Defining parameters
Level: | \( N \) | \(=\) | \( 184 = 2^{3} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 184.i (of order \(11\) and degree \(10\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 23 \) |
Character field: | \(\Q(\zeta_{11})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(184, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 760 | 180 | 580 |
Cusp forms | 680 | 180 | 500 |
Eisenstein series | 80 | 0 | 80 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(184, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
184.4.i.a | $90$ | $10.856$ | None | \(0\) | \(-2\) | \(0\) | \(-87\) | ||
184.4.i.b | $90$ | $10.856$ | None | \(0\) | \(2\) | \(-10\) | \(87\) |
Decomposition of \(S_{4}^{\mathrm{old}}(184, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(184, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 2}\)