Properties

Label 1815.2.a.e
Level $1815$
Weight $2$
Character orbit 1815.a
Self dual yes
Analytic conductor $14.493$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1815 = 3 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1815.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(14.4928479669\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{3} - q^{4} - q^{5} + q^{6} + 2 q^{7} - 3 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + q^{3} - q^{4} - q^{5} + q^{6} + 2 q^{7} - 3 q^{8} + q^{9} - q^{10} - q^{12} - 4 q^{13} + 2 q^{14} - q^{15} - q^{16} + 6 q^{17} + q^{18} + 6 q^{19} + q^{20} + 2 q^{21} + 4 q^{23} - 3 q^{24} + q^{25} - 4 q^{26} + q^{27} - 2 q^{28} - 6 q^{29} - q^{30} + 8 q^{31} + 5 q^{32} + 6 q^{34} - 2 q^{35} - q^{36} - 6 q^{37} + 6 q^{38} - 4 q^{39} + 3 q^{40} + 6 q^{41} + 2 q^{42} + 6 q^{43} - q^{45} + 4 q^{46} + 8 q^{47} - q^{48} - 3 q^{49} + q^{50} + 6 q^{51} + 4 q^{52} + 6 q^{53} + q^{54} - 6 q^{56} + 6 q^{57} - 6 q^{58} + q^{60} - 4 q^{61} + 8 q^{62} + 2 q^{63} + 7 q^{64} + 4 q^{65} + 12 q^{67} - 6 q^{68} + 4 q^{69} - 2 q^{70} + 8 q^{71} - 3 q^{72} - 16 q^{73} - 6 q^{74} + q^{75} - 6 q^{76} - 4 q^{78} - 2 q^{79} + q^{80} + q^{81} + 6 q^{82} - 2 q^{84} - 6 q^{85} + 6 q^{86} - 6 q^{87} + 10 q^{89} - q^{90} - 8 q^{91} - 4 q^{92} + 8 q^{93} + 8 q^{94} - 6 q^{95} + 5 q^{96} - 6 q^{97} - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 1.00000 −1.00000 −1.00000 1.00000 2.00000 −3.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(1\)
\(11\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1815.2.a.e yes 1
3.b odd 2 1 5445.2.a.e 1
5.b even 2 1 9075.2.a.d 1
11.b odd 2 1 1815.2.a.a 1
33.d even 2 1 5445.2.a.j 1
55.d odd 2 1 9075.2.a.n 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1815.2.a.a 1 11.b odd 2 1
1815.2.a.e yes 1 1.a even 1 1 trivial
5445.2.a.e 1 3.b odd 2 1
5445.2.a.j 1 33.d even 2 1
9075.2.a.d 1 5.b even 2 1
9075.2.a.n 1 55.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1815))\):

\( T_{2} - 1 \) Copy content Toggle raw display
\( T_{7} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T - 2 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 4 \) Copy content Toggle raw display
$17$ \( T - 6 \) Copy content Toggle raw display
$19$ \( T - 6 \) Copy content Toggle raw display
$23$ \( T - 4 \) Copy content Toggle raw display
$29$ \( T + 6 \) Copy content Toggle raw display
$31$ \( T - 8 \) Copy content Toggle raw display
$37$ \( T + 6 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T - 6 \) Copy content Toggle raw display
$47$ \( T - 8 \) Copy content Toggle raw display
$53$ \( T - 6 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T + 4 \) Copy content Toggle raw display
$67$ \( T - 12 \) Copy content Toggle raw display
$71$ \( T - 8 \) Copy content Toggle raw display
$73$ \( T + 16 \) Copy content Toggle raw display
$79$ \( T + 2 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T - 10 \) Copy content Toggle raw display
$97$ \( T + 6 \) Copy content Toggle raw display
show more
show less