Properties

Label 1815.2.a.g
Level $1815$
Weight $2$
Character orbit 1815.a
Self dual yes
Analytic conductor $14.493$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1815 = 3 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1815.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(14.4928479669\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
Defining polynomial: \(x^{2} - 3\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} -2 q^{4} - q^{5} -\beta q^{7} + q^{9} +O(q^{10})\) \( q - q^{3} -2 q^{4} - q^{5} -\beta q^{7} + q^{9} + 2 q^{12} + q^{15} + 4 q^{16} + 2 \beta q^{17} + 3 \beta q^{19} + 2 q^{20} + \beta q^{21} + 6 q^{23} + q^{25} - q^{27} + 2 \beta q^{28} -4 \beta q^{29} + q^{31} + \beta q^{35} -2 q^{36} -5 q^{37} -2 \beta q^{41} -6 \beta q^{43} - q^{45} -12 q^{47} -4 q^{48} -4 q^{49} -2 \beta q^{51} + 6 q^{53} -3 \beta q^{57} -2 q^{60} + 7 \beta q^{61} -\beta q^{63} -8 q^{64} -5 q^{67} -4 \beta q^{68} -6 q^{69} -6 q^{71} + \beta q^{73} - q^{75} -6 \beta q^{76} + 9 \beta q^{79} -4 q^{80} + q^{81} + 4 \beta q^{83} -2 \beta q^{84} -2 \beta q^{85} + 4 \beta q^{87} -6 q^{89} -12 q^{92} - q^{93} -3 \beta q^{95} -13 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{3} - 4q^{4} - 2q^{5} + 2q^{9} + O(q^{10}) \) \( 2q - 2q^{3} - 4q^{4} - 2q^{5} + 2q^{9} + 4q^{12} + 2q^{15} + 8q^{16} + 4q^{20} + 12q^{23} + 2q^{25} - 2q^{27} + 2q^{31} - 4q^{36} - 10q^{37} - 2q^{45} - 24q^{47} - 8q^{48} - 8q^{49} + 12q^{53} - 4q^{60} - 16q^{64} - 10q^{67} - 12q^{69} - 12q^{71} - 2q^{75} - 8q^{80} + 2q^{81} - 12q^{89} - 24q^{92} - 2q^{93} - 26q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.73205
−1.73205
0 −1.00000 −2.00000 −1.00000 0 −1.73205 0 1.00000 0
1.2 0 −1.00000 −2.00000 −1.00000 0 1.73205 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(5\) \(1\)
\(11\) \(1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1815.2.a.g 2
3.b odd 2 1 5445.2.a.q 2
5.b even 2 1 9075.2.a.bl 2
11.b odd 2 1 inner 1815.2.a.g 2
33.d even 2 1 5445.2.a.q 2
55.d odd 2 1 9075.2.a.bl 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1815.2.a.g 2 1.a even 1 1 trivial
1815.2.a.g 2 11.b odd 2 1 inner
5445.2.a.q 2 3.b odd 2 1
5445.2.a.q 2 33.d even 2 1
9075.2.a.bl 2 5.b even 2 1
9075.2.a.bl 2 55.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1815))\):

\( T_{2} \)
\( T_{7}^{2} - 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( ( 1 + T )^{2} \)
$5$ \( ( 1 + T )^{2} \)
$7$ \( -3 + T^{2} \)
$11$ \( T^{2} \)
$13$ \( T^{2} \)
$17$ \( -12 + T^{2} \)
$19$ \( -27 + T^{2} \)
$23$ \( ( -6 + T )^{2} \)
$29$ \( -48 + T^{2} \)
$31$ \( ( -1 + T )^{2} \)
$37$ \( ( 5 + T )^{2} \)
$41$ \( -12 + T^{2} \)
$43$ \( -108 + T^{2} \)
$47$ \( ( 12 + T )^{2} \)
$53$ \( ( -6 + T )^{2} \)
$59$ \( T^{2} \)
$61$ \( -147 + T^{2} \)
$67$ \( ( 5 + T )^{2} \)
$71$ \( ( 6 + T )^{2} \)
$73$ \( -3 + T^{2} \)
$79$ \( -243 + T^{2} \)
$83$ \( -48 + T^{2} \)
$89$ \( ( 6 + T )^{2} \)
$97$ \( ( 13 + T )^{2} \)
show more
show less