\(562\) 0 0
\(563\) −10052.2 + 2951.59i −0.752485 + 0.220949i −0.635411 0.772174i \(-0.719169\pi\)
−0.117073 + 0.993123i \(0.537351\pi\)
\(564\) 0 0
\(565\) 2440.09 5343.06i 0.181691 0.397848i
\(566\) 0 0
\(567\) 15438.6 + 17817.1i 1.14349 + 1.31966i
\(568\) 0 0
\(569\) 15875.5 10202.5i 1.16966 0.751692i 0.196199 0.980564i \(-0.437140\pi\)
0.973457 + 0.228872i \(0.0735036\pi\)
\(570\) 0 0
\(571\) −14435.6 9277.18i −1.05799 0.679926i −0.108615 0.994084i \(-0.534642\pi\)
−0.949371 + 0.314158i \(0.898278\pi\)
\(572\) 0 0
\(573\) 1031.98 + 303.015i 0.0752381 + 0.0220919i
\(574\) 0 0
\(575\) 94.6159 1713.24i 0.00686219 0.124256i
\(576\) 0 0
\(577\) −8475.10 2488.51i −0.611479 0.179546i −0.0386925 0.999251i \(-0.512319\pi\)
−0.572786 + 0.819705i \(0.694137\pi\)
\(578\) 0 0
\(579\) −782.592 502.941i −0.0561717 0.0360993i
\(580\) 0 0
\(581\) 2286.63 1469.53i 0.163279 0.104933i
\(582\) 0 0
\(583\) −2506.11 2892.21i −0.178032 0.205460i
\(584\) 0 0
\(585\) −2499.87 + 5473.95i −0.176678 + 0.386872i
\(586\) 0 0
\(587\) −24217.9 + 7111.02i −1.70286 + 0.500005i −0.981323 0.192368i \(-0.938383\pi\)
−0.721539 + 0.692373i \(0.756565\pi\)
\(588\) 0 0
\(589\) −1790.39 12452.5i −0.125249 0.871128i
\(590\) 0 0
\(591\) −1782.49 3903.11i −0.124064 0.271662i
\(592\) 0 0
\(593\) 2690.86 18715.3i 0.186341 1.29603i −0.655042 0.755593i \(-0.727349\pi\)
0.841383 0.540439i \(-0.181742\pi\)
\(594\) 0 0
\(595\) 19815.2 22867.9i 1.36528 1.57562i
\(596\) 0 0
\(597\) 2546.08 0.174546
\(598\) 0 0
\(599\) 23226.9 1.58435 0.792173 0.610296i \(-0.208950\pi\)
0.792173 + 0.610296i \(0.208950\pi\)
\(600\) 0 0
\(601\) −1978.09 + 2282.83i −0.134256 + 0.154940i −0.818896 0.573941i \(-0.805414\pi\)
0.684640 + 0.728881i \(0.259959\pi\)
\(602\) 0 0
\(603\) 3100.42 21563.9i 0.209384 1.45630i
\(604\) 0 0
\(605\) 18767.7 + 41095.5i 1.26118 + 2.76160i
\(606\) 0 0
\(607\) −275.273 1914.57i −0.0184069 0.128023i 0.978546 0.206028i \(-0.0660539\pi\)
−0.996953 + 0.0780056i \(0.975145\pi\)
\(608\) 0 0
\(609\) −4805.74 + 1411.09i −0.319767 + 0.0938922i
\(610\) 0 0
\(611\) 2983.40 6532.73i 0.197537 0.432547i
\(612\) 0 0
\(613\) 6380.29 + 7363.25i 0.420388 + 0.485153i 0.925955 0.377634i \(-0.123262\pi\)
−0.505567 + 0.862787i \(0.668717\pi\)
\(614\) 0 0
\(615\) 1224.73 787.083i 0.0803019 0.0516069i
\(616\) 0 0
\(617\) −13592.1 8735.11i −0.886868 0.569955i 0.0160007 0.999872i \(-0.494907\pi\)
−0.902869 + 0.429917i \(0.858543\pi\)
\(618\) 0 0
\(619\) −749.036 219.937i −0.0486370 0.0142811i 0.257324 0.966325i \(-0.417159\pi\)
−0.305961 + 0.952044i \(0.598978\pi\)
\(620\) 0 0
\(621\) −1963.31 + 5536.65i −0.126868 + 0.357775i
\(622\) 0 0
\(623\) 13182.8 + 3870.81i 0.847763 + 0.248926i
\(624\) 0 0
\(625\) −14576.8 9367.94i −0.932915 0.599548i
\(626\) 0 0
\(627\) 3926.61 2523.48i 0.250101 0.160730i
\(628\) 0 0
\(629\) −4692.50 5415.43i −0.297460 0.343287i
\(630\) 0 0
\(631\) 1728.11 3784.04i 0.109025 0.238732i −0.847253 0.531189i \(-0.821745\pi\)
0.956279 + 0.292457i \(0.0944727\pi\)
\(632\) 0 0
\(633\) −1981.75 + 581.895i −0.124435 + 0.0365375i
\(634\) 0 0
\(635\) 2383.05 + 16574.4i 0.148926 + 1.03581i
\(636\) 0 0
\(637\) 7949.30 + 17406.5i 0.494447 + 1.08269i
\(638\) 0 0
\(639\) 3382.22 23523.9i 0.209387 1.45632i
\(640\) 0 0
\(641\) −10598.9 + 12231.8i −0.653092 + 0.753708i −0.981633 0.190782i \(-0.938898\pi\)
0.328541 + 0.944490i \(0.393443\pi\)
\(642\) 0 0
\(643\) −23941.3 −1.46836 −0.734178 0.678957i \(-0.762432\pi\)
−0.734178 + 0.678957i \(0.762432\pi\)
\(644\) 0 0
\(645\) 3776.01 0.230512
\(646\) 0 0
\(647\) −11060.9 + 12765.0i −0.672103 + 0.775648i −0.984704 0.174237i \(-0.944254\pi\)
0.312601 + 0.949885i \(0.398800\pi\)
\(648\) 0 0
\(649\) −4762.26 + 33122.3i −0.288036 + 2.00333i
\(650\) 0 0
\(651\) 2949.55 + 6458.60i 0.177576 + 0.388837i
\(652\) 0 0
\(653\) 2191.62 + 15243.1i 0.131340 + 0.913488i 0.943811 + 0.330486i \(0.107213\pi\)
−0.812471 + 0.583001i \(0.801878\pi\)
\(654\) 0 0
\(655\) 14541.9 4269.87i 0.867477 0.254714i
\(656\) 0 0
\(657\) −2264.16 + 4957.82i −0.134449 + 0.294403i
\(658\) 0 0
\(659\) −13976.0 16129.1i −0.826139 0.953415i 0.173366 0.984857i \(-0.444536\pi\)
−0.999506 + 0.0314420i \(0.989990\pi\)
\(660\) 0 0
\(661\) −10721.8 + 6890.45i −0.630905 + 0.405458i −0.816644 0.577141i \(-0.804168\pi\)
0.185740 + 0.982599i \(0.440532\pi\)
\(662\) 0 0
\(663\) −1158.76 744.687i −0.0678768 0.0436218i
\(664\) 0 0
\(665\) 26796.0 + 7868.01i 1.56256 + 0.458809i
\(666\) 0 0
\(667\) 10859.3 + 10512.4i 0.630393 + 0.610256i
\(668\) 0 0
\(669\) −1120.18 328.913i −0.0647361 0.0190082i
\(670\) 0 0
\(671\) 8268.62 + 5313.92i 0.475717 + 0.305725i
\(672\) 0 0
\(673\) 25395.6 16320.8i 1.45457 0.934799i 0.455570 0.890200i \(-0.349435\pi\)
0.999005 0.0445986i \(-0.0142009\pi\)
\(674\) 0 0
\(675\) −542.515 626.096i −0.0309354 0.0357014i
\(676\) 0 0
\(677\) 2171.79 4755.55i 0.123292 0.269971i −0.837915 0.545801i \(-0.816225\pi\)
0.961206 + 0.275830i \(0.0889527\pi\)
\(678\) 0 0
\(679\) 15821.6 4645.65i 0.894224 0.262568i
\(680\) 0 0
\(681\) 432.400 + 3007.41i 0.0243313 + 0.169228i
\(682\) 0 0
\(683\) 1022.23 + 2238.37i 0.0572688 + 0.125401i 0.936103 0.351726i \(-0.114405\pi\)
−0.878834 + 0.477128i \(0.841678\pi\)
\(684\) 0 0
\(685\) −2775.30 + 19302.6i −0.154801 + 1.07667i
\(686\) 0 0
\(687\) −2926.14 + 3376.94i −0.162502 + 0.187538i
\(688\) 0 0
\(689\) −1042.33 −0.0576336
\(690\) 0 0
\(691\) 15011.6 0.826437 0.413218 0.910632i \(-0.364405\pi\)
0.413218 + 0.910632i \(0.364405\pi\)
\(692\) 0 0
\(693\) 44386.9 51225.2i 2.43307 2.80791i
\(694\) 0 0
\(695\) −330.489 + 2298.60i −0.0180376 + 0.125455i
\(696\) 0 0
\(697\) −3561.76 7799.16i −0.193560 0.423837i
\(698\) 0 0
\(699\) −183.479 1276.12i −0.00992819 0.0690521i
\(700\) 0 0
\(701\) 8489.08 2492.62i 0.457387 0.134301i −0.0449195 0.998991i \(-0.514303\pi\)
0.502306 + 0.864690i \(0.332485\pi\)
\(702\) 0 0
\(703\) 2747.36 6015.88i 0.147395 0.322750i
\(704\) 0 0
\(705\) 2869.31 + 3311.36i 0.153283 + 0.176898i
\(706\) 0 0
\(707\) 31635.3 20330.8i 1.68284 1.08150i
\(708\) 0 0
\(709\) −5656.43 3635.17i −0.299622 0.192555i 0.382188 0.924084i \(-0.375171\pi\)
−0.681810 + 0.731529i \(0.738807\pi\)
\(710\) 0 0
\(711\) 6950.51 + 2040.85i 0.366617 + 0.107648i
\(712\) 0 0
\(713\) 12559.9 17358.3i 0.659707 0.911742i
\(714\) 0 0
\(715\) 15930.4 + 4677.57i 0.833233 + 0.244659i
\(716\) 0 0
\(717\) −3634.08 2335.48i −0.189285 0.121646i
\(718\) 0 0
\(719\) −10788.6 + 6933.41i −0.559592 + 0.359628i −0.789658 0.613547i \(-0.789742\pi\)
0.230066 + 0.973175i \(0.426106\pi\)
\(720\) 0 0
\(721\) −40698.2 46968.2i −2.10219 2.42606i
\(722\) 0 0
\(723\) −1655.56 + 3625.17i −0.0851604 + 0.186475i
\(724\) 0 0
\(725\) −2045.12 + 600.500i −0.104764 + 0.0307614i
\(726\) 0 0
\(727\) 3584.82 + 24933.0i 0.182880 + 1.27196i 0.849911 + 0.526927i \(0.176656\pi\)
−0.667031 + 0.745030i \(0.732435\pi\)
\(728\) 0 0
\(729\) −6398.03 14009.7i −0.325054 0.711768i
\(730\) 0 0
\(731\) 3164.86 22012.1i 0.160132 1.11374i
\(732\) 0 0
\(733\) 12672.3 14624.6i 0.638557 0.736934i −0.340562 0.940222i \(-0.610617\pi\)
0.979119 + 0.203288i \(0.0651627\pi\)
\(734\) 0 0
\(735\) −11674.7 −0.585889
\(736\) 0 0
\(737\) −60106.1 −3.00412
\(738\) 0 0
\(739\) 6532.08 7538.42i 0.325151 0.375244i −0.569514 0.821981i \(-0.692869\pi\)
0.894665 + 0.446737i \(0.147414\pi\)
\(740\) 0 0
\(741\) 180.923 1258.35i 0.00896947 0.0623840i
\(742\) 0 0
\(743\) 4852.83 + 10626.2i 0.239614 + 0.524681i 0.990788 0.135423i \(-0.0432394\pi\)
−0.751174 + 0.660104i \(0.770512\pi\)
\(744\) 0 0
\(745\) 247.418 + 1720.83i 0.0121674 + 0.0846260i
\(746\) 0 0
\(747\) −1863.66 + 547.220i −0.0912822 + 0.0268029i
\(748\) 0 0
\(749\) 8496.62 18605.0i 0.414499 0.907627i
\(750\) 0 0
\(751\) −12304.7 14200.4i −0.597875 0.689985i 0.373474 0.927641i \(-0.378166\pi\)
−0.971349 + 0.237656i \(0.923621\pi\)
\(752\) 0 0
\(753\) 4818.50 3096.66i 0.233195 0.149865i
\(754\) 0 0
\(755\) −15239.1 9793.55i −0.734578 0.472085i
\(756\) 0 0
\(757\) 24100.7 + 7076.62i 1.15714 + 0.339767i 0.803321 0.595546i \(-0.203064\pi\)
0.353820 + 0.935313i \(0.384882\pi\)
\(758\) 0 0
\(759\) 7794.00 + 1563.46i 0.372733 + 0.0747692i
\(760\) 0 0
\(761\) 28476.0 + 8361.30i 1.35644 + 0.398288i 0.877508 0.479562i \(-0.159205\pi\)
0.478936 + 0.877850i \(0.341023\pi\)
\(762\) 0 0
\(763\) 44650.7 + 28695.3i 2.11856 + 1.36152i
\(764\) 0 0
\(765\) −18190.0 + 11690.0i −0.859687 + 0.552487i
\(766\) 0 0
\(767\) 5968.50 + 6888.02i 0.280978 + 0.324266i
\(768\) 0 0
\(769\) −9844.86 + 21557.2i −0.461658 + 1.01089i 0.525449 + 0.850825i \(0.323897\pi\)
−0.987107 + 0.160064i \(0.948830\pi\)
\(770\) 0 0
\(771\) −976.662 + 286.774i −0.0456208 + 0.0133955i
\(772\) 0 0
\(773\) 3202.66 + 22275.0i 0.149019 + 1.03645i 0.917830 + 0.396974i \(0.129940\pi\)
−0.768811 + 0.639476i \(0.779151\pi\)
\(774\) 0 0
\(775\) 1255.20 + 2748.50i 0.0581782 + 0.127392i
\(776\) 0 0
\(777\) −531.201 + 3694.58i −0.0245260 + 0.170582i
\(778\) 0 0
\(779\) 5182.15 5980.52i 0.238344 0.275063i
\(780\) 0 0
\(781\) −65569.3 −3.00417
\(782\) 0 0
\(783\) 7297.32 0.333059
\(784\) 0 0
\(785\) 1812.23 2091.43i 0.0823966 0.0950908i
\(786\) 0 0
\(787\) −5017.92 + 34900.4i −0.227280 + 1.58077i 0.482211 + 0.876055i \(0.339834\pi\)
−0.709491 + 0.704714i \(0.751075\pi\)
\(788\) 0 0
\(789\) −1055.16 2310.48i −0.0476105 0.104252i
\(790\) 0 0
\(791\) 2564.47 + 17836.3i 0.115275 + 0.801752i
\(792\) 0 0
\(793\) 2568.63 754.217i 0.115025 0.0337743i
\(794\) 0 0
\(795\) 264.172 578.455i 0.0117852 0.0258059i
\(796\) 0 0
\(797\) −3847.80 4440.60i −0.171011 0.197358i 0.663774 0.747933i \(-0.268954\pi\)
−0.834785 + 0.550576i \(0.814408\pi\)
\(798\) 0 0
\(799\) 21708.3 13951.1i 0.961183 0.617715i
\(800\) 0 0
\(801\) −8259.39 5307.99i −0.364334 0.234143i
\(802\) 0 0
\(803\) 14428.3 + 4236.53i 0.634077 + 0.186182i
\(804\) 0 0
\(805\) 23468.7 + 41369.1i 1.02753 + 1.81127i
\(806\) 0 0
\(807\) −6272.39 1841.74i −0.273604 0.0803375i
\(808\) 0 0
\(809\) −8132.75 5226.60i −0.353439 0.227142i 0.351858 0.936053i \(-0.385550\pi\)
−0.705297 + 0.708912i \(0.749186\pi\)
\(810\) 0 0
\(811\) −12917.3 + 8301.44i −0.559294 + 0.359437i −0.789543 0.613695i \(-0.789682\pi\)
0.230249 + 0.973132i \(0.426046\pi\)
\(812\) 0 0
\(813\) 2253.68 + 2600.88i 0.0972200 + 0.112198i
\(814\) 0 0
\(815\) −2656.89 + 5817.77i −0.114192 + 0.250046i
\(816\) 0 0
\(817\) 19693.6 5782.55i 0.843318 0.247621i
\(818\) 0 0
\(819\) −2627.30 18273.3i −0.112094 0.779633i
\(820\) 0 0
\(821\) 5385.70 + 11793.0i 0.228943 + 0.501316i 0.988886 0.148674i \(-0.0475005\pi\)
−0.759943 + 0.649990i \(0.774773\pi\)
\(822\) 0 0
\(823\) 1308.14 9098.29i 0.0554055 0.385354i −0.943184 0.332270i \(-0.892186\pi\)
0.998590 0.0530845i \(-0.0169053\pi\)
\(824\) 0 0
\(825\) −734.128 + 847.229i −0.0309807 + 0.0357536i
\(826\) 0 0
\(827\) 31708.9 1.33329 0.666643 0.745377i \(-0.267731\pi\)
0.666643 + 0.745377i \(0.267731\pi\)
\(828\) 0 0
\(829\) 16023.2 0.671301 0.335650 0.941987i \(-0.391044\pi\)
0.335650 + 0.941987i \(0.391044\pi\)
\(830\) 0 0
\(831\) 760.544 877.714i 0.0317485 0.0366397i
\(832\) 0 0
\(833\) −9785.14 + 68057.1i −0.407005 + 2.83078i
\(834\) 0 0
\(835\) −16952.2 37120.1i −0.702580 1.53844i
\(836\) 0 0
\(837\) −1472.20 10239.4i −0.0607967 0.422850i
\(838\) 0 0
\(839\) 4182.24 1228.02i 0.172094 0.0505314i −0.194550 0.980893i \(-0.562325\pi\)
0.366645 + 0.930361i \(0.380507\pi\)
\(840\) 0 0
\(841\) −2332.20 + 5106.81i −0.0956252 + 0.209390i
\(842\) 0 0
\(843\) 4936.83 + 5697.41i 0.201701 + 0.232775i
\(844\) 0 0
\(845\) −18107.7 + 11637.1i −0.737190 + 0.473763i
\(846\) 0 0
\(847\) −116595. 74930.9i −4.72992 3.03974i
\(848\) 0 0
\(849\) −2531.26 743.246i −0.102324 0.0300449i
\(850\) 0 0
\(851\) 10488.0 4106.91i 0.422472 0.165432i
\(852\) 0 0
\(853\) −19751.2 5799.47i −0.792810 0.232790i −0.139840 0.990174i \(-0.544659\pi\)
−0.652970 + 0.757384i \(0.726477\pi\)
\(854\) 0 0
\(855\) −16788.5 10789.3i −0.671525 0.431563i
\(856\) 0 0
\(857\) −18194.8 + 11693.1i −0.725232 + 0.466078i −0.850453 0.526050i \(-0.823672\pi\)
0.125221 + 0.992129i \(0.460036\pi\)
\(858\) 0 0
\(859\) 9367.81 + 10811.0i 0.372090 + 0.429415i 0.910654 0.413170i \(-0.135578\pi\)
−0.538564 + 0.842585i \(0.681033\pi\)
\(860\) 0 0
\(861\) −1855.32 + 4062.58i −0.0734367 + 0.160804i
\(862\) 0 0
\(863\) 26514.4 7785.33i 1.04584 0.307087i 0.286705 0.958019i \(-0.407440\pi\)
0.759136 + 0.650932i \(0.225622\pi\)
\(864\) 0 0
\(865\) −5274.87 36687.5i −0.207342 1.44210i
\(866\) 0 0
\(867\) −4.75931 10.4214i −0.000186430 0.000408225i
\(868\) 0 0
\(869\) 2844.29 19782.5i 0.111031 0.772237i
\(870\) 0 0
\(871\) −10720.6 + 12372.3i −0.417055 + 0.481307i
\(872\) 0 0
\(873\) −11783.3 −0.456819
\(874\) 0 0
\(875\) 47191.7 1.82328
\(876\) 0 0
\(877\) −469.877 + 542.267i −0.0180919 + 0.0208792i −0.764723 0.644359i \(-0.777124\pi\)
0.746631 + 0.665238i \(0.231670\pi\)
\(878\) 0 0
\(879\) −653.668 + 4546.36i −0.0250827 + 0.174454i
\(880\) 0 0
\(881\) −18452.1 40404.5i −0.705639 1.54513i −0.832997 0.553277i \(-0.813377\pi\)
0.127358 0.991857i \(-0.459350\pi\)
\(882\) 0 0
\(883\) −399.375 2777.71i −0.0152209 0.105864i 0.980795 0.195043i \(-0.0624846\pi\)
−0.996016 + 0.0891794i \(0.971576\pi\)
\(884\) 0 0
\(885\) −5335.29 + 1566.58i −0.202648 + 0.0595029i
\(886\) 0 0
\(887\) −13622.3 + 29828.6i −0.515661 + 1.12914i 0.455395 + 0.890289i \(0.349498\pi\)
−0.971056 + 0.238851i \(0.923229\pi\)
\(888\) 0 0
\(889\) −33639.9 38822.5i −1.26912 1.46464i
\(890\) 0 0
\(891\) −39101.2 + 25128.8i −1.47019 + 0.944835i
\(892\) 0 0
\(893\) 20035.7 + 12876.2i 0.750806 + 0.482514i
\(894\) 0 0
\(895\) 34646.8 + 10173.2i 1.29398 + 0.379948i
\(896\) 0 0
\(897\) 1711.98 1325.46i 0.0637248 0.0493376i
\(898\) 0 0
\(899\) −25537.2 7498.39i −0.947400 0.278182i
\(900\) 0 0
\(901\) −3150.66 2024.81i −0.116497 0.0748680i
\(902\) 0 0
\(903\) −9745.05 + 6262.77i −0.359131 + 0.230799i
\(904\) 0 0
\(905\) 3642.95 + 4204.19i 0.133807 + 0.154422i
\(906\) 0 0
\(907\) 17409.6 38121.7i 0.637349 1.39560i −0.264854 0.964288i \(-0.585324\pi\)
0.902203 0.431311i \(-0.141949\pi\)
\(908\) 0 0
\(909\) −25783.6 + 7570.75i −0.940802 + 0.276244i
\(910\) 0 0
\(911\) 3825.80 + 26609.0i 0.139138 + 0.967724i 0.933064 + 0.359710i \(0.117124\pi\)
−0.793926 + 0.608014i \(0.791967\pi\)
\(912\) 0 0
\(913\) 2226.16 + 4874.60i 0.0806955 + 0.176699i
\(914\) 0 0
\(915\) −232.439 + 1616.65i −0.00839803 + 0.0584096i
\(916\) 0 0
\(917\) −30447.5 + 35138.2i −1.09647 + 1.26539i
\(918\) 0 0
\(919\) −13821.8 −0.496127 −0.248063 0.968744i \(-0.579794\pi\)
−0.248063 + 0.968744i \(0.579794\pi\)
\(920\) 0 0
\(921\) −8337.98 −0.298312
\(922\) 0 0
\(923\) −11695.1 + 13496.8i −0.417061 + 0.481314i
\(924\) 0 0
\(925\) −226.056 + 1572.26i −0.00803533 + 0.0558869i
\(926\) 0 0
\(927\) 18448.7 + 40396.9i 0.653650 + 1.43129i
\(928\) 0 0
\(929\) 2370.49 + 16487.1i 0.0837173 + 0.582266i 0.987897 + 0.155114i \(0.0495743\pi\)
−0.904179 + 0.427153i \(0.859517\pi\)
\(930\) 0 0
\(931\) −60888.8 + 17878.6i −2.14345 + 0.629373i
\(932\) 0 0
\(933\) −1520.66 + 3329.78i −0.0533593 + 0.116840i
\(934\) 0 0
\(935\) 39066.4 + 45085.0i 1.36642 + 1.57694i
\(936\) 0 0
\(937\) 47314.1 30406.9i 1.64961 1.06014i 0.718415 0.695615i \(-0.244868\pi\)
0.931194 0.364525i \(-0.118768\pi\)
\(938\) 0 0
\(939\) 7902.50 + 5078.63i 0.274641 + 0.176501i
\(940\) 0 0
\(941\) 11010.5 + 3232.96i 0.381435 + 0.112000i 0.466829 0.884348i \(-0.345397\pi\)
−0.0853933 + 0.996347i \(0.527215\pi\)
\(942\) 0 0
\(943\) 13425.4 1179.48i 0.463618 0.0407309i
\(944\) 0 0
\(945\) 22033.8 + 6469.70i 0.758475 + 0.222708i
\(946\) 0 0
\(947\) −19351.2 12436.3i −0.664024 0.426743i 0.164743 0.986337i \(-0.447321\pi\)
−0.828767 + 0.559594i \(0.810957\pi\)
\(948\) 0 0
\(949\) 3445.51 2214.29i 0.117857 0.0757419i
\(950\) 0 0
\(951\) 1283.58 + 1481.34i 0.0437677 + 0.0505106i
\(952\) 0 0
\(953\) −1852.19 + 4055.74i −0.0629574 + 0.137858i −0.938495 0.345292i \(-0.887780\pi\)
0.875538 + 0.483149i \(0.160507\pi\)
\(954\) 0 0
\(955\) −12173.4 + 3574.43i −0.412484 + 0.121116i
\(956\) 0 0
\(957\) −1405.31 9774.18i −0.0474685 0.330151i
\(958\) 0 0
\(959\) −24852.3 54418.8i −0.836831 1.83240i
\(960\) 0 0
\(961\) −1129.82 + 7858.09i −0.0379249 + 0.263774i
\(962\) 0 0
\(963\) −9571.27 + 11045.8i −0.320280 + 0.369623i
\(964\) 0 0
\(965\) 10973.6 0.366066
\(966\) 0 0
\(967\) −3713.80 −0.123503 −0.0617517 0.998092i \(-0.519669\pi\)
−0.0617517 + 0.998092i \(0.519669\pi\)
\(968\) 0 0
\(969\) 2991.32 3452.17i 0.0991693 0.114447i
\(970\) 0 0
\(971\) 2320.14 16136.9i 0.0766805 0.533324i −0.914885 0.403715i \(-0.867719\pi\)
0.991565 0.129609i \(-0.0413723\pi\)
\(972\) 0 0
\(973\) −2959.46 6480.32i −0.0975087 0.213514i
\(974\) 0 0
\(975\) 43.4537 + 302.227i 0.00142731 + 0.00992719i
\(976\) 0 0
\(977\) 19993.0 5870.48i 0.654691 0.192235i 0.0625162 0.998044i \(-0.480088\pi\)
0.592175 + 0.805809i \(0.298269\pi\)
\(978\) 0 0
\(979\) −11252.6 + 24639.7i −0.367348 + 0.804380i
\(980\) 0 0
\(981\) −24837.4 28663.9i −0.808357 0.932894i
\(982\) 0 0
\(983\) 4299.99 2763.43i 0.139520 0.0896642i −0.469019 0.883188i \(-0.655392\pi\)
0.608539 + 0.793524i \(0.291756\pi\)
\(984\) 0 0
\(985\) 42580.8 + 27365.0i 1.37740 + 0.885201i
\(986\) 0 0
\(987\) −12897.2 3786.95i −0.415929 0.122128i
\(988\) 0 0
\(989\) 30947.8 + 16252.4i 0.995028 + 0.522545i
\(990\) 0 0
\(991\) −24438.3 7175.74i −0.783359 0.230015i −0.134490 0.990915i \(-0.542940\pi\)
−0.648869 + 0.760900i \(0.724758\pi\)
\(992\) 0 0
\(993\) 2454.39 + 1577.34i 0.0784368 + 0.0504083i
\(994\) 0 0
\(995\) −25266.2 + 16237.6i −0.805019 + 0.517354i
\(996\) 0 0
\(997\) 2418.90 + 2791.56i 0.0768378 + 0.0886756i 0.792867 0.609395i \(-0.208588\pi\)
−0.716029 + 0.698071i \(0.754042\pi\)
\(998\) 0 0
\(999\) 2259.10 4946.74i 0.0715463 0.156665i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 184.4.i.a.41.6 yes 90
23.9 even 11 inner 184.4.i.a.9.6 90
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
184.4.i.a.9.6 90 23.9 even 11 inner
184.4.i.a.41.6 yes 90 1.1 even 1 trivial