gp: [N,k,chi] = [184,4,Mod(9,184)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(184, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 0, 10]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("184.9");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [90,0,-2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{90} + 2 T_{3}^{89} + 180 T_{3}^{88} + 223 T_{3}^{87} + 21633 T_{3}^{86} + 21233 T_{3}^{85} + \cdots + 11\!\cdots\!01 \)
T3^90 + 2*T3^89 + 180*T3^88 + 223*T3^87 + 21633*T3^86 + 21233*T3^85 + 2303710*T3^84 - 1362173*T3^83 + 234608031*T3^82 - 154597619*T3^81 + 21388116254*T3^80 - 24497712398*T3^79 + 1619152372256*T3^78 - 1231368408150*T3^77 + 138673729574530*T3^76 - 204716595770973*T3^75 + 12279377677941294*T3^74 - 27875731199917878*T3^73 + 1142641101966093338*T3^72 - 3271744881933801628*T3^71 + 101140911684367051111*T3^70 - 256658954750258245681*T3^69 + 6496120545557950470307*T3^68 - 17061765333750748297903*T3^67 + 351126770778412495462239*T3^66 - 839740511292028276045159*T3^65 + 16179997561703510416445276*T3^64 - 48074828487207928017478859*T3^63 + 720813177367103239287828378*T3^62 - 2209335161748106353505526633*T3^61 + 23026504133639984260174292938*T3^60 - 29164770784134716701090698277*T3^59 + 448305015109437713518920255299*T3^58 - 32369927995121578648216940903*T3^57 + 15247135002708052974414323796513*T3^56 - 36698757117218195384010002884280*T3^55 + 573748802415153053283110671958320*T3^54 - 1335344145777946382954069969688988*T3^53 + 24191957711935571517597087268139465*T3^52 - 149252010376878213702720083235386216*T3^51 + 1377412971088622887860697412810803722*T3^50 - 3852990347733154358250142586916522116*T3^49 + 9395183881536754998397499496021170935*T3^48 + 60461824202675268768514152136371785075*T3^47 + 26697135508365192785743656679182956492*T3^46 - 471638708361032732305678995237687867833*T3^45 + 13207628354900649603479846087206344725721*T3^44 - 53209990974978611338018963779618300879632*T3^43 + 420093094853704551884247583508965832778331*T3^42 - 1548934480975342961641040014040032146748618*T3^41 + 8779979064133645481178742274027008877469944*T3^40 - 17361593845097401974990472720497815032381472*T3^39 + 125320472866877512749879288261947477030286450*T3^38 - 499935359279175311555084156294334333652856747*T3^37 + 3909525274244648137486981636803395332123844395*T3^36 - 10779797945840779901661330440765553316238767012*T3^35 + 48639502087693064564744565046547486741219530397*T3^34 - 46301175512352204717101101613402700890043562349*T3^33 + 797749147024999783023577826682156838694271079032*T3^32 - 725484627975354512190620565240991507942861499963*T3^31 + 11759555948584102225074502449433342354876334997721*T3^30 - 9079745196869280902502860563556256114650259773272*T3^29 + 109313895528005400146323575145858812507642784920692*T3^28 - 96062762631164209321692932394905150804696959633217*T3^27 + 1370804030574436062816515722058923267850287133121762*T3^26 - 2718500027987125335216532120993252933165374903917075*T3^25 + 20447876203444758004657276636457056488572885729356530*T3^24 - 25862461291479683065516001120367938302418101783288251*T3^23 + 141313415385480288919109918666353162578421734140293598*T3^22 - 428738521512284466224775545315290579872398141685296883*T3^21 + 1306490964893386839766273699933754983363580769421729923*T3^20 - 6544392717165337482656963240462646489158566205743827523*T3^19 + 18387365870171212682474040432210790676114491484420385921*T3^18 - 48635741177445024442281057943116396775719086161171550333*T3^17 + 141660063796726388205744572057262051369172826685113068826*T3^16 - 239210741541048410745188718102452127120385515244693083855*T3^15 + 506121296432394055580592373257738192902575102837943371201*T3^14 - 848511104010422991978886536798730342824967693996904285418*T3^13 + 1031488797970770079131354147287519172322182660508648584251*T3^12 - 1469134362522371448370144060650303185181028964770814248915*T3^11 + 1644416748542718249996125901582712518748808617829389534780*T3^10 - 1150627151478225131206906940415290889815769801246603113312*T3^9 + 1298451340365462261477337269829488798591532357670887634154*T3^8 - 1247671634042590698379201195661630448634976909507373885731*T3^7 + 1032896708294383322759823849471994472199932509082015786678*T3^6 + 42659072973401723939619094092932991701538454252740546981*T3^5 + 8813361214822377876503824130130489094945313068949522512*T3^4 - 4034173627521802773894089329299132134395521071749414537*T3^3 + 456582184998485468846748051470856619227090298690643750*T3^2 + 35217538754789979846623900971065397974082470020899889*T3 + 11318560778487879693631790415646030886396809964508001
acting on \(S_{4}^{\mathrm{new}}(184, [\chi])\).