Properties

Label 15.2.a.a
Level 15
Weight 2
Character orbit 15.a
Self dual Yes
Analytic conductor 0.120
Analytic rank 0
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 15 = 3 \cdot 5 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 15.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(0.119775603032\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} - q^{3} - q^{4} + q^{5} + q^{6} + 3q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} - q^{3} - q^{4} + q^{5} + q^{6} + 3q^{8} + q^{9} - q^{10} - 4q^{11} + q^{12} - 2q^{13} - q^{15} - q^{16} + 2q^{17} - q^{18} + 4q^{19} - q^{20} + 4q^{22} - 3q^{24} + q^{25} + 2q^{26} - q^{27} - 2q^{29} + q^{30} - 5q^{32} + 4q^{33} - 2q^{34} - q^{36} - 10q^{37} - 4q^{38} + 2q^{39} + 3q^{40} + 10q^{41} + 4q^{43} + 4q^{44} + q^{45} + 8q^{47} + q^{48} - 7q^{49} - q^{50} - 2q^{51} + 2q^{52} - 10q^{53} + q^{54} - 4q^{55} - 4q^{57} + 2q^{58} - 4q^{59} + q^{60} - 2q^{61} + 7q^{64} - 2q^{65} - 4q^{66} + 12q^{67} - 2q^{68} - 8q^{71} + 3q^{72} + 10q^{73} + 10q^{74} - q^{75} - 4q^{76} - 2q^{78} - q^{80} + q^{81} - 10q^{82} + 12q^{83} + 2q^{85} - 4q^{86} + 2q^{87} - 12q^{88} - 6q^{89} - q^{90} - 8q^{94} + 4q^{95} + 5q^{96} + 2q^{97} + 7q^{98} - 4q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 −1.00000 −1.00000 1.00000 1.00000 0 3.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(5\) \(-1\)

Hecke kernels

There are no other newforms in \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\).