Properties

Label 2-184-23.18-c3-0-11
Degree $2$
Conductor $184$
Sign $0.949 + 0.312i$
Analytic cond. $10.8563$
Root an. cond. $3.29489$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.658 − 0.759i)3-s + (−1.68 + 11.7i)5-s + (−15.1 − 33.0i)7-s + (3.69 + 25.7i)9-s + (68.8 − 20.2i)11-s + (8.11 − 17.7i)13-s + (7.80 + 9.00i)15-s + (59.0 − 37.9i)17-s + (54.4 + 35.0i)19-s + (−35.0 − 10.2i)21-s + (25.1 + 107. i)23-s + (−14.9 − 4.38i)25-s + (44.8 + 28.7i)27-s + (115. − 74.0i)29-s + (−127. − 146. i)31-s + ⋯
L(s)  = 1  + (0.126 − 0.146i)3-s + (−0.150 + 1.04i)5-s + (−0.815 − 1.78i)7-s + (0.136 + 0.952i)9-s + (1.88 − 0.553i)11-s + (0.173 − 0.379i)13-s + (0.134 + 0.155i)15-s + (0.842 − 0.541i)17-s + (0.657 + 0.422i)19-s + (−0.364 − 0.107i)21-s + (0.228 + 0.973i)23-s + (−0.119 − 0.0350i)25-s + (0.319 + 0.205i)27-s + (0.738 − 0.474i)29-s + (−0.736 − 0.850i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.949 + 0.312i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.949 + 0.312i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(184\)    =    \(2^{3} \cdot 23\)
Sign: $0.949 + 0.312i$
Analytic conductor: \(10.8563\)
Root analytic conductor: \(3.29489\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{184} (41, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 184,\ (\ :3/2),\ 0.949 + 0.312i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.78718 - 0.286304i\)
\(L(\frac12)\) \(\approx\) \(1.78718 - 0.286304i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 + (-25.1 - 107. i)T \)
good3 \( 1 + (-0.658 + 0.759i)T + (-3.84 - 26.7i)T^{2} \)
5 \( 1 + (1.68 - 11.7i)T + (-119. - 35.2i)T^{2} \)
7 \( 1 + (15.1 + 33.0i)T + (-224. + 259. i)T^{2} \)
11 \( 1 + (-68.8 + 20.2i)T + (1.11e3 - 719. i)T^{2} \)
13 \( 1 + (-8.11 + 17.7i)T + (-1.43e3 - 1.66e3i)T^{2} \)
17 \( 1 + (-59.0 + 37.9i)T + (2.04e3 - 4.46e3i)T^{2} \)
19 \( 1 + (-54.4 - 35.0i)T + (2.84e3 + 6.23e3i)T^{2} \)
29 \( 1 + (-115. + 74.0i)T + (1.01e4 - 2.21e4i)T^{2} \)
31 \( 1 + (127. + 146. i)T + (-4.23e3 + 2.94e4i)T^{2} \)
37 \( 1 + (14.5 + 101. i)T + (-4.86e4 + 1.42e4i)T^{2} \)
41 \( 1 + (-17.3 + 120. i)T + (-6.61e4 - 1.94e4i)T^{2} \)
43 \( 1 + (-207. + 239. i)T + (-1.13e4 - 7.86e4i)T^{2} \)
47 \( 1 - 367.T + 1.03e5T^{2} \)
53 \( 1 + (22.1 + 48.5i)T + (-9.74e4 + 1.12e5i)T^{2} \)
59 \( 1 + (193. - 424. i)T + (-1.34e5 - 1.55e5i)T^{2} \)
61 \( 1 + (-89.7 - 103. i)T + (-3.23e4 + 2.24e5i)T^{2} \)
67 \( 1 + (804. + 236. i)T + (2.53e5 + 1.62e5i)T^{2} \)
71 \( 1 + (877. + 257. i)T + (3.01e5 + 1.93e5i)T^{2} \)
73 \( 1 + (-176. - 113. i)T + (1.61e5 + 3.53e5i)T^{2} \)
79 \( 1 + (-115. + 253. i)T + (-3.22e5 - 3.72e5i)T^{2} \)
83 \( 1 + (-10.6 - 73.9i)T + (-5.48e5 + 1.61e5i)T^{2} \)
89 \( 1 + (247. - 285. i)T + (-1.00e5 - 6.97e5i)T^{2} \)
97 \( 1 + (64.5 - 448. i)T + (-8.75e5 - 2.57e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.98293119854367684357932777834, −10.94628672552554061478426182753, −10.29707705362533291233980885416, −9.288872932140711939043762545399, −7.52440157575083402126532219080, −7.18434721666543385182704190301, −5.98684870041306136718289455596, −4.01535153725161692540893571740, −3.23991246648789287684836630988, −1.03612149188255839064522876802, 1.27749428291286655132308018920, 3.20085982920282955537683831772, 4.53116375039016391348370904406, 5.91732716167254550405794186371, 6.75984007311175922813995106886, 8.758010411893994219605063249238, 8.995150158362508573738519056159, 9.781759369813383906410991446870, 11.69549656427632867247783668422, 12.36819873899613895851511647274

Graph of the $Z$-function along the critical line