Properties

Label 1815.2.a
Level $1815$
Weight $2$
Character orbit 1815.a
Rep. character $\chi_{1815}(1,\cdot)$
Character field $\Q$
Dimension $72$
Newform subspaces $25$
Sturm bound $528$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1815 = 3 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1815.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 25 \)
Sturm bound: \(528\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1815))\).

Total New Old
Modular forms 288 72 216
Cusp forms 241 72 169
Eisenstein series 47 0 47

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)\(11\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(30\)\(8\)\(22\)\(25\)\(8\)\(17\)\(5\)\(0\)\(5\)
\(+\)\(+\)\(-\)\(-\)\(42\)\(10\)\(32\)\(36\)\(10\)\(26\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(+\)\(-\)\(42\)\(14\)\(28\)\(36\)\(14\)\(22\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(+\)\(30\)\(5\)\(25\)\(24\)\(5\)\(19\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(+\)\(-\)\(36\)\(10\)\(26\)\(30\)\(10\)\(20\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(-\)\(+\)\(36\)\(8\)\(28\)\(30\)\(8\)\(22\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(+\)\(+\)\(36\)\(4\)\(32\)\(30\)\(4\)\(26\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(-\)\(-\)\(36\)\(13\)\(23\)\(30\)\(13\)\(17\)\(6\)\(0\)\(6\)
Plus space\(+\)\(132\)\(25\)\(107\)\(109\)\(25\)\(84\)\(23\)\(0\)\(23\)
Minus space\(-\)\(156\)\(47\)\(109\)\(132\)\(47\)\(85\)\(24\)\(0\)\(24\)

Trace form

\( 72 q + 4 q^{2} - 2 q^{3} + 72 q^{4} - 2 q^{6} + 12 q^{8} + 72 q^{9} - 6 q^{12} + 24 q^{14} - 2 q^{15} + 80 q^{16} + 8 q^{17} + 4 q^{18} - 8 q^{19} + 8 q^{20} - 8 q^{21} + 16 q^{23} + 6 q^{24} + 72 q^{25}+ \cdots - 68 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1815))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5 11
1815.2.a.a 1815.a 1.a $1$ $14.493$ \(\Q\) None 1815.2.a.a \(-1\) \(1\) \(-1\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}-q^{4}-q^{5}-q^{6}-2q^{7}+\cdots\)
1815.2.a.b 1815.a 1.a $1$ $14.493$ \(\Q\) None 1815.2.a.b \(0\) \(1\) \(-1\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{4}-q^{5}-q^{7}+q^{9}-2q^{12}+\cdots\)
1815.2.a.c 1815.a 1.a $1$ $14.493$ \(\Q\) None 1815.2.a.b \(0\) \(1\) \(-1\) \(1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{4}-q^{5}+q^{7}+q^{9}-2q^{12}+\cdots\)
1815.2.a.d 1815.a 1.a $1$ $14.493$ \(\Q\) None 15.2.a.a \(1\) \(-1\) \(1\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}-q^{4}+q^{5}-q^{6}-3q^{8}+\cdots\)
1815.2.a.e 1815.a 1.a $1$ $14.493$ \(\Q\) None 1815.2.a.a \(1\) \(1\) \(-1\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}-q^{4}-q^{5}+q^{6}+2q^{7}+\cdots\)
1815.2.a.f 1815.a 1.a $2$ $14.493$ \(\Q(\sqrt{5}) \) None 1815.2.a.f \(-1\) \(-2\) \(-2\) \(-2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}-q^{3}+(-1+\beta )q^{4}-q^{5}+\beta q^{6}+\cdots\)
1815.2.a.g 1815.a 1.a $2$ $14.493$ \(\Q(\sqrt{3}) \) None 1815.2.a.g \(0\) \(-2\) \(-2\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{4}-q^{5}-\beta q^{7}+q^{9}+2q^{12}+\cdots\)
1815.2.a.h 1815.a 1.a $2$ $14.493$ \(\Q(\sqrt{3}) \) None 1815.2.a.h \(0\) \(-2\) \(-2\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-q^{3}+q^{4}-q^{5}-\beta q^{6}-\beta q^{8}+\cdots\)
1815.2.a.i 1815.a 1.a $2$ $14.493$ \(\Q(\sqrt{3}) \) None 165.2.a.b \(0\) \(2\) \(-2\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+q^{3}+q^{4}-q^{5}+\beta q^{6}-2q^{7}+\cdots\)
1815.2.a.j 1815.a 1.a $2$ $14.493$ \(\Q(\sqrt{5}) \) None 1815.2.a.f \(1\) \(-2\) \(-2\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-q^{3}+(-1+\beta )q^{4}-q^{5}-\beta q^{6}+\cdots\)
1815.2.a.k 1815.a 1.a $2$ $14.493$ \(\Q(\sqrt{2}) \) None 165.2.a.a \(2\) \(-2\) \(-2\) \(4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}-q^{3}+(1+2\beta )q^{4}-q^{5}+\cdots\)
1815.2.a.l 1815.a 1.a $3$ $14.493$ 3.3.469.1 None 1815.2.a.l \(-1\) \(3\) \(3\) \(-3\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+q^{3}+(2+\beta _{2})q^{4}+q^{5}-\beta _{1}q^{6}+\cdots\)
1815.2.a.m 1815.a 1.a $3$ $14.493$ 3.3.148.1 None 165.2.a.c \(1\) \(3\) \(3\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+q^{3}+(1+\beta _{1}+\beta _{2})q^{4}+q^{5}+\cdots\)
1815.2.a.n 1815.a 1.a $3$ $14.493$ 3.3.469.1 None 1815.2.a.l \(1\) \(3\) \(3\) \(3\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+q^{3}+(2+\beta _{2})q^{4}+q^{5}+\beta _{1}q^{6}+\cdots\)
1815.2.a.o 1815.a 1.a $4$ $14.493$ 4.4.725.1 None 165.2.m.a \(-5\) \(4\) \(-4\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1}+\beta _{2})q^{2}+q^{3}+(3-\beta _{1}+\cdots)q^{4}+\cdots\)
1815.2.a.p 1815.a 1.a $4$ $14.493$ 4.4.725.1 None 165.2.m.d \(-3\) \(4\) \(4\) \(-6\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+q^{3}+(-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
1815.2.a.q 1815.a 1.a $4$ $14.493$ \(\Q(\zeta_{15})^+\) None 165.2.m.c \(-1\) \(-4\) \(4\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(\beta _{2}+\beta _{3})q^{2}-q^{3}+\beta _{1}q^{4}+q^{5}+\cdots\)
1815.2.a.r 1815.a 1.a $4$ $14.493$ 4.4.5725.1 None 165.2.m.b \(-1\) \(-4\) \(-4\) \(8\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(\beta _{1}-\beta _{2})q^{2}-q^{3}+(3-\beta _{2}-\beta _{3})q^{4}+\cdots\)
1815.2.a.s 1815.a 1.a $4$ $14.493$ 4.4.8112.1 None 1815.2.a.s \(0\) \(-4\) \(4\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{2}-q^{3}+(2-\beta _{3})q^{4}+q^{5}+\beta _{2}q^{6}+\cdots\)
1815.2.a.t 1815.a 1.a $4$ $14.493$ \(\Q(\sqrt{3}, \sqrt{7})\) None 1815.2.a.t \(0\) \(4\) \(-4\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{3}q^{2}+q^{3}-\beta _{2}q^{4}-q^{5}+\beta _{3}q^{6}+\cdots\)
1815.2.a.u 1815.a 1.a $4$ $14.493$ \(\Q(\zeta_{15})^+\) None 165.2.m.c \(1\) \(-4\) \(4\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-\beta _{2}-\beta _{3})q^{2}-q^{3}+\beta _{1}q^{4}+q^{5}+\cdots\)
1815.2.a.v 1815.a 1.a $4$ $14.493$ 4.4.5725.1 None 165.2.m.b \(1\) \(-4\) \(-4\) \(-8\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-\beta _{1}+\beta _{2})q^{2}-q^{3}+(3-\beta _{2}-\beta _{3})q^{4}+\cdots\)
1815.2.a.w 1815.a 1.a $4$ $14.493$ 4.4.725.1 None 165.2.m.d \(3\) \(4\) \(4\) \(6\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+q^{3}+(-\beta _{1}+\beta _{2})q^{4}+\cdots\)
1815.2.a.x 1815.a 1.a $4$ $14.493$ 4.4.725.1 None 165.2.m.a \(5\) \(4\) \(-4\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(2-\beta _{1}-\beta _{2})q^{2}+q^{3}+(3-\beta _{1}-2\beta _{2}+\cdots)q^{4}+\cdots\)
1815.2.a.y 1815.a 1.a $6$ $14.493$ 6.6.437199552.1 None 1815.2.a.y \(0\) \(-6\) \(6\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-q^{3}+(2+\beta _{2})q^{4}+q^{5}-\beta _{1}q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1815))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1815)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(165))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(363))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(605))\)\(^{\oplus 2}\)