Properties

Label 184.4.i
Level $184$
Weight $4$
Character orbit 184.i
Rep. character $\chi_{184}(9,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $180$
Newform subspaces $2$
Sturm bound $96$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 184 = 2^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 184.i (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q(\zeta_{11})\)
Newform subspaces: \( 2 \)
Sturm bound: \(96\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(184, [\chi])\).

Total New Old
Modular forms 760 180 580
Cusp forms 680 180 500
Eisenstein series 80 0 80

Trace form

\( 180 q - 10 q^{5} - 134 q^{9} + 38 q^{11} - 100 q^{15} - 68 q^{17} + 182 q^{19} + 252 q^{21} + 56 q^{23} - 522 q^{25} - 444 q^{27} - 84 q^{29} - 196 q^{31} + 116 q^{33} - 1766 q^{35} - 1214 q^{37} + 176 q^{39}+ \cdots - 5128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(184, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
184.4.i.a 184.i 23.c $90$ $10.856$ None 184.4.i.a \(0\) \(-2\) \(0\) \(-87\) $\mathrm{SU}(2)[C_{11}]$
184.4.i.b 184.i 23.c $90$ $10.856$ None 184.4.i.b \(0\) \(2\) \(-10\) \(87\) $\mathrm{SU}(2)[C_{11}]$

Decomposition of \(S_{4}^{\mathrm{old}}(184, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(184, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 2}\)