Properties

Label 184.4.i.a.9.6
Level $184$
Weight $4$
Character 184.9
Analytic conductor $10.856$
Analytic rank $0$
Dimension $90$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [184,4,Mod(9,184)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(184, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([0, 0, 10])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("184.9"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 184 = 2^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 184.i (of order \(11\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [90,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8563514411\)
Analytic rank: \(0\)
Dimension: \(90\)
Relative dimension: \(9\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 9.6
Character \(\chi\) \(=\) 184.9
Dual form 184.4.i.a.41.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.658159 + 0.759556i) q^{3} +(-1.68723 - 11.7349i) q^{5} +(-15.1088 + 33.0837i) q^{7} +(3.69875 - 25.7254i) q^{9} +(68.8010 + 20.2018i) q^{11} +(8.11313 + 17.7653i) q^{13} +(7.80288 - 9.00501i) q^{15} +(59.0342 + 37.9390i) q^{17} +(54.4857 - 35.0158i) q^{19} +(-35.0729 + 10.2983i) q^{21} +(25.1929 - 107.389i) q^{23} +(-14.9255 + 4.38253i) q^{25} +(44.8025 - 28.7928i) q^{27} +(115.270 + 74.0793i) q^{29} +(-127.201 + 146.798i) q^{31} +(29.9376 + 65.5543i) q^{33} +(413.727 + 121.481i) q^{35} +(-14.5321 + 101.073i) q^{37} +(-8.15400 + 17.8548i) q^{39} +(17.3882 + 120.938i) q^{41} +(207.528 + 239.500i) q^{43} -308.126 q^{45} +367.725 q^{47} +(-641.637 - 740.488i) q^{49} +(10.0371 + 69.8096i) q^{51} +(-22.1707 + 48.5472i) q^{53} +(120.984 - 841.461i) q^{55} +(62.4567 + 18.3389i) q^{57} +(-193.862 - 424.498i) q^{59} +(89.7639 - 103.593i) q^{61} +(795.206 + 511.048i) q^{63} +(194.786 - 125.181i) q^{65} +(-804.280 + 236.158i) q^{67} +(98.1487 - 51.5433i) q^{69} +(-877.383 + 257.623i) q^{71} +(176.420 - 113.378i) q^{73} +(-13.1521 - 8.45237i) q^{75} +(-1707.85 + 1970.97i) q^{77} +(115.785 + 253.534i) q^{79} +(-621.946 - 182.620i) q^{81} +(10.6358 - 73.9737i) q^{83} +(345.607 - 756.775i) q^{85} +(19.5984 + 136.310i) q^{87} +(-247.380 - 285.492i) q^{89} -710.321 q^{91} -195.220 q^{93} +(-502.838 - 580.307i) q^{95} +(-64.5225 - 448.764i) q^{97} +(774.176 - 1695.21i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 90 q - 2 q^{3} - 87 q^{7} - 113 q^{9} - 6 q^{11} - 8 q^{13} - 6 q^{15} + 306 q^{17} + 275 q^{19} + 350 q^{21} - 23 q^{23} - 289 q^{25} + 511 q^{27} + 309 q^{29} - 314 q^{31} - 1444 q^{33} - 1895 q^{35}+ \cdots + 5967 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/184\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(93\) \(97\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.658159 + 0.759556i 0.126663 + 0.146177i 0.815538 0.578703i \(-0.196441\pi\)
−0.688876 + 0.724879i \(0.741895\pi\)
\(4\) 0 0
\(5\) −1.68723 11.7349i −0.150910 1.04961i −0.914698 0.404138i \(-0.867572\pi\)
0.763788 0.645468i \(-0.223337\pi\)
\(6\) 0 0
\(7\) −15.1088 + 33.0837i −0.815799 + 1.78635i −0.235656 + 0.971837i \(0.575724\pi\)
−0.580144 + 0.814514i \(0.697004\pi\)
\(8\) 0 0
\(9\) 3.69875 25.7254i 0.136991 0.952791i
\(10\) 0 0
\(11\) 68.8010 + 20.2018i 1.88584 + 0.553734i 0.995056 + 0.0993166i \(0.0316656\pi\)
0.890789 + 0.454417i \(0.150153\pi\)
\(12\) 0 0
\(13\) 8.11313 + 17.7653i 0.173091 + 0.379016i 0.976218 0.216792i \(-0.0695594\pi\)
−0.803127 + 0.595808i \(0.796832\pi\)
\(14\) 0 0
\(15\) 7.80288 9.00501i 0.134313 0.155006i
\(16\) 0 0
\(17\) 59.0342 + 37.9390i 0.842229 + 0.541268i 0.889142 0.457631i \(-0.151302\pi\)
−0.0469131 + 0.998899i \(0.514938\pi\)
\(18\) 0 0
\(19\) 54.4857 35.0158i 0.657888 0.422799i −0.168653 0.985675i \(-0.553942\pi\)
0.826541 + 0.562877i \(0.190305\pi\)
\(20\) 0 0
\(21\) −35.0729 + 10.2983i −0.364454 + 0.107013i
\(22\) 0 0
\(23\) 25.1929 107.389i 0.228395 0.973568i
\(24\) 0 0
\(25\) −14.9255 + 4.38253i −0.119404 + 0.0350602i
\(26\) 0 0
\(27\) 44.8025 28.7928i 0.319342 0.205229i
\(28\) 0 0
\(29\) 115.270 + 74.0793i 0.738105 + 0.474351i 0.854892 0.518806i \(-0.173623\pi\)
−0.116787 + 0.993157i \(0.537260\pi\)
\(30\) 0 0
\(31\) −127.201 + 146.798i −0.736969 + 0.850508i −0.993238 0.116098i \(-0.962961\pi\)
0.256269 + 0.966606i \(0.417507\pi\)
\(32\) 0 0
\(33\) 29.9376 + 65.5543i 0.157923 + 0.345804i
\(34\) 0 0
\(35\) 413.727 + 121.481i 1.99808 + 0.586688i
\(36\) 0 0
\(37\) −14.5321 + 101.073i −0.0645693 + 0.449089i 0.931731 + 0.363149i \(0.118298\pi\)
−0.996300 + 0.0859400i \(0.972611\pi\)
\(38\) 0 0
\(39\) −8.15400 + 17.8548i −0.0334791 + 0.0733090i
\(40\) 0 0
\(41\) 17.3882 + 120.938i 0.0662339 + 0.460667i 0.995766 + 0.0919253i \(0.0293021\pi\)
−0.929532 + 0.368741i \(0.879789\pi\)
\(42\) 0 0
\(43\) 207.528 + 239.500i 0.735993 + 0.849381i 0.993133 0.116993i \(-0.0373256\pi\)
−0.257140 + 0.966374i \(0.582780\pi\)
\(44\) 0 0
\(45\) −308.126 −1.02073
\(46\) 0 0
\(47\) 367.725 1.14124 0.570619 0.821215i \(-0.306703\pi\)
0.570619 + 0.821215i \(0.306703\pi\)
\(48\) 0 0
\(49\) −641.637 740.488i −1.87066 2.15886i
\(50\) 0 0
\(51\) 10.0371 + 69.8096i 0.0275584 + 0.191673i
\(52\) 0 0
\(53\) −22.1707 + 48.5472i −0.0574601 + 0.125820i −0.936184 0.351510i \(-0.885668\pi\)
0.878724 + 0.477330i \(0.158395\pi\)
\(54\) 0 0
\(55\) 120.984 841.461i 0.296608 2.06296i
\(56\) 0 0
\(57\) 62.4567 + 18.3389i 0.145133 + 0.0426150i
\(58\) 0 0
\(59\) −193.862 424.498i −0.427774 0.936694i −0.993683 0.112226i \(-0.964202\pi\)
0.565909 0.824468i \(-0.308525\pi\)
\(60\) 0 0
\(61\) 89.7639 103.593i 0.188411 0.217438i −0.653683 0.756768i \(-0.726777\pi\)
0.842094 + 0.539330i \(0.181323\pi\)
\(62\) 0 0
\(63\) 795.206 + 511.048i 1.59026 + 1.02200i
\(64\) 0 0
\(65\) 194.786 125.181i 0.371696 0.238874i
\(66\) 0 0
\(67\) −804.280 + 236.158i −1.46654 + 0.430616i −0.914974 0.403513i \(-0.867789\pi\)
−0.551570 + 0.834129i \(0.685971\pi\)
\(68\) 0 0
\(69\) 98.1487 51.5433i 0.171242 0.0899288i
\(70\) 0 0
\(71\) −877.383 + 257.623i −1.46657 + 0.430623i −0.914981 0.403497i \(-0.867795\pi\)
−0.551584 + 0.834119i \(0.685977\pi\)
\(72\) 0 0
\(73\) 176.420 113.378i 0.282854 0.181779i −0.391519 0.920170i \(-0.628050\pi\)
0.674373 + 0.738391i \(0.264414\pi\)
\(74\) 0 0
\(75\) −13.1521 8.45237i −0.0202491 0.0130133i
\(76\) 0 0
\(77\) −1707.85 + 1970.97i −2.52763 + 2.91704i
\(78\) 0 0
\(79\) 115.785 + 253.534i 0.164897 + 0.361073i 0.973985 0.226614i \(-0.0727657\pi\)
−0.809088 + 0.587688i \(0.800038\pi\)
\(80\) 0 0
\(81\) −621.946 182.620i −0.853149 0.250507i
\(82\) 0 0
\(83\) 10.6358 73.9737i 0.0140654 0.0978273i −0.981579 0.191055i \(-0.938809\pi\)
0.995645 + 0.0932273i \(0.0297183\pi\)
\(84\) 0 0
\(85\) 345.607 756.775i 0.441016 0.965691i
\(86\) 0 0
\(87\) 19.5984 + 136.310i 0.0241514 + 0.167976i
\(88\) 0 0
\(89\) −247.380 285.492i −0.294632 0.340024i 0.589062 0.808088i \(-0.299497\pi\)
−0.883695 + 0.468064i \(0.844952\pi\)
\(90\) 0 0
\(91\) −710.321 −0.818262
\(92\) 0 0
\(93\) −195.220 −0.217671
\(94\) 0 0
\(95\) −502.838 580.307i −0.543054 0.626718i
\(96\) 0 0
\(97\) −64.5225 448.764i −0.0675388 0.469743i −0.995321 0.0966212i \(-0.969196\pi\)
0.927782 0.373122i \(-0.121713\pi\)
\(98\) 0 0
\(99\) 774.176 1695.21i 0.785936 1.72096i
\(100\) 0 0
\(101\) 147.146 1023.42i 0.144966 1.00826i −0.779339 0.626603i \(-0.784445\pi\)
0.924304 0.381656i \(-0.124646\pi\)
\(102\) 0 0
\(103\) 1639.53 + 481.410i 1.56843 + 0.460531i 0.946543 0.322579i \(-0.104550\pi\)
0.621883 + 0.783110i \(0.286368\pi\)
\(104\) 0 0
\(105\) 180.026 + 394.203i 0.167322 + 0.366384i
\(106\) 0 0
\(107\) 368.269 425.005i 0.332728 0.383989i −0.564591 0.825371i \(-0.690966\pi\)
0.897319 + 0.441382i \(0.145512\pi\)
\(108\) 0 0
\(109\) −1227.67 788.973i −1.07880 0.693302i −0.124519 0.992217i \(-0.539739\pi\)
−0.954280 + 0.298915i \(0.903375\pi\)
\(110\) 0 0
\(111\) −86.3350 + 55.4842i −0.0738249 + 0.0474444i
\(112\) 0 0
\(113\) −475.381 + 139.584i −0.395753 + 0.116203i −0.473553 0.880765i \(-0.657029\pi\)
0.0777999 + 0.996969i \(0.475210\pi\)
\(114\) 0 0
\(115\) −1302.71 114.448i −1.05633 0.0928032i
\(116\) 0 0
\(117\) 487.027 143.004i 0.384834 0.112998i
\(118\) 0 0
\(119\) −2147.10 + 1379.86i −1.65398 + 1.06295i
\(120\) 0 0
\(121\) 3205.76 + 2060.22i 2.40854 + 1.54787i
\(122\) 0 0
\(123\) −80.4149 + 92.8037i −0.0589493 + 0.0680312i
\(124\) 0 0
\(125\) −539.014 1180.28i −0.385687 0.844536i
\(126\) 0 0
\(127\) 1355.19 + 397.919i 0.946878 + 0.278029i 0.718487 0.695541i \(-0.244835\pi\)
0.228392 + 0.973569i \(0.426653\pi\)
\(128\) 0 0
\(129\) −45.3273 + 315.258i −0.0309368 + 0.215170i
\(130\) 0 0
\(131\) −531.051 + 1162.84i −0.354184 + 0.775555i 0.645744 + 0.763554i \(0.276547\pi\)
−0.999928 + 0.0120010i \(0.996180\pi\)
\(132\) 0 0
\(133\) 335.238 + 2331.63i 0.218563 + 1.52014i
\(134\) 0 0
\(135\) −413.474 477.174i −0.263601 0.304212i
\(136\) 0 0
\(137\) 1644.88 1.02578 0.512890 0.858454i \(-0.328575\pi\)
0.512890 + 0.858454i \(0.328575\pi\)
\(138\) 0 0
\(139\) 195.877 0.119525 0.0597627 0.998213i \(-0.480966\pi\)
0.0597627 + 0.998213i \(0.480966\pi\)
\(140\) 0 0
\(141\) 242.021 + 279.308i 0.144552 + 0.166822i
\(142\) 0 0
\(143\) 199.301 + 1386.17i 0.116548 + 0.810611i
\(144\) 0 0
\(145\) 674.830 1477.67i 0.386494 0.846303i
\(146\) 0 0
\(147\) 140.143 974.718i 0.0786315 0.546894i
\(148\) 0 0
\(149\) 140.702 + 41.3137i 0.0773606 + 0.0227151i 0.320184 0.947355i \(-0.396255\pi\)
−0.242823 + 0.970071i \(0.578074\pi\)
\(150\) 0 0
\(151\) −634.731 1389.87i −0.342077 0.749044i 0.657915 0.753092i \(-0.271439\pi\)
−0.999992 + 0.00404809i \(0.998711\pi\)
\(152\) 0 0
\(153\) 1194.35 1378.35i 0.631093 0.728320i
\(154\) 0 0
\(155\) 1937.29 + 1245.02i 1.00391 + 0.645176i
\(156\) 0 0
\(157\) −196.367 + 126.197i −0.0998202 + 0.0641505i −0.589599 0.807696i \(-0.700714\pi\)
0.489778 + 0.871847i \(0.337078\pi\)
\(158\) 0 0
\(159\) −51.4662 + 15.1118i −0.0256700 + 0.00753740i
\(160\) 0 0
\(161\) 3172.18 + 2455.99i 1.55281 + 1.20223i
\(162\) 0 0
\(163\) 517.617 151.986i 0.248730 0.0730336i −0.154991 0.987916i \(-0.549535\pi\)
0.403721 + 0.914882i \(0.367717\pi\)
\(164\) 0 0
\(165\) 718.764 461.921i 0.339125 0.217943i
\(166\) 0 0
\(167\) −2895.65 1860.92i −1.34175 0.862290i −0.344675 0.938722i \(-0.612011\pi\)
−0.997075 + 0.0764321i \(0.975647\pi\)
\(168\) 0 0
\(169\) 1188.95 1372.12i 0.541168 0.624541i
\(170\) 0 0
\(171\) −699.266 1531.18i −0.312715 0.684749i
\(172\) 0 0
\(173\) −2999.71 880.795i −1.31829 0.387084i −0.454413 0.890791i \(-0.650151\pi\)
−0.863875 + 0.503707i \(0.831969\pi\)
\(174\) 0 0
\(175\) 80.5167 560.006i 0.0347800 0.241900i
\(176\) 0 0
\(177\) 194.838 426.636i 0.0827398 0.181175i
\(178\) 0 0
\(179\) 433.458 + 3014.77i 0.180996 + 1.25885i 0.854415 + 0.519591i \(0.173916\pi\)
−0.673420 + 0.739260i \(0.735175\pi\)
\(180\) 0 0
\(181\) 307.276 + 354.616i 0.126186 + 0.145626i 0.815327 0.579001i \(-0.196557\pi\)
−0.689141 + 0.724627i \(0.742012\pi\)
\(182\) 0 0
\(183\) 137.764 0.0556491
\(184\) 0 0
\(185\) 1210.60 0.481110
\(186\) 0 0
\(187\) 3295.18 + 3802.84i 1.28859 + 1.48712i
\(188\) 0 0
\(189\) 275.660 + 1917.26i 0.106092 + 0.737883i
\(190\) 0 0
\(191\) 444.557 973.445i 0.168414 0.368775i −0.806541 0.591178i \(-0.798663\pi\)
0.974955 + 0.222403i \(0.0713902\pi\)
\(192\) 0 0
\(193\) −131.728 + 916.185i −0.0491293 + 0.341702i 0.950400 + 0.311030i \(0.100674\pi\)
−0.999530 + 0.0306721i \(0.990235\pi\)
\(194\) 0 0
\(195\) 223.282 + 65.5616i 0.0819978 + 0.0240767i
\(196\) 0 0
\(197\) 1773.56 + 3883.55i 0.641425 + 1.40452i 0.898863 + 0.438230i \(0.144394\pi\)
−0.257438 + 0.966295i \(0.582878\pi\)
\(198\) 0 0
\(199\) 1658.97 1914.55i 0.590961 0.682005i −0.378963 0.925412i \(-0.623719\pi\)
0.969924 + 0.243406i \(0.0782648\pi\)
\(200\) 0 0
\(201\) −708.719 455.466i −0.248702 0.159831i
\(202\) 0 0
\(203\) −4192.41 + 2694.30i −1.44950 + 0.931539i
\(204\) 0 0
\(205\) 1389.86 408.100i 0.473523 0.139039i
\(206\) 0 0
\(207\) −2669.43 1045.30i −0.896319 0.350983i
\(208\) 0 0
\(209\) 4456.05 1308.42i 1.47479 0.433038i
\(210\) 0 0
\(211\) −1728.83 + 1111.05i −0.564065 + 0.362503i −0.791385 0.611317i \(-0.790640\pi\)
0.227321 + 0.973820i \(0.427003\pi\)
\(212\) 0 0
\(213\) −773.136 496.865i −0.248706 0.159834i
\(214\) 0 0
\(215\) 2460.37 2839.42i 0.780446 0.900682i
\(216\) 0 0
\(217\) −2934.76 6426.24i −0.918086 2.01033i
\(218\) 0 0
\(219\) 202.229 + 59.3799i 0.0623990 + 0.0183220i
\(220\) 0 0
\(221\) −195.044 + 1356.56i −0.0593670 + 0.412906i
\(222\) 0 0
\(223\) −482.552 + 1056.64i −0.144906 + 0.317300i −0.968143 0.250398i \(-0.919439\pi\)
0.823237 + 0.567698i \(0.192166\pi\)
\(224\) 0 0
\(225\) 57.5364 + 400.174i 0.0170478 + 0.118570i
\(226\) 0 0
\(227\) −1979.71 2284.71i −0.578847 0.668025i 0.388510 0.921445i \(-0.372990\pi\)
−0.967356 + 0.253420i \(0.918445\pi\)
\(228\) 0 0
\(229\) −4445.95 −1.28295 −0.641477 0.767143i \(-0.721678\pi\)
−0.641477 + 0.767143i \(0.721678\pi\)
\(230\) 0 0
\(231\) −2621.10 −0.746561
\(232\) 0 0
\(233\) 840.045 + 969.464i 0.236194 + 0.272582i 0.861456 0.507833i \(-0.169553\pi\)
−0.625262 + 0.780415i \(0.715008\pi\)
\(234\) 0 0
\(235\) −620.436 4315.23i −0.172225 1.19785i
\(236\) 0 0
\(237\) −116.368 + 254.811i −0.0318942 + 0.0698386i
\(238\) 0 0
\(239\) −611.697 + 4254.44i −0.165554 + 1.15145i 0.722385 + 0.691491i \(0.243046\pi\)
−0.887939 + 0.459961i \(0.847863\pi\)
\(240\) 0 0
\(241\) −3804.72 1117.17i −1.01694 0.298602i −0.269553 0.962986i \(-0.586876\pi\)
−0.747391 + 0.664384i \(0.768694\pi\)
\(242\) 0 0
\(243\) −867.968 1900.59i −0.229137 0.501739i
\(244\) 0 0
\(245\) −7607.00 + 8778.94i −1.98365 + 2.28925i
\(246\) 0 0
\(247\) 1064.12 + 683.865i 0.274122 + 0.176167i
\(248\) 0 0
\(249\) 63.1872 40.6080i 0.0160816 0.0103350i
\(250\) 0 0
\(251\) 5468.20 1605.61i 1.37510 0.403765i 0.491038 0.871138i \(-0.336618\pi\)
0.884060 + 0.467373i \(0.154799\pi\)
\(252\) 0 0
\(253\) 3902.74 6879.51i 0.969816 1.70953i
\(254\) 0 0
\(255\) 802.277 235.570i 0.197022 0.0578508i
\(256\) 0 0
\(257\) −852.015 + 547.557i −0.206799 + 0.132901i −0.639941 0.768424i \(-0.721041\pi\)
0.433142 + 0.901326i \(0.357405\pi\)
\(258\) 0 0
\(259\) −3124.30 2007.87i −0.749555 0.481710i
\(260\) 0 0
\(261\) 2332.07 2691.35i 0.553071 0.638278i
\(262\) 0 0
\(263\) 1049.87 + 2298.90i 0.246152 + 0.538997i 0.991869 0.127266i \(-0.0406202\pi\)
−0.745717 + 0.666263i \(0.767893\pi\)
\(264\) 0 0
\(265\) 607.105 + 178.262i 0.140733 + 0.0413229i
\(266\) 0 0
\(267\) 54.0317 375.799i 0.0123846 0.0861367i
\(268\) 0 0
\(269\) −2702.04 + 5916.64i −0.612440 + 1.34106i 0.308453 + 0.951240i \(0.400189\pi\)
−0.920893 + 0.389816i \(0.872539\pi\)
\(270\) 0 0
\(271\) −487.316 3389.36i −0.109234 0.759738i −0.968644 0.248452i \(-0.920078\pi\)
0.859411 0.511286i \(-0.170831\pi\)
\(272\) 0 0
\(273\) −467.504 539.528i −0.103643 0.119611i
\(274\) 0 0
\(275\) −1115.43 −0.244592
\(276\) 0 0
\(277\) 1155.56 0.250653 0.125327 0.992116i \(-0.460002\pi\)
0.125327 + 0.992116i \(0.460002\pi\)
\(278\) 0 0
\(279\) 3305.95 + 3815.27i 0.709398 + 0.818689i
\(280\) 0 0
\(281\) −1067.50 7424.63i −0.226625 1.57621i −0.712173 0.702004i \(-0.752289\pi\)
0.485548 0.874210i \(-0.338620\pi\)
\(282\) 0 0
\(283\) −1090.42 + 2387.70i −0.229042 + 0.501533i −0.988905 0.148551i \(-0.952539\pi\)
0.759862 + 0.650084i \(0.225266\pi\)
\(284\) 0 0
\(285\) 109.828 763.868i 0.0228268 0.158764i
\(286\) 0 0
\(287\) −4263.79 1251.96i −0.876946 0.257494i
\(288\) 0 0
\(289\) 4.73546 + 10.3692i 0.000963863 + 0.00211057i
\(290\) 0 0
\(291\) 298.395 344.366i 0.0601108 0.0693715i
\(292\) 0 0
\(293\) −3844.61 2470.78i −0.766568 0.492643i 0.0979832 0.995188i \(-0.468761\pi\)
−0.864551 + 0.502545i \(0.832397\pi\)
\(294\) 0 0
\(295\) −4654.37 + 2991.18i −0.918604 + 0.590351i
\(296\) 0 0
\(297\) 3664.12 1075.88i 0.715872 0.210199i
\(298\) 0 0
\(299\) 2112.18 423.698i 0.408531 0.0819502i
\(300\) 0 0
\(301\) −11059.0 + 3247.23i −2.11771 + 0.621817i
\(302\) 0 0
\(303\) 874.191 561.808i 0.165746 0.106518i
\(304\) 0 0
\(305\) −1367.11 878.589i −0.256658 0.164944i
\(306\) 0 0
\(307\) −5432.85 + 6269.84i −1.01000 + 1.16560i −0.0238519 + 0.999716i \(0.507593\pi\)
−0.986145 + 0.165884i \(0.946952\pi\)
\(308\) 0 0
\(309\) 713.415 + 1562.16i 0.131342 + 0.287599i
\(310\) 0 0
\(311\) −3494.70 1026.14i −0.637191 0.187096i −0.0528473 0.998603i \(-0.516830\pi\)
−0.584343 + 0.811507i \(0.698648\pi\)
\(312\) 0 0
\(313\) 1330.17 9251.50i 0.240209 1.67069i −0.410881 0.911689i \(-0.634779\pi\)
0.651090 0.759001i \(-0.274312\pi\)
\(314\) 0 0
\(315\) 4655.42 10194.0i 0.832709 1.82338i
\(316\) 0 0
\(317\) −277.552 1930.41i −0.0491762 0.342028i −0.999524 0.0308393i \(-0.990182\pi\)
0.950348 0.311189i \(-0.100727\pi\)
\(318\) 0 0
\(319\) 6434.14 + 7425.39i 1.12929 + 1.30327i
\(320\) 0 0
\(321\) 565.195 0.0982744
\(322\) 0 0
\(323\) 4544.98 0.782940
\(324\) 0 0
\(325\) −198.950 229.600i −0.0339561 0.0391875i
\(326\) 0 0
\(327\) −208.730 1451.75i −0.0352991 0.245511i
\(328\) 0 0
\(329\) −5555.88 + 12165.7i −0.931020 + 2.03865i
\(330\) 0 0
\(331\) 413.129 2873.37i 0.0686030 0.477145i −0.926339 0.376691i \(-0.877062\pi\)
0.994942 0.100453i \(-0.0320292\pi\)
\(332\) 0 0
\(333\) 2546.39 + 747.687i 0.419043 + 0.123042i
\(334\) 0 0
\(335\) 4128.30 + 9039.72i 0.673294 + 1.47431i
\(336\) 0 0
\(337\) −331.111 + 382.123i −0.0535216 + 0.0617672i −0.781879 0.623430i \(-0.785739\pi\)
0.728357 + 0.685197i \(0.240284\pi\)
\(338\) 0 0
\(339\) −418.898 269.210i −0.0671134 0.0431312i
\(340\) 0 0
\(341\) −11717.2 + 7530.17i −1.86076 + 1.19584i
\(342\) 0 0
\(343\) 22222.7 6525.18i 3.49829 1.02719i
\(344\) 0 0
\(345\) −770.458 1064.80i −0.120232 0.166165i
\(346\) 0 0
\(347\) 448.061 131.562i 0.0693174 0.0203534i −0.246890 0.969044i \(-0.579409\pi\)
0.316207 + 0.948690i \(0.397590\pi\)
\(348\) 0 0
\(349\) 8381.49 5386.46i 1.28553 0.826162i 0.293973 0.955814i \(-0.405022\pi\)
0.991560 + 0.129652i \(0.0413861\pi\)
\(350\) 0 0
\(351\) 875.001 + 562.329i 0.133060 + 0.0855125i
\(352\) 0 0
\(353\) −432.848 + 499.534i −0.0652640 + 0.0753187i −0.787443 0.616388i \(-0.788595\pi\)
0.722179 + 0.691707i \(0.243141\pi\)
\(354\) 0 0
\(355\) 4503.53 + 9861.37i 0.673304 + 1.47433i
\(356\) 0 0
\(357\) −2461.21 722.676i −0.364877 0.107137i
\(358\) 0 0
\(359\) 1101.69 7662.40i 0.161963 1.12648i −0.732964 0.680267i \(-0.761864\pi\)
0.894927 0.446212i \(-0.147227\pi\)
\(360\) 0 0
\(361\) −1106.75 + 2423.45i −0.161357 + 0.353323i
\(362\) 0 0
\(363\) 545.050 + 3790.91i 0.0788091 + 0.548129i
\(364\) 0 0
\(365\) −1628.15 1878.98i −0.233482 0.269453i
\(366\) 0 0
\(367\) −8772.23 −1.24770 −0.623851 0.781544i \(-0.714433\pi\)
−0.623851 + 0.781544i \(0.714433\pi\)
\(368\) 0 0
\(369\) 3175.49 0.447992
\(370\) 0 0
\(371\) −1271.15 1466.98i −0.177883 0.205288i
\(372\) 0 0
\(373\) −220.234 1531.76i −0.0305718 0.212632i 0.968809 0.247807i \(-0.0797100\pi\)
−0.999381 + 0.0351757i \(0.988801\pi\)
\(374\) 0 0
\(375\) 541.728 1186.22i 0.0745993 0.163350i
\(376\) 0 0
\(377\) −380.842 + 2648.81i −0.0520275 + 0.361859i
\(378\) 0 0
\(379\) −9160.42 2689.74i −1.24153 0.364546i −0.405939 0.913900i \(-0.633056\pi\)
−0.835590 + 0.549354i \(0.814874\pi\)
\(380\) 0 0
\(381\) 589.688 + 1291.24i 0.0792930 + 0.173627i
\(382\) 0 0
\(383\) 4169.90 4812.32i 0.556324 0.642032i −0.406021 0.913864i \(-0.633084\pi\)
0.962345 + 0.271832i \(0.0876294\pi\)
\(384\) 0 0
\(385\) 26010.7 + 16716.1i 3.44319 + 2.21281i
\(386\) 0 0
\(387\) 6928.81 4452.88i 0.910107 0.584890i
\(388\) 0 0
\(389\) 2561.36 752.083i 0.333846 0.0980260i −0.110513 0.993875i \(-0.535250\pi\)
0.444359 + 0.895849i \(0.353431\pi\)
\(390\) 0 0
\(391\) 5561.46 5383.80i 0.719322 0.696345i
\(392\) 0 0
\(393\) −1232.76 + 361.970i −0.158230 + 0.0464605i
\(394\) 0 0
\(395\) 2779.85 1786.50i 0.354100 0.227566i
\(396\) 0 0
\(397\) −2857.12 1836.16i −0.361196 0.232127i 0.347438 0.937703i \(-0.387052\pi\)
−0.708634 + 0.705576i \(0.750688\pi\)
\(398\) 0 0
\(399\) −1550.37 + 1789.22i −0.194525 + 0.224494i
\(400\) 0 0
\(401\) −3660.17 8014.65i −0.455811 0.998086i −0.988422 0.151727i \(-0.951517\pi\)
0.532612 0.846360i \(-0.321211\pi\)
\(402\) 0 0
\(403\) −3639.91 1068.77i −0.449918 0.132108i
\(404\) 0 0
\(405\) −1093.67 + 7606.62i −0.134184 + 0.933274i
\(406\) 0 0
\(407\) −3041.68 + 6660.35i −0.370444 + 0.811158i
\(408\) 0 0
\(409\) −680.807 4735.12i −0.0823074 0.572461i −0.988687 0.149996i \(-0.952074\pi\)
0.906379 0.422465i \(-0.138835\pi\)
\(410\) 0 0
\(411\) 1082.60 + 1249.38i 0.129928 + 0.149945i
\(412\) 0 0
\(413\) 16973.0 2.02224
\(414\) 0 0
\(415\) −886.022 −0.104803
\(416\) 0 0
\(417\) 128.918 + 148.779i 0.0151394 + 0.0174718i
\(418\) 0 0
\(419\) 679.878 + 4728.66i 0.0792702 + 0.551337i 0.990295 + 0.138984i \(0.0443837\pi\)
−0.911024 + 0.412353i \(0.864707\pi\)
\(420\) 0 0
\(421\) 3727.98 8163.13i 0.431569 0.945004i −0.561501 0.827476i \(-0.689776\pi\)
0.993070 0.117528i \(-0.0374970\pi\)
\(422\) 0 0
\(423\) 1360.12 9459.85i 0.156339 1.08736i
\(424\) 0 0
\(425\) −1047.38 307.540i −0.119543 0.0351009i
\(426\) 0 0
\(427\) 2071.01 + 4534.89i 0.234715 + 0.513955i
\(428\) 0 0
\(429\) −921.702 + 1063.70i −0.103730 + 0.119711i
\(430\) 0 0
\(431\) 42.8501 + 27.5381i 0.00478890 + 0.00307764i 0.543033 0.839711i \(-0.317276\pi\)
−0.538244 + 0.842789i \(0.680912\pi\)
\(432\) 0 0
\(433\) 7315.93 4701.66i 0.811966 0.521819i −0.0675344 0.997717i \(-0.521513\pi\)
0.879500 + 0.475898i \(0.157877\pi\)
\(434\) 0 0
\(435\) 1566.52 459.972i 0.172664 0.0506988i
\(436\) 0 0
\(437\) −2387.65 6733.29i −0.261365 0.737064i
\(438\) 0 0
\(439\) −15849.0 + 4653.70i −1.72308 + 0.505943i −0.985552 0.169371i \(-0.945826\pi\)
−0.737530 + 0.675314i \(0.764008\pi\)
\(440\) 0 0
\(441\) −21422.6 + 13767.5i −2.31320 + 1.48661i
\(442\) 0 0
\(443\) 10145.5 + 6520.15i 1.08810 + 0.699281i 0.956415 0.292010i \(-0.0943240\pi\)
0.131688 + 0.991291i \(0.457960\pi\)
\(444\) 0 0
\(445\) −2932.85 + 3384.69i −0.312428 + 0.360561i
\(446\) 0 0
\(447\) 61.2240 + 134.062i 0.00647829 + 0.0141855i
\(448\) 0 0
\(449\) −4384.08 1287.28i −0.460796 0.135302i 0.0430917 0.999071i \(-0.486279\pi\)
−0.503888 + 0.863769i \(0.668097\pi\)
\(450\) 0 0
\(451\) −1246.84 + 8671.93i −0.130180 + 0.905422i
\(452\) 0 0
\(453\) 637.928 1396.87i 0.0661644 0.144880i
\(454\) 0 0
\(455\) 1198.47 + 8335.57i 0.123484 + 0.858852i
\(456\) 0 0
\(457\) −273.221 315.314i −0.0279666 0.0322752i 0.741594 0.670849i \(-0.234070\pi\)
−0.769561 + 0.638574i \(0.779525\pi\)
\(458\) 0 0
\(459\) 3737.25 0.380043
\(460\) 0 0
\(461\) −3064.26 −0.309581 −0.154790 0.987947i \(-0.549470\pi\)
−0.154790 + 0.987947i \(0.549470\pi\)
\(462\) 0 0
\(463\) −5853.22 6754.98i −0.587521 0.678036i 0.381683 0.924293i \(-0.375345\pi\)
−0.969204 + 0.246257i \(0.920799\pi\)
\(464\) 0 0
\(465\) 329.381 + 2290.90i 0.0328488 + 0.228468i
\(466\) 0 0
\(467\) −4152.02 + 9091.65i −0.411418 + 0.900881i 0.584565 + 0.811347i \(0.301265\pi\)
−0.995984 + 0.0895340i \(0.971462\pi\)
\(468\) 0 0
\(469\) 4338.74 30176.6i 0.427174 2.97106i
\(470\) 0 0
\(471\) −225.094 66.0937i −0.0220208 0.00646589i
\(472\) 0 0
\(473\) 9439.80 + 20670.3i 0.917637 + 2.00934i
\(474\) 0 0
\(475\) −659.770 + 761.415i −0.0637312 + 0.0735497i
\(476\) 0 0
\(477\) 1166.89 + 749.914i 0.112009 + 0.0719837i
\(478\) 0 0
\(479\) −1759.13 + 1130.53i −0.167801 + 0.107839i −0.621846 0.783140i \(-0.713617\pi\)
0.454045 + 0.890979i \(0.349981\pi\)
\(480\) 0 0
\(481\) −1913.49 + 561.852i −0.181388 + 0.0532604i
\(482\) 0 0
\(483\) 222.334 + 4025.88i 0.0209453 + 0.379262i
\(484\) 0 0
\(485\) −5157.35 + 1514.34i −0.482852 + 0.141778i
\(486\) 0 0
\(487\) −10119.2 + 6503.22i −0.941572 + 0.605111i −0.918840 0.394630i \(-0.870873\pi\)
−0.0227316 + 0.999742i \(0.507236\pi\)
\(488\) 0 0
\(489\) 456.117 + 293.128i 0.0421806 + 0.0271078i
\(490\) 0 0
\(491\) 1120.43 1293.05i 0.102982 0.118848i −0.701919 0.712257i \(-0.747673\pi\)
0.804901 + 0.593409i \(0.202218\pi\)
\(492\) 0 0
\(493\) 3994.36 + 8746.43i 0.364902 + 0.799025i
\(494\) 0 0
\(495\) −21199.4 6224.71i −1.92493 0.565212i
\(496\) 0 0
\(497\) 4733.10 32919.4i 0.427180 2.97110i
\(498\) 0 0
\(499\) 4576.91 10022.0i 0.410602 0.899093i −0.585482 0.810685i \(-0.699095\pi\)
0.996084 0.0884080i \(-0.0281779\pi\)
\(500\) 0 0
\(501\) −492.324 3424.19i −0.0439031 0.305353i
\(502\) 0 0
\(503\) −155.458 179.408i −0.0137804 0.0159034i 0.748818 0.662776i \(-0.230622\pi\)
−0.762598 + 0.646873i \(0.776076\pi\)
\(504\) 0 0
\(505\) −12258.1 −1.08015
\(506\) 0 0
\(507\) 1824.72 0.159839
\(508\) 0 0
\(509\) 10566.6 + 12194.5i 0.920148 + 1.06191i 0.997890 + 0.0649340i \(0.0206837\pi\)
−0.0777415 + 0.996974i \(0.524771\pi\)
\(510\) 0 0
\(511\) 1085.47 + 7549.62i 0.0939695 + 0.653573i
\(512\) 0 0
\(513\) 1432.89 3137.59i 0.123321 0.270035i
\(514\) 0 0
\(515\) 2883.05 20052.1i 0.246684 1.71573i
\(516\) 0 0
\(517\) 25299.8 + 7428.70i 2.15220 + 0.631942i
\(518\) 0 0
\(519\) −1305.27 2858.15i −0.110395 0.241732i
\(520\) 0 0
\(521\) 10634.6 12272.9i 0.894258 1.03203i −0.105037 0.994468i \(-0.533496\pi\)
0.999294 0.0375599i \(-0.0119585\pi\)
\(522\) 0 0
\(523\) −38.0081 24.4263i −0.00317778 0.00204223i 0.539051 0.842273i \(-0.318783\pi\)
−0.542229 + 0.840231i \(0.682419\pi\)
\(524\) 0 0
\(525\) 478.349 307.416i 0.0397654 0.0255557i
\(526\) 0 0
\(527\) −13078.6 + 3840.22i −1.08105 + 0.317425i
\(528\) 0 0
\(529\) −10897.6 5410.87i −0.895671 0.444717i
\(530\) 0 0
\(531\) −11637.4 + 3417.05i −0.951075 + 0.279261i
\(532\) 0 0
\(533\) −2007.42 + 1290.09i −0.163135 + 0.104841i
\(534\) 0 0
\(535\) −5608.76 3604.53i −0.453249 0.291285i
\(536\) 0 0
\(537\) −2004.60 + 2313.43i −0.161089 + 0.185907i
\(538\) 0 0
\(539\) −29186.1 63908.6i −2.33234 5.10712i
\(540\) 0 0
\(541\) −12859.0 3775.76i −1.02191 0.300060i −0.272493 0.962158i \(-0.587848\pi\)
−0.749417 + 0.662098i \(0.769666\pi\)
\(542\) 0 0
\(543\) −67.1139 + 466.787i −0.00530411 + 0.0368909i
\(544\) 0 0
\(545\) −7187.20 + 15737.8i −0.564891 + 1.23694i
\(546\) 0 0
\(547\) 2614.27 + 18182.7i 0.204348 + 1.42127i 0.791191 + 0.611570i \(0.209462\pi\)
−0.586843 + 0.809701i \(0.699629\pi\)
\(548\) 0 0
\(549\) −2332.96 2692.37i −0.181363 0.209304i
\(550\) 0 0
\(551\) 8874.50 0.686146
\(552\) 0 0
\(553\) −10137.2 −0.779526
\(554\) 0 0
\(555\) 796.771 + 919.522i 0.0609388 + 0.0703271i
\(556\) 0 0
\(557\) 2652.03 + 18445.3i 0.201742 + 1.40315i 0.799113 + 0.601181i \(0.205303\pi\)
−0.597371 + 0.801965i \(0.703788\pi\)
\(558\) 0 0
\(559\) −2571.08 + 5629.88i −0.194535 + 0.425973i
\(560\) 0 0
\(561\) −719.717 + 5005.74i −0.0541649 + 0.376725i
\(562\) 0 0
\(563\) −10052.2 2951.59i −0.752485 0.220949i −0.117073 0.993123i \(-0.537351\pi\)
−0.635411 + 0.772174i \(0.719169\pi\)
\(564\) 0 0
\(565\) 2440.09 + 5343.06i 0.181691 + 0.397848i
\(566\) 0 0
\(567\) 15438.6 17817.1i 1.14349 1.31966i
\(568\) 0 0
\(569\) 15875.5 + 10202.5i 1.16966 + 0.751692i 0.973457 0.228872i \(-0.0735036\pi\)
0.196199 + 0.980564i \(0.437140\pi\)
\(570\) 0 0
\(571\) −14435.6 + 9277.18i −1.05799 + 0.679926i −0.949371 0.314158i \(-0.898278\pi\)
−0.108615 + 0.994084i \(0.534642\pi\)
\(572\) 0 0
\(573\) 1031.98 303.015i 0.0752381 0.0220919i
\(574\) 0 0
\(575\) 94.6159 + 1713.24i 0.00686219 + 0.124256i
\(576\) 0 0
\(577\) −8475.10 + 2488.51i −0.611479 + 0.179546i −0.572786 0.819705i \(-0.694137\pi\)
−0.0386925 + 0.999251i \(0.512319\pi\)
\(578\) 0 0
\(579\) −782.592 + 502.941i −0.0561717 + 0.0360993i
\(580\) 0 0
\(581\) 2286.63 + 1469.53i 0.163279 + 0.104933i
\(582\) 0 0
\(583\) −2506.11 + 2892.21i −0.178032 + 0.205460i
\(584\) 0 0
\(585\) −2499.87 5473.95i −0.176678 0.386872i
\(586\) 0 0
\(587\) −24217.9 7111.02i −1.70286 0.500005i −0.721539 0.692373i \(-0.756565\pi\)
−0.981323 + 0.192368i \(0.938383\pi\)
\(588\) 0 0
\(589\) −1790.39 + 12452.5i −0.125249 + 0.871128i
\(590\) 0 0
\(591\) −1782.49 + 3903.11i −0.124064 + 0.271662i
\(592\) 0 0
\(593\) 2690.86 + 18715.3i 0.186341 + 1.29603i 0.841383 + 0.540439i \(0.181742\pi\)
−0.655042 + 0.755593i \(0.727349\pi\)
\(594\) 0 0
\(595\) 19815.2 + 22867.9i 1.36528 + 1.57562i
\(596\) 0 0
\(597\) 2546.08 0.174546
\(598\) 0 0
\(599\) 23226.9 1.58435 0.792173 0.610296i \(-0.208950\pi\)
0.792173 + 0.610296i \(0.208950\pi\)
\(600\) 0 0
\(601\) −1978.09 2282.83i −0.134256 0.154940i 0.684640 0.728881i \(-0.259959\pi\)
−0.818896 + 0.573941i \(0.805414\pi\)
\(602\) 0 0
\(603\) 3100.42 + 21563.9i 0.209384 + 1.45630i
\(604\) 0 0
\(605\) 18767.7 41095.5i 1.26118 2.76160i
\(606\) 0 0
\(607\) −275.273 + 1914.57i −0.0184069 + 0.128023i −0.996953 0.0780056i \(-0.975145\pi\)
0.978546 + 0.206028i \(0.0660539\pi\)
\(608\) 0 0
\(609\) −4805.74 1411.09i −0.319767 0.0938922i
\(610\) 0 0
\(611\) 2983.40 + 6532.73i 0.197537 + 0.432547i
\(612\) 0 0
\(613\) 6380.29 7363.25i 0.420388 0.485153i −0.505567 0.862787i \(-0.668717\pi\)
0.925955 + 0.377634i \(0.123262\pi\)
\(614\) 0 0
\(615\) 1224.73 + 787.083i 0.0803019 + 0.0516069i
\(616\) 0 0
\(617\) −13592.1 + 8735.11i −0.886868 + 0.569955i −0.902869 0.429917i \(-0.858543\pi\)
0.0160007 + 0.999872i \(0.494907\pi\)
\(618\) 0 0
\(619\) −749.036 + 219.937i −0.0486370 + 0.0142811i −0.305961 0.952044i \(-0.598978\pi\)
0.257324 + 0.966325i \(0.417159\pi\)
\(620\) 0 0
\(621\) −1963.31 5536.65i −0.126868 0.357775i
\(622\) 0 0
\(623\) 13182.8 3870.81i 0.847763 0.248926i
\(624\) 0 0
\(625\) −14576.8 + 9367.94i −0.932915 + 0.599548i
\(626\) 0 0
\(627\) 3926.61 + 2523.48i 0.250101 + 0.160730i
\(628\) 0 0
\(629\) −4692.50 + 5415.43i −0.297460 + 0.343287i
\(630\) 0 0
\(631\) 1728.11 + 3784.04i 0.109025 + 0.238732i 0.956279 0.292457i \(-0.0944727\pi\)
−0.847253 + 0.531189i \(0.821745\pi\)
\(632\) 0 0
\(633\) −1981.75 581.895i −0.124435 0.0365375i
\(634\) 0 0
\(635\) 2383.05 16574.4i 0.148926 1.03581i
\(636\) 0 0
\(637\) 7949.30 17406.5i 0.494447 1.08269i
\(638\) 0 0
\(639\) 3382.22 + 23523.9i 0.209387 + 1.45632i
\(640\) 0 0
\(641\) −10598.9 12231.8i −0.653092 0.753708i 0.328541 0.944490i \(-0.393443\pi\)
−0.981633 + 0.190782i \(0.938898\pi\)
\(642\) 0 0
\(643\) −23941.3 −1.46836 −0.734178 0.678957i \(-0.762432\pi\)
−0.734178 + 0.678957i \(0.762432\pi\)
\(644\) 0 0
\(645\) 3776.01 0.230512
\(646\) 0 0
\(647\) −11060.9 12765.0i −0.672103 0.775648i 0.312601 0.949885i \(-0.398800\pi\)
−0.984704 + 0.174237i \(0.944254\pi\)
\(648\) 0 0
\(649\) −4762.26 33122.3i −0.288036 2.00333i
\(650\) 0 0
\(651\) 2949.55 6458.60i 0.177576 0.388837i
\(652\) 0 0
\(653\) 2191.62 15243.1i 0.131340 0.913488i −0.812471 0.583001i \(-0.801878\pi\)
0.943811 0.330486i \(-0.107213\pi\)
\(654\) 0 0
\(655\) 14541.9 + 4269.87i 0.867477 + 0.254714i
\(656\) 0 0
\(657\) −2264.16 4957.82i −0.134449 0.294403i
\(658\) 0 0
\(659\) −13976.0 + 16129.1i −0.826139 + 0.953415i −0.999506 0.0314420i \(-0.989990\pi\)
0.173366 + 0.984857i \(0.444536\pi\)
\(660\) 0 0
\(661\) −10721.8 6890.45i −0.630905 0.405458i 0.185740 0.982599i \(-0.440532\pi\)
−0.816644 + 0.577141i \(0.804168\pi\)
\(662\) 0 0
\(663\) −1158.76 + 744.687i −0.0678768 + 0.0436218i
\(664\) 0 0
\(665\) 26796.0 7868.01i 1.56256 0.458809i
\(666\) 0 0
\(667\) 10859.3 10512.4i 0.630393 0.610256i
\(668\) 0 0
\(669\) −1120.18 + 328.913i −0.0647361 + 0.0190082i
\(670\) 0 0
\(671\) 8268.62 5313.92i 0.475717 0.305725i
\(672\) 0 0
\(673\) 25395.6 + 16320.8i 1.45457 + 0.934799i 0.999005 + 0.0445986i \(0.0142009\pi\)
0.455570 + 0.890200i \(0.349435\pi\)
\(674\) 0 0
\(675\) −542.515 + 626.096i −0.0309354 + 0.0357014i
\(676\) 0 0
\(677\) 2171.79 + 4755.55i 0.123292 + 0.269971i 0.961206 0.275830i \(-0.0889527\pi\)
−0.837915 + 0.545801i \(0.816225\pi\)
\(678\) 0 0
\(679\) 15821.6 + 4645.65i 0.894224 + 0.262568i
\(680\) 0 0
\(681\) 432.400 3007.41i 0.0243313 0.169228i
\(682\) 0 0
\(683\) 1022.23 2238.37i 0.0572688 0.125401i −0.878834 0.477128i \(-0.841678\pi\)
0.936103 + 0.351726i \(0.114405\pi\)
\(684\) 0 0
\(685\) −2775.30 19302.6i −0.154801 1.07667i
\(686\) 0 0
\(687\) −2926.14 3376.94i −0.162502 0.187538i
\(688\) 0 0
\(689\) −1042.33 −0.0576336
\(690\) 0 0
\(691\) 15011.6 0.826437 0.413218 0.910632i \(-0.364405\pi\)
0.413218 + 0.910632i \(0.364405\pi\)
\(692\) 0 0
\(693\) 44386.9 + 51225.2i 2.43307 + 2.80791i
\(694\) 0 0
\(695\) −330.489 2298.60i −0.0180376 0.125455i
\(696\) 0 0
\(697\) −3561.76 + 7799.16i −0.193560 + 0.423837i
\(698\) 0 0
\(699\) −183.479 + 1276.12i −0.00992819 + 0.0690521i
\(700\) 0 0
\(701\) 8489.08 + 2492.62i 0.457387 + 0.134301i 0.502306 0.864690i \(-0.332485\pi\)
−0.0449195 + 0.998991i \(0.514303\pi\)
\(702\) 0 0
\(703\) 2747.36 + 6015.88i 0.147395 + 0.322750i
\(704\) 0 0
\(705\) 2869.31 3311.36i 0.153283 0.176898i
\(706\) 0 0
\(707\) 31635.3 + 20330.8i 1.68284 + 1.08150i
\(708\) 0 0
\(709\) −5656.43 + 3635.17i −0.299622 + 0.192555i −0.681810 0.731529i \(-0.738807\pi\)
0.382188 + 0.924084i \(0.375171\pi\)
\(710\) 0 0
\(711\) 6950.51 2040.85i 0.366617 0.107648i
\(712\) 0 0
\(713\) 12559.9 + 17358.3i 0.659707 + 0.911742i
\(714\) 0 0
\(715\) 15930.4 4677.57i 0.833233 0.244659i
\(716\) 0 0
\(717\) −3634.08 + 2335.48i −0.189285 + 0.121646i
\(718\) 0 0
\(719\) −10788.6 6933.41i −0.559592 0.359628i 0.230066 0.973175i \(-0.426106\pi\)
−0.789658 + 0.613547i \(0.789742\pi\)
\(720\) 0 0
\(721\) −40698.2 + 46968.2i −2.10219 + 2.42606i
\(722\) 0 0
\(723\) −1655.56 3625.17i −0.0851604 0.186475i
\(724\) 0 0
\(725\) −2045.12 600.500i −0.104764 0.0307614i
\(726\) 0 0
\(727\) 3584.82 24933.0i 0.182880 1.27196i −0.667031 0.745030i \(-0.732435\pi\)
0.849911 0.526927i \(-0.176656\pi\)
\(728\) 0 0
\(729\) −6398.03 + 14009.7i −0.325054 + 0.711768i
\(730\) 0 0
\(731\) 3164.86 + 22012.1i 0.160132 + 1.11374i
\(732\) 0 0
\(733\) 12672.3 + 14624.6i 0.638557 + 0.736934i 0.979119 0.203288i \(-0.0651627\pi\)
−0.340562 + 0.940222i \(0.610617\pi\)
\(734\) 0 0
\(735\) −11674.7 −0.585889
\(736\) 0 0
\(737\) −60106.1 −3.00412
\(738\) 0 0
\(739\) 6532.08 + 7538.42i 0.325151 + 0.375244i 0.894665 0.446737i \(-0.147414\pi\)
−0.569514 + 0.821981i \(0.692869\pi\)
\(740\) 0 0
\(741\) 180.923 + 1258.35i 0.00896947 + 0.0623840i
\(742\) 0 0
\(743\) 4852.83 10626.2i 0.239614 0.524681i −0.751174 0.660104i \(-0.770512\pi\)
0.990788 + 0.135423i \(0.0432394\pi\)
\(744\) 0 0
\(745\) 247.418 1720.83i 0.0121674 0.0846260i
\(746\) 0 0
\(747\) −1863.66 547.220i −0.0912822 0.0268029i
\(748\) 0 0
\(749\) 8496.62 + 18605.0i 0.414499 + 0.907627i
\(750\) 0 0
\(751\) −12304.7 + 14200.4i −0.597875 + 0.689985i −0.971349 0.237656i \(-0.923621\pi\)
0.373474 + 0.927641i \(0.378166\pi\)
\(752\) 0 0
\(753\) 4818.50 + 3096.66i 0.233195 + 0.149865i
\(754\) 0 0
\(755\) −15239.1 + 9793.55i −0.734578 + 0.472085i
\(756\) 0 0
\(757\) 24100.7 7076.62i 1.15714 0.339767i 0.353820 0.935313i \(-0.384882\pi\)
0.803321 + 0.595546i \(0.203064\pi\)
\(758\) 0 0
\(759\) 7794.00 1563.46i 0.372733 0.0747692i
\(760\) 0 0
\(761\) 28476.0 8361.30i 1.35644 0.398288i 0.478936 0.877850i \(-0.341023\pi\)
0.877508 + 0.479562i \(0.159205\pi\)
\(762\) 0 0
\(763\) 44650.7 28695.3i 2.11856 1.36152i
\(764\) 0 0
\(765\) −18190.0 11690.0i −0.859687 0.552487i
\(766\) 0 0
\(767\) 5968.50 6888.02i 0.280978 0.324266i
\(768\) 0 0
\(769\) −9844.86 21557.2i −0.461658 1.01089i −0.987107 0.160064i \(-0.948830\pi\)
0.525449 0.850825i \(-0.323897\pi\)
\(770\) 0 0
\(771\) −976.662 286.774i −0.0456208 0.0133955i
\(772\) 0 0
\(773\) 3202.66 22275.0i 0.149019 1.03645i −0.768811 0.639476i \(-0.779151\pi\)
0.917830 0.396974i \(-0.129940\pi\)
\(774\) 0 0
\(775\) 1255.20 2748.50i 0.0581782 0.127392i
\(776\) 0 0
\(777\) −531.201 3694.58i −0.0245260 0.170582i
\(778\) 0 0
\(779\) 5182.15 + 5980.52i 0.238344 + 0.275063i
\(780\) 0 0
\(781\) −65569.3 −3.00417
\(782\) 0 0
\(783\) 7297.32 0.333059
\(784\) 0 0
\(785\) 1812.23 + 2091.43i 0.0823966 + 0.0950908i
\(786\) 0 0
\(787\) −5017.92 34900.4i −0.227280 1.58077i −0.709491 0.704714i \(-0.751075\pi\)
0.482211 0.876055i \(-0.339834\pi\)
\(788\) 0 0
\(789\) −1055.16 + 2310.48i −0.0476105 + 0.104252i
\(790\) 0 0
\(791\) 2564.47 17836.3i 0.115275 0.801752i
\(792\) 0 0
\(793\) 2568.63 + 754.217i 0.115025 + 0.0337743i
\(794\) 0 0
\(795\) 264.172 + 578.455i 0.0117852 + 0.0258059i
\(796\) 0 0
\(797\) −3847.80 + 4440.60i −0.171011 + 0.197358i −0.834785 0.550576i \(-0.814408\pi\)
0.663774 + 0.747933i \(0.268954\pi\)
\(798\) 0 0
\(799\) 21708.3 + 13951.1i 0.961183 + 0.617715i
\(800\) 0 0
\(801\) −8259.39 + 5307.99i −0.364334 + 0.234143i
\(802\) 0 0
\(803\) 14428.3 4236.53i 0.634077 0.186182i
\(804\) 0 0
\(805\) 23468.7 41369.1i 1.02753 1.81127i
\(806\) 0 0
\(807\) −6272.39 + 1841.74i −0.273604 + 0.0803375i
\(808\) 0 0
\(809\) −8132.75 + 5226.60i −0.353439 + 0.227142i −0.705297 0.708912i \(-0.749186\pi\)
0.351858 + 0.936053i \(0.385550\pi\)
\(810\) 0 0
\(811\) −12917.3 8301.44i −0.559294 0.359437i 0.230249 0.973132i \(-0.426046\pi\)
−0.789543 + 0.613695i \(0.789682\pi\)
\(812\) 0 0
\(813\) 2253.68 2600.88i 0.0972200 0.112198i
\(814\) 0 0
\(815\) −2656.89 5817.77i −0.114192 0.250046i
\(816\) 0 0
\(817\) 19693.6 + 5782.55i 0.843318 + 0.247621i
\(818\) 0 0
\(819\) −2627.30 + 18273.3i −0.112094 + 0.779633i
\(820\) 0 0
\(821\) 5385.70 11793.0i 0.228943 0.501316i −0.759943 0.649990i \(-0.774773\pi\)
0.988886 + 0.148674i \(0.0475005\pi\)
\(822\) 0 0
\(823\) 1308.14 + 9098.29i 0.0554055 + 0.385354i 0.998590 + 0.0530845i \(0.0169053\pi\)
−0.943184 + 0.332270i \(0.892186\pi\)
\(824\) 0 0
\(825\) −734.128 847.229i −0.0309807 0.0357536i
\(826\) 0 0
\(827\) 31708.9 1.33329 0.666643 0.745377i \(-0.267731\pi\)
0.666643 + 0.745377i \(0.267731\pi\)
\(828\) 0 0
\(829\) 16023.2 0.671301 0.335650 0.941987i \(-0.391044\pi\)
0.335650 + 0.941987i \(0.391044\pi\)
\(830\) 0 0
\(831\) 760.544 + 877.714i 0.0317485 + 0.0366397i
\(832\) 0 0
\(833\) −9785.14 68057.1i −0.407005 2.83078i
\(834\) 0 0
\(835\) −16952.2 + 37120.1i −0.702580 + 1.53844i
\(836\) 0 0
\(837\) −1472.20 + 10239.4i −0.0607967 + 0.422850i
\(838\) 0 0
\(839\) 4182.24 + 1228.02i 0.172094 + 0.0505314i 0.366645 0.930361i \(-0.380507\pi\)
−0.194550 + 0.980893i \(0.562325\pi\)
\(840\) 0 0
\(841\) −2332.20 5106.81i −0.0956252 0.209390i
\(842\) 0 0
\(843\) 4936.83 5697.41i 0.201701 0.232775i
\(844\) 0 0
\(845\) −18107.7 11637.1i −0.737190 0.473763i
\(846\) 0 0
\(847\) −116595. + 74930.9i −4.72992 + 3.03974i
\(848\) 0 0
\(849\) −2531.26 + 743.246i −0.102324 + 0.0300449i
\(850\) 0 0
\(851\) 10488.0 + 4106.91i 0.422472 + 0.165432i
\(852\) 0 0
\(853\) −19751.2 + 5799.47i −0.792810 + 0.232790i −0.652970 0.757384i \(-0.726477\pi\)
−0.139840 + 0.990174i \(0.544659\pi\)
\(854\) 0 0
\(855\) −16788.5 + 10789.3i −0.671525 + 0.431563i
\(856\) 0 0
\(857\) −18194.8 11693.1i −0.725232 0.466078i 0.125221 0.992129i \(-0.460036\pi\)
−0.850453 + 0.526050i \(0.823672\pi\)
\(858\) 0 0
\(859\) 9367.81 10811.0i 0.372090 0.429415i −0.538564 0.842585i \(-0.681033\pi\)
0.910654 + 0.413170i \(0.135578\pi\)
\(860\) 0 0
\(861\) −1855.32 4062.58i −0.0734367 0.160804i
\(862\) 0 0
\(863\) 26514.4 + 7785.33i 1.04584 + 0.307087i 0.759136 0.650932i \(-0.225622\pi\)
0.286705 + 0.958019i \(0.407440\pi\)
\(864\) 0 0
\(865\) −5274.87 + 36687.5i −0.207342 + 1.44210i
\(866\) 0 0
\(867\) −4.75931 + 10.4214i −0.000186430 + 0.000408225i
\(868\) 0 0
\(869\) 2844.29 + 19782.5i 0.111031 + 0.772237i
\(870\) 0 0
\(871\) −10720.6 12372.3i −0.417055 0.481307i
\(872\) 0 0
\(873\) −11783.3 −0.456819
\(874\) 0 0
\(875\) 47191.7 1.82328
\(876\) 0 0
\(877\) −469.877 542.267i −0.0180919 0.0208792i 0.746631 0.665238i \(-0.231670\pi\)
−0.764723 + 0.644359i \(0.777124\pi\)
\(878\) 0 0
\(879\) −653.668 4546.36i −0.0250827 0.174454i
\(880\) 0 0
\(881\) −18452.1 + 40404.5i −0.705639 + 1.54513i 0.127358 + 0.991857i \(0.459350\pi\)
−0.832997 + 0.553277i \(0.813377\pi\)
\(882\) 0 0
\(883\) −399.375 + 2777.71i −0.0152209 + 0.105864i −0.996016 0.0891794i \(-0.971576\pi\)
0.980795 + 0.195043i \(0.0624846\pi\)
\(884\) 0 0
\(885\) −5335.29 1566.58i −0.202648 0.0595029i
\(886\) 0 0
\(887\) −13622.3 29828.6i −0.515661 1.12914i −0.971056 0.238851i \(-0.923229\pi\)
0.455395 0.890289i \(-0.349498\pi\)
\(888\) 0 0
\(889\) −33639.9 + 38822.5i −1.26912 + 1.46464i
\(890\) 0 0
\(891\) −39101.2 25128.8i −1.47019 0.944835i
\(892\) 0 0
\(893\) 20035.7 12876.2i 0.750806 0.482514i
\(894\) 0 0
\(895\) 34646.8 10173.2i 1.29398 0.379948i
\(896\) 0 0
\(897\) 1711.98 + 1325.46i 0.0637248 + 0.0493376i
\(898\) 0 0
\(899\) −25537.2 + 7498.39i −0.947400 + 0.278182i
\(900\) 0 0
\(901\) −3150.66 + 2024.81i −0.116497 + 0.0748680i
\(902\) 0 0
\(903\) −9745.05 6262.77i −0.359131 0.230799i
\(904\) 0 0
\(905\) 3642.95 4204.19i 0.133807 0.154422i
\(906\) 0 0
\(907\) 17409.6 + 38121.7i 0.637349 + 1.39560i 0.902203 + 0.431311i \(0.141949\pi\)
−0.264854 + 0.964288i \(0.585324\pi\)
\(908\) 0 0
\(909\) −25783.6 7570.75i −0.940802 0.276244i
\(910\) 0 0
\(911\) 3825.80 26609.0i 0.139138 0.967724i −0.793926 0.608014i \(-0.791967\pi\)
0.933064 0.359710i \(-0.117124\pi\)
\(912\) 0 0
\(913\) 2226.16 4874.60i 0.0806955 0.176699i
\(914\) 0 0
\(915\) −232.439 1616.65i −0.00839803 0.0584096i
\(916\) 0 0
\(917\) −30447.5 35138.2i −1.09647 1.26539i
\(918\) 0 0
\(919\) −13821.8 −0.496127 −0.248063 0.968744i \(-0.579794\pi\)
−0.248063 + 0.968744i \(0.579794\pi\)
\(920\) 0 0
\(921\) −8337.98 −0.298312
\(922\) 0 0
\(923\) −11695.1 13496.8i −0.417061 0.481314i
\(924\) 0 0
\(925\) −226.056 1572.26i −0.00803533 0.0558869i
\(926\) 0 0
\(927\) 18448.7 40396.9i 0.653650 1.43129i
\(928\) 0 0
\(929\) 2370.49 16487.1i 0.0837173 0.582266i −0.904179 0.427153i \(-0.859517\pi\)
0.987897 0.155114i \(-0.0495743\pi\)
\(930\) 0 0
\(931\) −60888.8 17878.6i −2.14345 0.629373i
\(932\) 0 0
\(933\) −1520.66 3329.78i −0.0533593 0.116840i
\(934\) 0 0
\(935\) 39066.4 45085.0i 1.36642 1.57694i
\(936\) 0 0
\(937\) 47314.1 + 30406.9i 1.64961 + 1.06014i 0.931194 + 0.364525i \(0.118768\pi\)
0.718415 + 0.695615i \(0.244868\pi\)
\(938\) 0 0
\(939\) 7902.50 5078.63i 0.274641 0.176501i
\(940\) 0 0
\(941\) 11010.5 3232.96i 0.381435 0.112000i −0.0853933 0.996347i \(-0.527215\pi\)
0.466829 + 0.884348i \(0.345397\pi\)
\(942\) 0 0
\(943\) 13425.4 + 1179.48i 0.463618 + 0.0407309i
\(944\) 0 0
\(945\) 22033.8 6469.70i 0.758475 0.222708i
\(946\) 0 0
\(947\) −19351.2 + 12436.3i −0.664024 + 0.426743i −0.828767 0.559594i \(-0.810957\pi\)
0.164743 + 0.986337i \(0.447321\pi\)
\(948\) 0 0
\(949\) 3445.51 + 2214.29i 0.117857 + 0.0757419i
\(950\) 0 0
\(951\) 1283.58 1481.34i 0.0437677 0.0505106i
\(952\) 0 0
\(953\) −1852.19 4055.74i −0.0629574 0.137858i 0.875538 0.483149i \(-0.160507\pi\)
−0.938495 + 0.345292i \(0.887780\pi\)
\(954\) 0 0
\(955\) −12173.4 3574.43i −0.412484 0.121116i
\(956\) 0 0
\(957\) −1405.31 + 9774.18i −0.0474685 + 0.330151i
\(958\) 0 0
\(959\) −24852.3 + 54418.8i −0.836831 + 1.83240i
\(960\) 0 0
\(961\) −1129.82 7858.09i −0.0379249 0.263774i
\(962\) 0 0
\(963\) −9571.27 11045.8i −0.320280 0.369623i
\(964\) 0 0
\(965\) 10973.6 0.366066
\(966\) 0 0
\(967\) −3713.80 −0.123503 −0.0617517 0.998092i \(-0.519669\pi\)
−0.0617517 + 0.998092i \(0.519669\pi\)
\(968\) 0 0
\(969\) 2991.32 + 3452.17i 0.0991693 + 0.114447i
\(970\) 0 0
\(971\) 2320.14 + 16136.9i 0.0766805 + 0.533324i 0.991565 + 0.129609i \(0.0413723\pi\)
−0.914885 + 0.403715i \(0.867719\pi\)
\(972\) 0 0
\(973\) −2959.46 + 6480.32i −0.0975087 + 0.213514i
\(974\) 0 0
\(975\) 43.4537 302.227i 0.00142731 0.00992719i
\(976\) 0 0
\(977\) 19993.0 + 5870.48i 0.654691 + 0.192235i 0.592175 0.805809i \(-0.298269\pi\)
0.0625162 + 0.998044i \(0.480088\pi\)
\(978\) 0 0
\(979\) −11252.6 24639.7i −0.367348 0.804380i
\(980\) 0 0
\(981\) −24837.4 + 28663.9i −0.808357 + 0.932894i
\(982\) 0 0
\(983\) 4299.99 + 2763.43i 0.139520 + 0.0896642i 0.608539 0.793524i \(-0.291756\pi\)
−0.469019 + 0.883188i \(0.655392\pi\)
\(984\) 0 0
\(985\) 42580.8 27365.0i 1.37740 0.885201i
\(986\) 0 0
\(987\) −12897.2 + 3786.95i −0.415929 + 0.122128i
\(988\) 0 0
\(989\) 30947.8 16252.4i 0.995028 0.522545i
\(990\) 0 0
\(991\) −24438.3 + 7175.74i −0.783359 + 0.230015i −0.648869 0.760900i \(-0.724758\pi\)
−0.134490 + 0.990915i \(0.542940\pi\)
\(992\) 0 0
\(993\) 2454.39 1577.34i 0.0784368 0.0504083i
\(994\) 0 0
\(995\) −25266.2 16237.6i −0.805019 0.517354i
\(996\) 0 0
\(997\) 2418.90 2791.56i 0.0768378 0.0886756i −0.716029 0.698071i \(-0.754042\pi\)
0.792867 + 0.609395i \(0.208588\pi\)
\(998\) 0 0
\(999\) 2259.10 + 4946.74i 0.0715463 + 0.156665i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 184.4.i.a.9.6 90
23.18 even 11 inner 184.4.i.a.41.6 yes 90
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
184.4.i.a.9.6 90 1.1 even 1 trivial
184.4.i.a.41.6 yes 90 23.18 even 11 inner