Defining parameters
| Level: | \( N \) | \(=\) | \( 1815 = 3 \cdot 5 \cdot 11^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1815.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 25 \) | ||
| Sturm bound: | \(528\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(2\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1815))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 288 | 72 | 216 |
| Cusp forms | 241 | 72 | 169 |
| Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(5\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(30\) | \(8\) | \(22\) | \(25\) | \(8\) | \(17\) | \(5\) | \(0\) | \(5\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(42\) | \(10\) | \(32\) | \(36\) | \(10\) | \(26\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(42\) | \(14\) | \(28\) | \(36\) | \(14\) | \(22\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(30\) | \(5\) | \(25\) | \(24\) | \(5\) | \(19\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(36\) | \(10\) | \(26\) | \(30\) | \(10\) | \(20\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(36\) | \(8\) | \(28\) | \(30\) | \(8\) | \(22\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(36\) | \(4\) | \(32\) | \(30\) | \(4\) | \(26\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(36\) | \(13\) | \(23\) | \(30\) | \(13\) | \(17\) | \(6\) | \(0\) | \(6\) | |||
| Plus space | \(+\) | \(132\) | \(25\) | \(107\) | \(109\) | \(25\) | \(84\) | \(23\) | \(0\) | \(23\) | |||||
| Minus space | \(-\) | \(156\) | \(47\) | \(109\) | \(132\) | \(47\) | \(85\) | \(24\) | \(0\) | \(24\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1815))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1815))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1815)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(165))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(363))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(605))\)\(^{\oplus 2}\)