Properties

Label 180.9.c.b.91.10
Level $180$
Weight $9$
Character 180.91
Analytic conductor $73.328$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [180,9,Mod(91,180)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(180, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("180.91"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 180.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(73.3281498110\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.10
Character \(\chi\) \(=\) 180.91
Dual form 180.9.c.b.91.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-9.51821 + 12.8609i) q^{2} +(-74.8072 - 244.826i) q^{4} +279.508 q^{5} +2236.25i q^{7} +(3860.72 + 1368.22i) q^{8} +(-2660.42 + 3594.74i) q^{10} +11333.8i q^{11} +43422.0 q^{13} +(-28760.3 - 21285.1i) q^{14} +(-54343.8 + 36629.5i) q^{16} +106270. q^{17} +169252. i q^{19} +(-20909.3 - 68431.0i) q^{20} +(-145763. - 107877. i) q^{22} -301142. i q^{23} +78125.0 q^{25} +(-413299. + 558447. i) q^{26} +(547493. - 167288. i) q^{28} -1.13613e6 q^{29} -1.49838e6i q^{31} +(46165.6 - 1.04756e6i) q^{32} +(-1.01150e6 + 1.36673e6i) q^{34} +625051. i q^{35} +3.00588e6 q^{37} +(-2.17674e6 - 1.61098e6i) q^{38} +(1.07911e6 + 382429. i) q^{40} +1.45494e6 q^{41} -1.84278e6i q^{43} +(2.77481e6 - 847849. i) q^{44} +(3.87297e6 + 2.86634e6i) q^{46} +3.23470e6i q^{47} +763979. q^{49} +(-743610. + 1.00476e6i) q^{50} +(-3.24828e6 - 1.06308e7i) q^{52} +2.47758e6 q^{53} +3.16789e6i q^{55} +(-3.05968e6 + 8.63355e6i) q^{56} +(1.08139e7 - 1.46117e7i) q^{58} +1.98398e7i q^{59} +2.31511e7 q^{61} +(1.92706e7 + 1.42619e7i) q^{62} +(1.30332e7 + 1.05646e7i) q^{64} +1.21368e7 q^{65} +1.38239e7i q^{67} +(-7.94974e6 - 2.60176e7i) q^{68} +(-8.03874e6 - 5.94937e6i) q^{70} -3.24707e7i q^{71} -2.85975e7 q^{73} +(-2.86106e7 + 3.86584e7i) q^{74} +(4.14374e7 - 1.26613e7i) q^{76} -2.53452e7 q^{77} -5.42305e7i q^{79} +(-1.51895e7 + 1.02383e7i) q^{80} +(-1.38484e7 + 1.87119e7i) q^{82} +8.59356e7i q^{83} +2.97033e7 q^{85} +(2.36999e7 + 1.75400e7i) q^{86} +(-1.55071e7 + 4.37567e7i) q^{88} -4.60584e7 q^{89} +9.71024e7i q^{91} +(-7.37275e7 + 2.25276e7i) q^{92} +(-4.16013e7 - 3.07886e7i) q^{94} +4.73074e7i q^{95} -3.17442e7 q^{97} +(-7.27171e6 + 9.82548e6i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 610 q^{4} - 8750 q^{10} - 51392 q^{13} + 11986 q^{16} - 758068 q^{22} + 2500000 q^{25} + 976324 q^{28} - 6117428 q^{34} + 5152064 q^{37} - 96250 q^{40} - 10391752 q^{46} - 11002976 q^{49} + 13976584 q^{52}+ \cdots + 80579520 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −9.51821 + 12.8609i −0.594888 + 0.803808i
\(3\) 0 0
\(4\) −74.8072 244.826i −0.292216 0.956352i
\(5\) 279.508 0.447214
\(6\) 0 0
\(7\) 2236.25i 0.931384i 0.884947 + 0.465692i \(0.154194\pi\)
−0.884947 + 0.465692i \(0.845806\pi\)
\(8\) 3860.72 + 1368.22i 0.942560 + 0.334038i
\(9\) 0 0
\(10\) −2660.42 + 3594.74i −0.266042 + 0.359474i
\(11\) 11333.8i 0.774113i 0.922056 + 0.387057i \(0.126508\pi\)
−0.922056 + 0.387057i \(0.873492\pi\)
\(12\) 0 0
\(13\) 43422.0 1.52032 0.760162 0.649734i \(-0.225120\pi\)
0.760162 + 0.649734i \(0.225120\pi\)
\(14\) −28760.3 21285.1i −0.748654 0.554069i
\(15\) 0 0
\(16\) −54343.8 + 36629.5i −0.829220 + 0.558922i
\(17\) 106270. 1.27237 0.636185 0.771536i \(-0.280511\pi\)
0.636185 + 0.771536i \(0.280511\pi\)
\(18\) 0 0
\(19\) 169252.i 1.29873i 0.760476 + 0.649366i \(0.224966\pi\)
−0.760476 + 0.649366i \(0.775034\pi\)
\(20\) −20909.3 68431.0i −0.130683 0.427694i
\(21\) 0 0
\(22\) −145763. 107877.i −0.622239 0.460511i
\(23\) 301142.i 1.07612i −0.842907 0.538059i \(-0.819158\pi\)
0.842907 0.538059i \(-0.180842\pi\)
\(24\) 0 0
\(25\) 78125.0 0.200000
\(26\) −413299. + 558447.i −0.904423 + 1.22205i
\(27\) 0 0
\(28\) 547493. 167288.i 0.890731 0.272165i
\(29\) −1.13613e6 −1.60633 −0.803166 0.595755i \(-0.796853\pi\)
−0.803166 + 0.595755i \(0.796853\pi\)
\(30\) 0 0
\(31\) 1.49838e6i 1.62246i −0.584724 0.811232i \(-0.698797\pi\)
0.584724 0.811232i \(-0.301203\pi\)
\(32\) 46165.6 1.04756e6i 0.0440269 0.999030i
\(33\) 0 0
\(34\) −1.01150e6 + 1.36673e6i −0.756919 + 1.02274i
\(35\) 625051.i 0.416527i
\(36\) 0 0
\(37\) 3.00588e6 1.60385 0.801926 0.597424i \(-0.203809\pi\)
0.801926 + 0.597424i \(0.203809\pi\)
\(38\) −2.17674e6 1.61098e6i −1.04393 0.772601i
\(39\) 0 0
\(40\) 1.07911e6 + 382429.i 0.421526 + 0.149386i
\(41\) 1.45494e6 0.514884 0.257442 0.966294i \(-0.417120\pi\)
0.257442 + 0.966294i \(0.417120\pi\)
\(42\) 0 0
\(43\) 1.84278e6i 0.539015i −0.962998 0.269507i \(-0.913139\pi\)
0.962998 0.269507i \(-0.0868608\pi\)
\(44\) 2.77481e6 847849.i 0.740325 0.226208i
\(45\) 0 0
\(46\) 3.87297e6 + 2.86634e6i 0.864993 + 0.640171i
\(47\) 3.23470e6i 0.662892i 0.943474 + 0.331446i \(0.107536\pi\)
−0.943474 + 0.331446i \(0.892464\pi\)
\(48\) 0 0
\(49\) 763979. 0.132525
\(50\) −743610. + 1.00476e6i −0.118978 + 0.160762i
\(51\) 0 0
\(52\) −3.24828e6 1.06308e7i −0.444262 1.45396i
\(53\) 2.47758e6 0.313996 0.156998 0.987599i \(-0.449818\pi\)
0.156998 + 0.987599i \(0.449818\pi\)
\(54\) 0 0
\(55\) 3.16789e6i 0.346194i
\(56\) −3.05968e6 + 8.63355e6i −0.311117 + 0.877885i
\(57\) 0 0
\(58\) 1.08139e7 1.46117e7i 0.955589 1.29118i
\(59\) 1.98398e7i 1.63731i 0.574288 + 0.818654i \(0.305279\pi\)
−0.574288 + 0.818654i \(0.694721\pi\)
\(60\) 0 0
\(61\) 2.31511e7 1.67206 0.836032 0.548681i \(-0.184870\pi\)
0.836032 + 0.548681i \(0.184870\pi\)
\(62\) 1.92706e7 + 1.42619e7i 1.30415 + 0.965185i
\(63\) 0 0
\(64\) 1.30332e7 + 1.05646e7i 0.776838 + 0.629701i
\(65\) 1.21368e7 0.679909
\(66\) 0 0
\(67\) 1.38239e7i 0.686011i 0.939333 + 0.343006i \(0.111445\pi\)
−0.939333 + 0.343006i \(0.888555\pi\)
\(68\) −7.94974e6 2.60176e7i −0.371807 1.21684i
\(69\) 0 0
\(70\) −8.03874e6 5.94937e6i −0.334808 0.247787i
\(71\) 3.24707e7i 1.27779i −0.769295 0.638894i \(-0.779392\pi\)
0.769295 0.638894i \(-0.220608\pi\)
\(72\) 0 0
\(73\) −2.85975e7 −1.00702 −0.503508 0.863991i \(-0.667957\pi\)
−0.503508 + 0.863991i \(0.667957\pi\)
\(74\) −2.86106e7 + 3.86584e7i −0.954112 + 1.28919i
\(75\) 0 0
\(76\) 4.14374e7 1.26613e7i 1.24205 0.379510i
\(77\) −2.53452e7 −0.720996
\(78\) 0 0
\(79\) 5.42305e7i 1.39231i −0.717893 0.696154i \(-0.754893\pi\)
0.717893 0.696154i \(-0.245107\pi\)
\(80\) −1.51895e7 + 1.02383e7i −0.370838 + 0.249958i
\(81\) 0 0
\(82\) −1.38484e7 + 1.87119e7i −0.306298 + 0.413868i
\(83\) 8.59356e7i 1.81076i 0.424602 + 0.905380i \(0.360414\pi\)
−0.424602 + 0.905380i \(0.639586\pi\)
\(84\) 0 0
\(85\) 2.97033e7 0.569022
\(86\) 2.36999e7 + 1.75400e7i 0.433264 + 0.320654i
\(87\) 0 0
\(88\) −1.55071e7 + 4.37567e7i −0.258583 + 0.729648i
\(89\) −4.60584e7 −0.734089 −0.367044 0.930203i \(-0.619630\pi\)
−0.367044 + 0.930203i \(0.619630\pi\)
\(90\) 0 0
\(91\) 9.71024e7i 1.41600i
\(92\) −7.37275e7 + 2.25276e7i −1.02915 + 0.314459i
\(93\) 0 0
\(94\) −4.16013e7 3.07886e7i −0.532838 0.394347i
\(95\) 4.73074e7i 0.580811i
\(96\) 0 0
\(97\) −3.17442e7 −0.358572 −0.179286 0.983797i \(-0.557379\pi\)
−0.179286 + 0.983797i \(0.557379\pi\)
\(98\) −7.27171e6 + 9.82548e6i −0.0788374 + 0.106524i
\(99\) 0 0
\(100\) −5.84431e6 1.91270e7i −0.0584431 0.191270i
\(101\) −1.18372e8 −1.13754 −0.568768 0.822498i \(-0.692580\pi\)
−0.568768 + 0.822498i \(0.692580\pi\)
\(102\) 0 0
\(103\) 1.85632e7i 0.164931i 0.996594 + 0.0824657i \(0.0262795\pi\)
−0.996594 + 0.0824657i \(0.973721\pi\)
\(104\) 1.67640e8 + 5.94107e7i 1.43300 + 0.507845i
\(105\) 0 0
\(106\) −2.35822e7 + 3.18640e7i −0.186793 + 0.252393i
\(107\) 3.88491e7i 0.296378i −0.988959 0.148189i \(-0.952656\pi\)
0.988959 0.148189i \(-0.0473444\pi\)
\(108\) 0 0
\(109\) 8.82410e7 0.625121 0.312561 0.949898i \(-0.398813\pi\)
0.312561 + 0.949898i \(0.398813\pi\)
\(110\) −4.07420e7 3.01527e7i −0.278274 0.205947i
\(111\) 0 0
\(112\) −8.19129e7 1.21526e8i −0.520571 0.772322i
\(113\) 4.38503e7 0.268942 0.134471 0.990918i \(-0.457066\pi\)
0.134471 + 0.990918i \(0.457066\pi\)
\(114\) 0 0
\(115\) 8.41718e7i 0.481255i
\(116\) 8.49906e7 + 2.78154e8i 0.469396 + 1.53622i
\(117\) 0 0
\(118\) −2.55159e8 1.88840e8i −1.31608 0.974015i
\(119\) 2.37646e8i 1.18507i
\(120\) 0 0
\(121\) 8.59040e7 0.400749
\(122\) −2.20357e8 + 2.97745e8i −0.994691 + 1.34402i
\(123\) 0 0
\(124\) −3.66843e8 + 1.12090e8i −1.55165 + 0.474109i
\(125\) 2.18366e7 0.0894427
\(126\) 0 0
\(127\) 1.37839e8i 0.529856i 0.964268 + 0.264928i \(0.0853482\pi\)
−0.964268 + 0.264928i \(0.914652\pi\)
\(128\) −2.59923e8 + 6.70624e7i −0.968290 + 0.249827i
\(129\) 0 0
\(130\) −1.15521e8 + 1.56091e8i −0.404470 + 0.546517i
\(131\) 4.37311e8i 1.48493i 0.669886 + 0.742464i \(0.266343\pi\)
−0.669886 + 0.742464i \(0.733657\pi\)
\(132\) 0 0
\(133\) −3.78490e8 −1.20962
\(134\) −1.77788e8 1.31579e8i −0.551421 0.408100i
\(135\) 0 0
\(136\) 4.10278e8 + 1.45400e8i 1.19929 + 0.425020i
\(137\) 2.80555e8 0.796407 0.398204 0.917297i \(-0.369634\pi\)
0.398204 + 0.917297i \(0.369634\pi\)
\(138\) 0 0
\(139\) 5.83632e8i 1.56343i 0.623633 + 0.781717i \(0.285656\pi\)
−0.623633 + 0.781717i \(0.714344\pi\)
\(140\) 1.53029e8 4.67584e7i 0.398347 0.121716i
\(141\) 0 0
\(142\) 4.17604e8 + 3.09063e8i 1.02710 + 0.760141i
\(143\) 4.92135e8i 1.17690i
\(144\) 0 0
\(145\) −3.17558e8 −0.718374
\(146\) 2.72197e8 3.67790e8i 0.599062 0.809447i
\(147\) 0 0
\(148\) −2.24861e8 7.35917e8i −0.468670 1.53385i
\(149\) −4.94113e8 −1.00249 −0.501246 0.865305i \(-0.667125\pi\)
−0.501246 + 0.865305i \(0.667125\pi\)
\(150\) 0 0
\(151\) 3.84901e8i 0.740358i 0.928960 + 0.370179i \(0.120704\pi\)
−0.928960 + 0.370179i \(0.879296\pi\)
\(152\) −2.31574e8 + 6.53436e8i −0.433825 + 1.22413i
\(153\) 0 0
\(154\) 2.41241e8 3.25963e8i 0.428912 0.579543i
\(155\) 4.18810e8i 0.725588i
\(156\) 0 0
\(157\) 6.31361e8 1.03915 0.519576 0.854424i \(-0.326090\pi\)
0.519576 + 0.854424i \(0.326090\pi\)
\(158\) 6.97454e8 + 5.16177e8i 1.11915 + 0.828267i
\(159\) 0 0
\(160\) 1.29037e7 2.92802e8i 0.0196894 0.446780i
\(161\) 6.73430e8 1.00228
\(162\) 0 0
\(163\) 1.12044e8i 0.158723i 0.996846 + 0.0793614i \(0.0252881\pi\)
−0.996846 + 0.0793614i \(0.974712\pi\)
\(164\) −1.08840e8 3.56207e8i −0.150457 0.492411i
\(165\) 0 0
\(166\) −1.10521e9 8.17954e8i −1.45550 1.07720i
\(167\) 3.81124e8i 0.490005i 0.969522 + 0.245003i \(0.0787889\pi\)
−0.969522 + 0.245003i \(0.921211\pi\)
\(168\) 0 0
\(169\) 1.06974e9 1.31138
\(170\) −2.82722e8 + 3.82012e8i −0.338504 + 0.457384i
\(171\) 0 0
\(172\) −4.51162e8 + 1.37854e8i −0.515488 + 0.157509i
\(173\) −1.50210e9 −1.67693 −0.838465 0.544956i \(-0.816547\pi\)
−0.838465 + 0.544956i \(0.816547\pi\)
\(174\) 0 0
\(175\) 1.74707e8i 0.186277i
\(176\) −4.15152e8 6.15921e8i −0.432669 0.641910i
\(177\) 0 0
\(178\) 4.38393e8 5.92354e8i 0.436701 0.590067i
\(179\) 5.86501e7i 0.0571290i 0.999592 + 0.0285645i \(0.00909360\pi\)
−0.999592 + 0.0285645i \(0.990906\pi\)
\(180\) 0 0
\(181\) 1.56353e9 1.45677 0.728385 0.685168i \(-0.240271\pi\)
0.728385 + 0.685168i \(0.240271\pi\)
\(182\) −1.24883e9 9.24242e8i −1.13820 0.842364i
\(183\) 0 0
\(184\) 4.12028e8 1.16263e9i 0.359464 1.01431i
\(185\) 8.40168e8 0.717264
\(186\) 0 0
\(187\) 1.20444e9i 0.984959i
\(188\) 7.91939e8 2.41979e8i 0.633958 0.193707i
\(189\) 0 0
\(190\) −6.08417e8 4.50282e8i −0.466861 0.345518i
\(191\) 6.82044e8i 0.512482i −0.966613 0.256241i \(-0.917516\pi\)
0.966613 0.256241i \(-0.0824841\pi\)
\(192\) 0 0
\(193\) 1.54570e9 1.11403 0.557013 0.830504i \(-0.311947\pi\)
0.557013 + 0.830504i \(0.311947\pi\)
\(194\) 3.02148e8 4.08260e8i 0.213311 0.288223i
\(195\) 0 0
\(196\) −5.71511e7 1.87042e8i −0.0387258 0.126740i
\(197\) −1.40479e7 −0.00932710 −0.00466355 0.999989i \(-0.501484\pi\)
−0.00466355 + 0.999989i \(0.501484\pi\)
\(198\) 0 0
\(199\) 2.97076e8i 0.189433i −0.995504 0.0947164i \(-0.969806\pi\)
0.995504 0.0947164i \(-0.0301944\pi\)
\(200\) 3.01619e8 + 1.06892e8i 0.188512 + 0.0668075i
\(201\) 0 0
\(202\) 1.12669e9 1.52238e9i 0.676707 0.914361i
\(203\) 2.54067e9i 1.49611i
\(204\) 0 0
\(205\) 4.06668e8 0.230263
\(206\) −2.38740e8 1.76688e8i −0.132573 0.0981158i
\(207\) 0 0
\(208\) −2.35971e9 + 1.59053e9i −1.26068 + 0.849743i
\(209\) −1.91827e9 −1.00537
\(210\) 0 0
\(211\) 1.99442e9i 1.00621i 0.864226 + 0.503104i \(0.167809\pi\)
−0.864226 + 0.503104i \(0.832191\pi\)
\(212\) −1.85341e8 6.06577e8i −0.0917547 0.300291i
\(213\) 0 0
\(214\) 4.99636e8 + 3.69774e8i 0.238231 + 0.176312i
\(215\) 5.15074e8i 0.241055i
\(216\) 0 0
\(217\) 3.35075e9 1.51114
\(218\) −8.39897e8 + 1.13486e9i −0.371877 + 0.502478i
\(219\) 0 0
\(220\) 7.75583e8 2.36981e8i 0.331083 0.101163i
\(221\) 4.61444e9 1.93442
\(222\) 0 0
\(223\) 8.75699e8i 0.354108i 0.984201 + 0.177054i \(0.0566567\pi\)
−0.984201 + 0.177054i \(0.943343\pi\)
\(224\) 2.34261e9 + 1.03238e8i 0.930480 + 0.0410059i
\(225\) 0 0
\(226\) −4.17377e8 + 5.63956e8i −0.159991 + 0.216178i
\(227\) 2.71043e9i 1.02079i −0.859941 0.510393i \(-0.829500\pi\)
0.859941 0.510393i \(-0.170500\pi\)
\(228\) 0 0
\(229\) −1.61306e9 −0.586555 −0.293277 0.956027i \(-0.594746\pi\)
−0.293277 + 0.956027i \(0.594746\pi\)
\(230\) 1.08253e9 + 8.01165e8i 0.386837 + 0.286293i
\(231\) 0 0
\(232\) −4.38628e9 1.55447e9i −1.51406 0.536576i
\(233\) 2.02375e9 0.686647 0.343323 0.939217i \(-0.388447\pi\)
0.343323 + 0.939217i \(0.388447\pi\)
\(234\) 0 0
\(235\) 9.04126e8i 0.296454i
\(236\) 4.85731e9 1.48416e9i 1.56584 0.478447i
\(237\) 0 0
\(238\) −3.05635e9 2.26196e9i −0.952565 0.704982i
\(239\) 2.75210e9i 0.843474i 0.906718 + 0.421737i \(0.138579\pi\)
−0.906718 + 0.421737i \(0.861421\pi\)
\(240\) 0 0
\(241\) −2.16446e8 −0.0641625 −0.0320812 0.999485i \(-0.510214\pi\)
−0.0320812 + 0.999485i \(0.510214\pi\)
\(242\) −8.17653e8 + 1.10481e9i −0.238401 + 0.322125i
\(243\) 0 0
\(244\) −1.73187e9 5.66800e9i −0.488603 1.59908i
\(245\) 2.13539e8 0.0592669
\(246\) 0 0
\(247\) 7.34926e9i 1.97449i
\(248\) 2.05011e9 5.78483e9i 0.541964 1.52927i
\(249\) 0 0
\(250\) −2.07845e8 + 2.80839e8i −0.0532084 + 0.0718948i
\(251\) 5.89325e9i 1.48477i −0.669972 0.742387i \(-0.733694\pi\)
0.669972 0.742387i \(-0.266306\pi\)
\(252\) 0 0
\(253\) 3.41308e9 0.833038
\(254\) −1.77274e9 1.31198e9i −0.425902 0.315205i
\(255\) 0 0
\(256\) 1.61152e9 3.98117e9i 0.375212 0.926939i
\(257\) −6.27878e9 −1.43927 −0.719636 0.694352i \(-0.755691\pi\)
−0.719636 + 0.694352i \(0.755691\pi\)
\(258\) 0 0
\(259\) 6.72189e9i 1.49380i
\(260\) −9.07920e8 2.97141e9i −0.198680 0.650233i
\(261\) 0 0
\(262\) −5.62423e9 4.16242e9i −1.19360 0.883366i
\(263\) 4.86169e8i 0.101616i −0.998708 0.0508082i \(-0.983820\pi\)
0.998708 0.0508082i \(-0.0161797\pi\)
\(264\) 0 0
\(265\) 6.92505e8 0.140423
\(266\) 3.60255e9 4.86774e9i 0.719588 0.972301i
\(267\) 0 0
\(268\) 3.38445e9 1.03413e9i 0.656068 0.200463i
\(269\) 3.48890e9 0.666315 0.333158 0.942871i \(-0.391886\pi\)
0.333158 + 0.942871i \(0.391886\pi\)
\(270\) 0 0
\(271\) 1.84408e8i 0.0341903i −0.999854 0.0170952i \(-0.994558\pi\)
0.999854 0.0170952i \(-0.00544182\pi\)
\(272\) −5.77509e9 + 3.89261e9i −1.05508 + 0.711157i
\(273\) 0 0
\(274\) −2.67038e9 + 3.60819e9i −0.473773 + 0.640159i
\(275\) 8.85452e8i 0.154823i
\(276\) 0 0
\(277\) −1.04462e10 −1.77435 −0.887175 0.461433i \(-0.847335\pi\)
−0.887175 + 0.461433i \(0.847335\pi\)
\(278\) −7.50605e9 5.55513e9i −1.25670 0.930069i
\(279\) 0 0
\(280\) −8.55206e8 + 2.41315e9i −0.139136 + 0.392602i
\(281\) −5.68155e8 −0.0911259 −0.0455629 0.998961i \(-0.514508\pi\)
−0.0455629 + 0.998961i \(0.514508\pi\)
\(282\) 0 0
\(283\) 5.59784e9i 0.872720i 0.899772 + 0.436360i \(0.143733\pi\)
−0.899772 + 0.436360i \(0.856267\pi\)
\(284\) −7.94968e9 + 2.42904e9i −1.22201 + 0.373389i
\(285\) 0 0
\(286\) −6.32932e9 4.68425e9i −0.946004 0.700126i
\(287\) 3.25361e9i 0.479554i
\(288\) 0 0
\(289\) 4.31749e9 0.618928
\(290\) 3.02258e9 4.08409e9i 0.427352 0.577435i
\(291\) 0 0
\(292\) 2.13930e9 + 7.00141e9i 0.294266 + 0.963062i
\(293\) 6.86351e8 0.0931270 0.0465635 0.998915i \(-0.485173\pi\)
0.0465635 + 0.998915i \(0.485173\pi\)
\(294\) 0 0
\(295\) 5.54540e9i 0.732226i
\(296\) 1.16049e10 + 4.11269e9i 1.51173 + 0.535746i
\(297\) 0 0
\(298\) 4.70307e9 6.35475e9i 0.596371 0.805812i
\(299\) 1.30762e10i 1.63605i
\(300\) 0 0
\(301\) 4.12093e9 0.502029
\(302\) −4.95019e9 3.66357e9i −0.595106 0.440430i
\(303\) 0 0
\(304\) −6.19963e9 9.19780e9i −0.725891 1.07694i
\(305\) 6.47094e9 0.747770
\(306\) 0 0
\(307\) 7.31673e9i 0.823690i −0.911254 0.411845i \(-0.864885\pi\)
0.911254 0.411845i \(-0.135115\pi\)
\(308\) 1.89600e9 + 6.20517e9i 0.210686 + 0.689527i
\(309\) 0 0
\(310\) 5.38628e9 + 3.98632e9i 0.583234 + 0.431644i
\(311\) 2.18806e9i 0.233893i −0.993138 0.116946i \(-0.962689\pi\)
0.993138 0.116946i \(-0.0373106\pi\)
\(312\) 0 0
\(313\) 8.81344e9 0.918266 0.459133 0.888368i \(-0.348160\pi\)
0.459133 + 0.888368i \(0.348160\pi\)
\(314\) −6.00942e9 + 8.11989e9i −0.618179 + 0.835279i
\(315\) 0 0
\(316\) −1.32770e10 + 4.05683e9i −1.33154 + 0.406854i
\(317\) −7.70918e9 −0.763433 −0.381717 0.924279i \(-0.624667\pi\)
−0.381717 + 0.924279i \(0.624667\pi\)
\(318\) 0 0
\(319\) 1.28766e10i 1.24348i
\(320\) 3.64288e9 + 2.95290e9i 0.347412 + 0.281611i
\(321\) 0 0
\(322\) −6.40985e9 + 8.66093e9i −0.596244 + 0.805640i
\(323\) 1.79864e10i 1.65247i
\(324\) 0 0
\(325\) 3.39234e9 0.304065
\(326\) −1.44099e9 1.06646e9i −0.127583 0.0944223i
\(327\) 0 0
\(328\) 5.61712e9 + 1.99067e9i 0.485309 + 0.171991i
\(329\) −7.23360e9 −0.617406
\(330\) 0 0
\(331\) 5.44067e9i 0.453252i 0.973982 + 0.226626i \(0.0727696\pi\)
−0.973982 + 0.226626i \(0.927230\pi\)
\(332\) 2.10393e10 6.42861e9i 1.73172 0.529132i
\(333\) 0 0
\(334\) −4.90162e9 3.62762e9i −0.393870 0.291499i
\(335\) 3.86389e9i 0.306793i
\(336\) 0 0
\(337\) 8.83055e9 0.684649 0.342325 0.939582i \(-0.388786\pi\)
0.342325 + 0.939582i \(0.388786\pi\)
\(338\) −1.01820e10 + 1.37578e10i −0.780126 + 1.05410i
\(339\) 0 0
\(340\) −2.22202e9 7.27214e9i −0.166277 0.544185i
\(341\) 1.69823e10 1.25597
\(342\) 0 0
\(343\) 1.46000e10i 1.05481i
\(344\) 2.52133e9 7.11448e9i 0.180051 0.508053i
\(345\) 0 0
\(346\) 1.42973e10 1.93184e10i 0.997586 1.34793i
\(347\) 1.82549e10i 1.25910i 0.776959 + 0.629551i \(0.216761\pi\)
−0.776959 + 0.629551i \(0.783239\pi\)
\(348\) 0 0
\(349\) 2.29945e10 1.54997 0.774984 0.631981i \(-0.217758\pi\)
0.774984 + 0.631981i \(0.217758\pi\)
\(350\) −2.24690e9 1.66290e9i −0.149731 0.110814i
\(351\) 0 0
\(352\) 1.18728e10 + 5.23231e8i 0.773363 + 0.0340818i
\(353\) 4.59432e9 0.295885 0.147942 0.988996i \(-0.452735\pi\)
0.147942 + 0.988996i \(0.452735\pi\)
\(354\) 0 0
\(355\) 9.07584e9i 0.571444i
\(356\) 3.44550e9 + 1.12763e10i 0.214512 + 0.702047i
\(357\) 0 0
\(358\) −7.54295e8 5.58244e8i −0.0459208 0.0339854i
\(359\) 1.90827e10i 1.14884i 0.818559 + 0.574422i \(0.194773\pi\)
−0.818559 + 0.574422i \(0.805227\pi\)
\(360\) 0 0
\(361\) −1.16627e10 −0.686706
\(362\) −1.48820e10 + 2.01084e10i −0.866616 + 1.17096i
\(363\) 0 0
\(364\) 2.37732e10 7.26396e9i 1.35420 0.413779i
\(365\) −7.99324e9 −0.450351
\(366\) 0 0
\(367\) 2.81013e10i 1.54904i 0.632552 + 0.774518i \(0.282008\pi\)
−0.632552 + 0.774518i \(0.717992\pi\)
\(368\) 1.10307e10 + 1.63652e10i 0.601467 + 0.892339i
\(369\) 0 0
\(370\) −7.99690e9 + 1.08053e10i −0.426692 + 0.576543i
\(371\) 5.54050e9i 0.292451i
\(372\) 0 0
\(373\) −1.05420e10 −0.544612 −0.272306 0.962211i \(-0.587786\pi\)
−0.272306 + 0.962211i \(0.587786\pi\)
\(374\) −1.54902e10 1.14641e10i −0.791718 0.585941i
\(375\) 0 0
\(376\) −4.42577e9 + 1.24883e10i −0.221431 + 0.624815i
\(377\) −4.93329e10 −2.44215
\(378\) 0 0
\(379\) 2.33524e10i 1.13181i −0.824470 0.565906i \(-0.808527\pi\)
0.824470 0.565906i \(-0.191473\pi\)
\(380\) 1.15821e10 3.53894e9i 0.555460 0.169722i
\(381\) 0 0
\(382\) 8.77172e9 + 6.49184e9i 0.411937 + 0.304870i
\(383\) 3.00240e10i 1.39532i −0.716429 0.697660i \(-0.754225\pi\)
0.716429 0.697660i \(-0.245775\pi\)
\(384\) 0 0
\(385\) −7.08420e9 −0.322439
\(386\) −1.47123e10 + 1.98791e10i −0.662721 + 0.895463i
\(387\) 0 0
\(388\) 2.37469e9 + 7.77180e9i 0.104780 + 0.342922i
\(389\) 4.61263e9 0.201442 0.100721 0.994915i \(-0.467885\pi\)
0.100721 + 0.994915i \(0.467885\pi\)
\(390\) 0 0
\(391\) 3.20023e10i 1.36922i
\(392\) 2.94951e9 + 1.04529e9i 0.124912 + 0.0442682i
\(393\) 0 0
\(394\) 1.33711e8 1.80669e8i 0.00554858 0.00749720i
\(395\) 1.51579e10i 0.622659i
\(396\) 0 0
\(397\) 9.18645e8 0.0369816 0.0184908 0.999829i \(-0.494114\pi\)
0.0184908 + 0.999829i \(0.494114\pi\)
\(398\) 3.82067e9 + 2.82763e9i 0.152268 + 0.112691i
\(399\) 0 0
\(400\) −4.24561e9 + 2.86168e9i −0.165844 + 0.111784i
\(401\) 3.49056e10 1.34995 0.674975 0.737840i \(-0.264154\pi\)
0.674975 + 0.737840i \(0.264154\pi\)
\(402\) 0 0
\(403\) 6.50626e10i 2.46667i
\(404\) 8.85511e9 + 2.89807e10i 0.332406 + 1.08789i
\(405\) 0 0
\(406\) 3.26754e10 + 2.41826e10i 1.20259 + 0.890020i
\(407\) 3.40680e10i 1.24156i
\(408\) 0 0
\(409\) −2.87863e10 −1.02871 −0.514355 0.857577i \(-0.671969\pi\)
−0.514355 + 0.857577i \(0.671969\pi\)
\(410\) −3.87075e9 + 5.23013e9i −0.136981 + 0.185087i
\(411\) 0 0
\(412\) 4.54475e9 1.38866e9i 0.157733 0.0481955i
\(413\) −4.43669e10 −1.52496
\(414\) 0 0
\(415\) 2.40197e10i 0.809797i
\(416\) 2.00460e9 4.54871e10i 0.0669351 1.51885i
\(417\) 0 0
\(418\) 1.82585e10 2.46707e10i 0.598081 0.808122i
\(419\) 2.41245e10i 0.782714i 0.920239 + 0.391357i \(0.127994\pi\)
−0.920239 + 0.391357i \(0.872006\pi\)
\(420\) 0 0
\(421\) −4.05366e10 −1.29038 −0.645192 0.764021i \(-0.723223\pi\)
−0.645192 + 0.764021i \(0.723223\pi\)
\(422\) −2.56502e10 1.89834e10i −0.808798 0.598581i
\(423\) 0 0
\(424\) 9.56526e9 + 3.38987e9i 0.295960 + 0.104887i
\(425\) 8.30232e9 0.254474
\(426\) 0 0
\(427\) 5.17718e10i 1.55733i
\(428\) −9.51128e9 + 2.90619e9i −0.283442 + 0.0866063i
\(429\) 0 0
\(430\) 6.62433e9 + 4.90258e9i 0.193762 + 0.143401i
\(431\) 1.52760e10i 0.442691i 0.975195 + 0.221345i \(0.0710448\pi\)
−0.975195 + 0.221345i \(0.928955\pi\)
\(432\) 0 0
\(433\) −1.50231e9 −0.0427375 −0.0213687 0.999772i \(-0.506802\pi\)
−0.0213687 + 0.999772i \(0.506802\pi\)
\(434\) −3.18932e10 + 4.30938e10i −0.898957 + 1.21466i
\(435\) 0 0
\(436\) −6.60106e9 2.16037e10i −0.182670 0.597836i
\(437\) 5.09690e10 1.39759
\(438\) 0 0
\(439\) 4.28905e10i 1.15479i −0.816465 0.577395i \(-0.804069\pi\)
0.816465 0.577395i \(-0.195931\pi\)
\(440\) −4.33437e9 + 1.22304e10i −0.115642 + 0.326309i
\(441\) 0 0
\(442\) −4.39212e10 + 5.93460e10i −1.15076 + 1.55490i
\(443\) 1.53896e10i 0.399587i −0.979838 0.199793i \(-0.935973\pi\)
0.979838 0.199793i \(-0.0640271\pi\)
\(444\) 0 0
\(445\) −1.28737e10 −0.328294
\(446\) −1.12623e10 8.33509e9i −0.284635 0.210654i
\(447\) 0 0
\(448\) −2.36252e10 + 2.91455e10i −0.586493 + 0.723534i
\(449\) 2.72593e10 0.670701 0.335351 0.942093i \(-0.391145\pi\)
0.335351 + 0.942093i \(0.391145\pi\)
\(450\) 0 0
\(451\) 1.64900e10i 0.398578i
\(452\) −3.28032e9 1.07357e10i −0.0785891 0.257204i
\(453\) 0 0
\(454\) 3.48586e10 + 2.57984e10i 0.820516 + 0.607253i
\(455\) 2.71410e10i 0.633256i
\(456\) 0 0
\(457\) −6.24394e10 −1.43151 −0.715755 0.698352i \(-0.753917\pi\)
−0.715755 + 0.698352i \(0.753917\pi\)
\(458\) 1.53535e10 2.07455e10i 0.348935 0.471478i
\(459\) 0 0
\(460\) −2.06075e10 + 6.29666e9i −0.460249 + 0.140630i
\(461\) −7.86871e10 −1.74221 −0.871103 0.491100i \(-0.836595\pi\)
−0.871103 + 0.491100i \(0.836595\pi\)
\(462\) 0 0
\(463\) 5.50659e10i 1.19828i −0.800644 0.599140i \(-0.795509\pi\)
0.800644 0.599140i \(-0.204491\pi\)
\(464\) 6.17415e10 4.16159e10i 1.33200 0.897815i
\(465\) 0 0
\(466\) −1.92625e10 + 2.60273e10i −0.408478 + 0.551932i
\(467\) 5.90688e10i 1.24191i −0.783845 0.620956i \(-0.786745\pi\)
0.783845 0.620956i \(-0.213255\pi\)
\(468\) 0 0
\(469\) −3.09137e10 −0.638939
\(470\) −1.16279e10 8.60567e9i −0.238292 0.176357i
\(471\) 0 0
\(472\) −2.71452e10 + 7.65962e10i −0.546922 + 1.54326i
\(473\) 2.08857e10 0.417258
\(474\) 0 0
\(475\) 1.32228e10i 0.259747i
\(476\) 5.81819e10 1.77776e10i 1.13334 0.346295i
\(477\) 0 0
\(478\) −3.53945e10 2.61950e10i −0.677992 0.501773i
\(479\) 5.65594e9i 0.107439i −0.998556 0.0537196i \(-0.982892\pi\)
0.998556 0.0537196i \(-0.0171077\pi\)
\(480\) 0 0
\(481\) 1.30521e11 2.43837
\(482\) 2.06018e9 2.78370e9i 0.0381695 0.0515743i
\(483\) 0 0
\(484\) −6.42624e9 2.10316e10i −0.117105 0.383257i
\(485\) −8.87276e9 −0.160358
\(486\) 0 0
\(487\) 4.46018e10i 0.792934i −0.918049 0.396467i \(-0.870236\pi\)
0.918049 0.396467i \(-0.129764\pi\)
\(488\) 8.93801e10 + 3.16758e10i 1.57602 + 0.558532i
\(489\) 0 0
\(490\) −2.03251e9 + 2.74630e9i −0.0352572 + 0.0476392i
\(491\) 8.46720e9i 0.145685i 0.997343 + 0.0728423i \(0.0232070\pi\)
−0.997343 + 0.0728423i \(0.976793\pi\)
\(492\) 0 0
\(493\) −1.20736e11 −2.04385
\(494\) −9.45183e10 6.99518e10i −1.58711 1.17460i
\(495\) 0 0
\(496\) 5.48849e10 + 8.14276e10i 0.906831 + 1.34538i
\(497\) 7.26127e10 1.19011
\(498\) 0 0
\(499\) 9.22277e10i 1.48751i −0.668453 0.743754i \(-0.733043\pi\)
0.668453 0.743754i \(-0.266957\pi\)
\(500\) −1.63354e9 5.34617e9i −0.0261366 0.0855388i
\(501\) 0 0
\(502\) 7.57927e10 + 5.60932e10i 1.19347 + 0.883274i
\(503\) 5.31873e9i 0.0830876i −0.999137 0.0415438i \(-0.986772\pi\)
0.999137 0.0415438i \(-0.0132276\pi\)
\(504\) 0 0
\(505\) −3.30861e10 −0.508722
\(506\) −3.24864e10 + 4.38954e10i −0.495564 + 0.669603i
\(507\) 0 0
\(508\) 3.37466e10 1.03114e10i 0.506729 0.154832i
\(509\) −6.32110e9 −0.0941720 −0.0470860 0.998891i \(-0.514993\pi\)
−0.0470860 + 0.998891i \(0.514993\pi\)
\(510\) 0 0
\(511\) 6.39511e10i 0.937918i
\(512\) 3.58628e10 + 5.86193e10i 0.521872 + 0.853024i
\(513\) 0 0
\(514\) 5.97628e10 8.07509e10i 0.856206 1.15690i
\(515\) 5.18856e9i 0.0737596i
\(516\) 0 0
\(517\) −3.66614e10 −0.513153
\(518\) −8.64498e10 6.39804e10i −1.20073 0.888645i
\(519\) 0 0
\(520\) 4.68569e10 + 1.66058e10i 0.640855 + 0.227115i
\(521\) −2.88982e10 −0.392211 −0.196106 0.980583i \(-0.562830\pi\)
−0.196106 + 0.980583i \(0.562830\pi\)
\(522\) 0 0
\(523\) 6.89381e10i 0.921409i −0.887554 0.460704i \(-0.847597\pi\)
0.887554 0.460704i \(-0.152403\pi\)
\(524\) 1.07065e11 3.27140e10i 1.42011 0.433919i
\(525\) 0 0
\(526\) 6.25259e9 + 4.62746e9i 0.0816802 + 0.0604505i
\(527\) 1.59232e11i 2.06438i
\(528\) 0 0
\(529\) −1.23756e10 −0.158032
\(530\) −6.59141e9 + 8.90626e9i −0.0835363 + 0.112874i
\(531\) 0 0
\(532\) 2.83138e10 + 9.26644e10i 0.353469 + 1.15682i
\(533\) 6.31763e10 0.782790
\(534\) 0 0
\(535\) 1.08587e10i 0.132544i
\(536\) −1.89141e10 + 5.33702e10i −0.229153 + 0.646606i
\(537\) 0 0
\(538\) −3.32081e10 + 4.48705e10i −0.396383 + 0.535590i
\(539\) 8.65877e9i 0.102589i
\(540\) 0 0
\(541\) −7.10155e10 −0.829018 −0.414509 0.910045i \(-0.636047\pi\)
−0.414509 + 0.910045i \(0.636047\pi\)
\(542\) 2.37166e9 + 1.75524e9i 0.0274825 + 0.0203394i
\(543\) 0 0
\(544\) 4.90600e9 1.11324e11i 0.0560186 1.27114i
\(545\) 2.46641e10 0.279563
\(546\) 0 0
\(547\) 1.29035e11i 1.44131i 0.693294 + 0.720654i \(0.256159\pi\)
−0.693294 + 0.720654i \(0.743841\pi\)
\(548\) −2.09875e10 6.86871e10i −0.232723 0.761646i
\(549\) 0 0
\(550\) −1.13877e10 8.42793e9i −0.124448 0.0921022i
\(551\) 1.92292e11i 2.08620i
\(552\) 0 0
\(553\) 1.21273e11 1.29677
\(554\) 9.94292e10 1.34348e11i 1.05554 1.42624i
\(555\) 0 0
\(556\) 1.42888e11 4.36599e10i 1.49519 0.456860i
\(557\) 1.02270e11 1.06250 0.531248 0.847216i \(-0.321723\pi\)
0.531248 + 0.847216i \(0.321723\pi\)
\(558\) 0 0
\(559\) 8.00173e10i 0.819476i
\(560\) −2.28953e10 3.39676e10i −0.232806 0.345393i
\(561\) 0 0
\(562\) 5.40782e9 7.30701e9i 0.0542097 0.0732477i
\(563\) 3.13822e10i 0.312356i 0.987729 + 0.156178i \(0.0499173\pi\)
−0.987729 + 0.156178i \(0.950083\pi\)
\(564\) 0 0
\(565\) 1.22565e10 0.120275
\(566\) −7.19935e10 5.32815e10i −0.701500 0.519171i
\(567\) 0 0
\(568\) 4.44270e10 1.25361e11i 0.426829 1.20439i
\(569\) −5.63583e10 −0.537661 −0.268831 0.963187i \(-0.586637\pi\)
−0.268831 + 0.963187i \(0.586637\pi\)
\(570\) 0 0
\(571\) 1.11882e10i 0.105249i 0.998614 + 0.0526243i \(0.0167586\pi\)
−0.998614 + 0.0526243i \(0.983241\pi\)
\(572\) 1.20488e11 3.68153e10i 1.12553 0.343909i
\(573\) 0 0
\(574\) −4.18445e10 3.09686e10i −0.385470 0.285281i
\(575\) 2.35267e10i 0.215224i
\(576\) 0 0
\(577\) −8.67948e10 −0.783051 −0.391526 0.920167i \(-0.628053\pi\)
−0.391526 + 0.920167i \(0.628053\pi\)
\(578\) −4.10948e10 + 5.55269e10i −0.368193 + 0.497499i
\(579\) 0 0
\(580\) 2.37556e10 + 7.77464e10i 0.209920 + 0.687019i
\(581\) −1.92174e11 −1.68651
\(582\) 0 0
\(583\) 2.80804e10i 0.243069i
\(584\) −1.10407e11 3.91276e10i −0.949172 0.336381i
\(585\) 0 0
\(586\) −6.53284e9 + 8.82711e9i −0.0554002 + 0.0748563i
\(587\) 2.73633e10i 0.230471i 0.993338 + 0.115236i \(0.0367623\pi\)
−0.993338 + 0.115236i \(0.963238\pi\)
\(588\) 0 0
\(589\) 2.53604e11 2.10715
\(590\) −7.13191e10 5.27823e10i −0.588569 0.435593i
\(591\) 0 0
\(592\) −1.63351e11 + 1.10104e11i −1.32995 + 0.896428i
\(593\) −1.70522e11 −1.37900 −0.689498 0.724288i \(-0.742169\pi\)
−0.689498 + 0.724288i \(0.742169\pi\)
\(594\) 0 0
\(595\) 6.64240e10i 0.529977i
\(596\) 3.69632e10 + 1.20972e11i 0.292944 + 0.958736i
\(597\) 0 0
\(598\) 1.68172e11 + 1.24462e11i 1.31507 + 0.973266i
\(599\) 5.31294e10i 0.412693i −0.978479 0.206347i \(-0.933843\pi\)
0.978479 0.206347i \(-0.0661575\pi\)
\(600\) 0 0
\(601\) −1.01471e11 −0.777758 −0.388879 0.921289i \(-0.627138\pi\)
−0.388879 + 0.921289i \(0.627138\pi\)
\(602\) −3.92239e10 + 5.29990e10i −0.298651 + 0.403535i
\(603\) 0 0
\(604\) 9.42340e10 2.87934e10i 0.708043 0.216344i
\(605\) 2.40109e10 0.179220
\(606\) 0 0
\(607\) 1.69027e11i 1.24509i 0.782583 + 0.622546i \(0.213902\pi\)
−0.782583 + 0.622546i \(0.786098\pi\)
\(608\) 1.77302e11 + 7.81362e9i 1.29747 + 0.0571792i
\(609\) 0 0
\(610\) −6.15918e10 + 8.32223e10i −0.444839 + 0.601064i
\(611\) 1.40457e11i 1.00781i
\(612\) 0 0
\(613\) 1.29478e11 0.916970 0.458485 0.888702i \(-0.348392\pi\)
0.458485 + 0.888702i \(0.348392\pi\)
\(614\) 9.41000e10 + 6.96422e10i 0.662089 + 0.490004i
\(615\) 0 0
\(616\) −9.78509e10 3.46778e10i −0.679582 0.240840i
\(617\) −5.03702e10 −0.347563 −0.173781 0.984784i \(-0.555599\pi\)
−0.173781 + 0.984784i \(0.555599\pi\)
\(618\) 0 0
\(619\) 1.98244e11i 1.35032i −0.737669 0.675162i \(-0.764074\pi\)
0.737669 0.675162i \(-0.235926\pi\)
\(620\) −1.02536e11 + 3.13300e10i −0.693918 + 0.212028i
\(621\) 0 0
\(622\) 2.81404e10 + 2.08264e10i 0.188005 + 0.139140i
\(623\) 1.02998e11i 0.683718i
\(624\) 0 0
\(625\) 6.10352e9 0.0400000
\(626\) −8.38882e10 + 1.13349e11i −0.546266 + 0.738110i
\(627\) 0 0
\(628\) −4.72303e10 1.54574e11i −0.303656 0.993795i
\(629\) 3.19433e11 2.04069
\(630\) 0 0
\(631\) 1.46853e11i 0.926326i −0.886273 0.463163i \(-0.846714\pi\)
0.886273 0.463163i \(-0.153286\pi\)
\(632\) 7.41991e10 2.09369e11i 0.465083 1.31233i
\(633\) 0 0
\(634\) 7.33776e10 9.91472e10i 0.454158 0.613654i
\(635\) 3.85272e10i 0.236959i
\(636\) 0 0
\(637\) 3.31734e10 0.201480
\(638\) 1.65606e11 + 1.22563e11i 0.999522 + 0.739734i
\(639\) 0 0
\(640\) −7.26508e10 + 1.87445e10i −0.433033 + 0.111726i
\(641\) 9.36531e10 0.554741 0.277370 0.960763i \(-0.410537\pi\)
0.277370 + 0.960763i \(0.410537\pi\)
\(642\) 0 0
\(643\) 2.03358e11i 1.18964i −0.803858 0.594821i \(-0.797223\pi\)
0.803858 0.594821i \(-0.202777\pi\)
\(644\) −5.03774e10 1.64873e11i −0.292882 0.958532i
\(645\) 0 0
\(646\) −2.31322e11 1.71198e11i −1.32827 0.983035i
\(647\) 1.34649e11i 0.768396i 0.923251 + 0.384198i \(0.125522\pi\)
−0.923251 + 0.384198i \(0.874478\pi\)
\(648\) 0 0
\(649\) −2.24861e11 −1.26746
\(650\) −3.22890e10 + 4.36287e10i −0.180885 + 0.244410i
\(651\) 0 0
\(652\) 2.74314e10 8.38172e9i 0.151795 0.0463813i
\(653\) 1.33413e11 0.733747 0.366874 0.930271i \(-0.380428\pi\)
0.366874 + 0.930271i \(0.380428\pi\)
\(654\) 0 0
\(655\) 1.22232e11i 0.664080i
\(656\) −7.90669e10 + 5.32937e10i −0.426952 + 0.287780i
\(657\) 0 0
\(658\) 6.88510e10 9.30309e10i 0.367288 0.496276i
\(659\) 3.07029e11i 1.62794i 0.580909 + 0.813969i \(0.302697\pi\)
−0.580909 + 0.813969i \(0.697303\pi\)
\(660\) 0 0
\(661\) −4.04970e10 −0.212137 −0.106069 0.994359i \(-0.533826\pi\)
−0.106069 + 0.994359i \(0.533826\pi\)
\(662\) −6.99721e10 5.17854e10i −0.364328 0.269635i
\(663\) 0 0
\(664\) −1.17579e11 + 3.31774e11i −0.604862 + 1.70675i
\(665\) −1.05791e11 −0.540958
\(666\) 0 0
\(667\) 3.42136e11i 1.72861i
\(668\) 9.33093e10 2.85109e10i 0.468618 0.143187i
\(669\) 0 0
\(670\) −4.96933e10 3.67774e10i −0.246603 0.182508i
\(671\) 2.62390e11i 1.29437i
\(672\) 0 0
\(673\) 1.36014e10 0.0663016 0.0331508 0.999450i \(-0.489446\pi\)
0.0331508 + 0.999450i \(0.489446\pi\)
\(674\) −8.40511e10 + 1.13569e11i −0.407290 + 0.550327i
\(675\) 0 0
\(676\) −8.00239e10 2.61899e11i −0.383207 1.25414i
\(677\) 1.81509e11 0.864060 0.432030 0.901859i \(-0.357798\pi\)
0.432030 + 0.901859i \(0.357798\pi\)
\(678\) 0 0
\(679\) 7.09879e10i 0.333968i
\(680\) 1.14676e11 + 4.06406e10i 0.536337 + 0.190075i
\(681\) 0 0
\(682\) −1.61641e11 + 2.18409e11i −0.747162 + 1.00956i
\(683\) 7.87512e10i 0.361888i −0.983493 0.180944i \(-0.942085\pi\)
0.983493 0.180944i \(-0.0579153\pi\)
\(684\) 0 0
\(685\) 7.84174e10 0.356164
\(686\) −1.87770e11 1.38966e11i −0.847869 0.627497i
\(687\) 0 0
\(688\) 6.75003e10 + 1.00144e11i 0.301267 + 0.446962i
\(689\) 1.07581e11 0.477376
\(690\) 0 0
\(691\) 2.28485e11i 1.00218i 0.865396 + 0.501089i \(0.167067\pi\)
−0.865396 + 0.501089i \(0.832933\pi\)
\(692\) 1.12368e11 + 3.67754e11i 0.490025 + 1.60374i
\(693\) 0 0
\(694\) −2.34775e11 1.73754e11i −1.01208 0.749025i
\(695\) 1.63130e11i 0.699189i
\(696\) 0 0
\(697\) 1.54616e11 0.655123
\(698\) −2.18867e11 + 2.95731e11i −0.922058 + 1.24588i
\(699\) 0 0
\(700\) 4.27729e10 1.30694e10i 0.178146 0.0544330i
\(701\) −3.61506e11 −1.49708 −0.748538 0.663092i \(-0.769244\pi\)
−0.748538 + 0.663092i \(0.769244\pi\)
\(702\) 0 0
\(703\) 5.08751e11i 2.08297i
\(704\) −1.19737e11 + 1.47715e11i −0.487460 + 0.601360i
\(705\) 0 0
\(706\) −4.37297e10 + 5.90872e10i −0.176018 + 0.237835i
\(707\) 2.64711e11i 1.05948i
\(708\) 0 0
\(709\) 4.37939e11 1.73312 0.866560 0.499073i \(-0.166326\pi\)
0.866560 + 0.499073i \(0.166326\pi\)
\(710\) 1.16724e11 + 8.63858e10i 0.459331 + 0.339945i
\(711\) 0 0
\(712\) −1.77819e11 6.30179e10i −0.691922 0.245213i
\(713\) −4.51225e11 −1.74596
\(714\) 0 0
\(715\) 1.37556e11i 0.526327i
\(716\) 1.43591e10 4.38745e9i 0.0546354 0.0166940i
\(717\) 0 0
\(718\) −2.45421e11 1.81633e11i −0.923451 0.683435i
\(719\) 3.80190e11i 1.42261i 0.702885 + 0.711304i \(0.251895\pi\)
−0.702885 + 0.711304i \(0.748105\pi\)
\(720\) 0 0
\(721\) −4.15119e10 −0.153614
\(722\) 1.11008e11 1.49993e11i 0.408514 0.551980i
\(723\) 0 0
\(724\) −1.16963e11 3.82793e11i −0.425691 1.39319i
\(725\) −8.87601e10 −0.321267
\(726\) 0 0
\(727\) 3.48752e11i 1.24847i 0.781235 + 0.624236i \(0.214590\pi\)
−0.781235 + 0.624236i \(0.785410\pi\)
\(728\) −1.32857e11 + 3.74886e11i −0.472999 + 1.33467i
\(729\) 0 0
\(730\) 7.60813e10 1.02800e11i 0.267909 0.361996i
\(731\) 1.95832e11i 0.685827i
\(732\) 0 0
\(733\) −2.14531e11 −0.743147 −0.371574 0.928403i \(-0.621182\pi\)
−0.371574 + 0.928403i \(0.621182\pi\)
\(734\) −3.61408e11 2.67474e11i −1.24513 0.921504i
\(735\) 0 0
\(736\) −3.15464e11 1.39024e10i −1.07508 0.0473782i
\(737\) −1.56677e11 −0.531050
\(738\) 0 0
\(739\) 1.23753e11i 0.414932i −0.978242 0.207466i \(-0.933478\pi\)
0.978242 0.207466i \(-0.0665217\pi\)
\(740\) −6.28506e10 2.05695e11i −0.209596 0.685957i
\(741\) 0 0
\(742\) −7.12560e10 5.27356e10i −0.235075 0.173976i
\(743\) 5.66350e11i 1.85836i −0.369629 0.929180i \(-0.620515\pi\)
0.369629 0.929180i \(-0.379485\pi\)
\(744\) 0 0
\(745\) −1.38109e11 −0.448328
\(746\) 1.00341e11 1.35580e11i 0.323983 0.437763i
\(747\) 0 0
\(748\) 2.94878e11 9.01007e10i 0.941968 0.287820i
\(749\) 8.68764e10 0.276042
\(750\) 0 0
\(751\) 5.84382e10i 0.183712i 0.995772 + 0.0918559i \(0.0292799\pi\)
−0.995772 + 0.0918559i \(0.970720\pi\)
\(752\) −1.18486e11 1.75786e11i −0.370505 0.549683i
\(753\) 0 0
\(754\) 4.69561e11 6.34467e11i 1.45280 1.96302i
\(755\) 1.07583e11i 0.331098i
\(756\) 0 0
\(757\) −3.58426e11 −1.09148 −0.545740 0.837955i \(-0.683751\pi\)
−0.545740 + 0.837955i \(0.683751\pi\)
\(758\) 3.00333e11 + 2.22273e11i 0.909759 + 0.673301i
\(759\) 0 0
\(760\) −6.47268e10 + 1.82641e11i −0.194013 + 0.547449i
\(761\) 1.00991e10 0.0301123 0.0150562 0.999887i \(-0.495207\pi\)
0.0150562 + 0.999887i \(0.495207\pi\)
\(762\) 0 0
\(763\) 1.97329e11i 0.582228i
\(764\) −1.66982e11 + 5.10218e10i −0.490114 + 0.149755i
\(765\) 0 0
\(766\) 3.86137e11 + 2.85775e11i 1.12157 + 0.830059i
\(767\) 8.61485e11i 2.48924i
\(768\) 0 0
\(769\) −1.89952e11 −0.543173 −0.271587 0.962414i \(-0.587548\pi\)
−0.271587 + 0.962414i \(0.587548\pi\)
\(770\) 6.74290e10 9.11095e10i 0.191815 0.259179i
\(771\) 0 0
\(772\) −1.15629e11 3.78427e11i −0.325536 1.06540i
\(773\) −2.78331e10 −0.0779550 −0.0389775 0.999240i \(-0.512410\pi\)
−0.0389775 + 0.999240i \(0.512410\pi\)
\(774\) 0 0
\(775\) 1.17061e11i 0.324493i
\(776\) −1.22555e11 4.34329e10i −0.337976 0.119777i
\(777\) 0 0
\(778\) −4.39040e10 + 5.93228e10i −0.119836 + 0.161921i
\(779\) 2.46252e11i 0.668697i
\(780\) 0 0
\(781\) 3.68016e11 0.989152
\(782\) 4.11579e11 + 3.04605e11i 1.10059 + 0.814534i
\(783\) 0 0
\(784\) −4.15175e10 + 2.79842e10i −0.109892 + 0.0740710i
\(785\) 1.76471e11 0.464723
\(786\) 0 0
\(787\) 1.06011e11i 0.276344i 0.990408 + 0.138172i \(0.0441227\pi\)
−0.990408 + 0.138172i \(0.955877\pi\)
\(788\) 1.05088e9 + 3.43930e9i 0.00272552 + 0.00892000i
\(789\) 0 0
\(790\) 1.94944e11 + 1.44276e11i 0.500498 + 0.370412i
\(791\) 9.80604e10i 0.250488i
\(792\) 0 0
\(793\) 1.00527e12 2.54208
\(794\) −8.74386e9 + 1.18146e10i −0.0219999 + 0.0297261i
\(795\) 0 0
\(796\) −7.27319e10 + 2.22234e10i −0.181164 + 0.0553552i
\(797\) −3.80945e11 −0.944125 −0.472062 0.881565i \(-0.656490\pi\)
−0.472062 + 0.881565i \(0.656490\pi\)
\(798\) 0 0
\(799\) 3.43751e11i 0.843444i
\(800\) 3.60668e9 8.18406e10i 0.00880538 0.199806i
\(801\) 0 0
\(802\) −3.32239e11 + 4.48919e11i −0.803070 + 1.08510i
\(803\) 3.24118e11i 0.779544i
\(804\) 0 0
\(805\) 1.88229e11 0.448233
\(806\) 8.36765e11 + 6.19279e11i 1.98273 + 1.46739i
\(807\) 0 0
\(808\) −4.57003e11 1.61959e11i −1.07220 0.379980i
\(809\) 4.11319e11 0.960251 0.480125 0.877200i \(-0.340591\pi\)
0.480125 + 0.877200i \(0.340591\pi\)
\(810\) 0 0
\(811\) 4.23775e10i 0.0979608i −0.998800 0.0489804i \(-0.984403\pi\)
0.998800 0.0489804i \(-0.0155972\pi\)
\(812\) −6.22023e11 + 1.90060e11i −1.43081 + 0.437187i
\(813\) 0 0
\(814\) −4.38146e11 3.24266e11i −0.997978 0.738591i
\(815\) 3.13173e10i 0.0709830i
\(816\) 0 0
\(817\) 3.11895e11 0.700036
\(818\) 2.73995e11 3.70219e11i 0.611968 0.826886i
\(819\) 0 0
\(820\) −3.04217e10 9.95629e10i −0.0672865 0.220213i
\(821\) 3.94688e11 0.868723 0.434361 0.900739i \(-0.356974\pi\)
0.434361 + 0.900739i \(0.356974\pi\)
\(822\) 0 0
\(823\) 8.07264e11i 1.75961i −0.475335 0.879805i \(-0.657673\pi\)
0.475335 0.879805i \(-0.342327\pi\)
\(824\) −2.53985e10 + 7.16673e10i −0.0550933 + 0.155458i
\(825\) 0 0
\(826\) 4.22293e11 5.70600e11i 0.907181 1.22578i
\(827\) 3.75714e11i 0.803222i −0.915810 0.401611i \(-0.868450\pi\)
0.915810 0.401611i \(-0.131550\pi\)
\(828\) 0 0
\(829\) 5.28969e11 1.11999 0.559993 0.828497i \(-0.310804\pi\)
0.559993 + 0.828497i \(0.310804\pi\)
\(830\) −3.08916e11 2.28625e11i −0.650921 0.481739i
\(831\) 0 0
\(832\) 5.65926e11 + 4.58737e11i 1.18104 + 0.957349i
\(833\) 8.11878e10 0.168621
\(834\) 0 0
\(835\) 1.06528e11i 0.219137i
\(836\) 1.43500e11 + 4.69642e11i 0.293784 + 0.961484i
\(837\) 0 0
\(838\) −3.10264e11 2.29622e11i −0.629152 0.465627i
\(839\) 7.36830e11i 1.48703i −0.668719 0.743515i \(-0.733157\pi\)
0.668719 0.743515i \(-0.266843\pi\)
\(840\) 0 0
\(841\) 7.90542e11 1.58031
\(842\) 3.85836e11 5.21338e11i 0.767634 1.03722i
\(843\) 0 0
\(844\) 4.88287e11 1.49197e11i 0.962289 0.294030i
\(845\) 2.99000e11 0.586468
\(846\) 0 0
\(847\) 1.92103e11i 0.373251i
\(848\) −1.34641e11 + 9.07527e10i −0.260372 + 0.175500i
\(849\) 0 0
\(850\) −7.90233e10 + 1.06776e11i −0.151384 + 0.204548i
\(851\) 9.05196e11i 1.72593i
\(852\) 0 0
\(853\) −1.74426e11 −0.329470 −0.164735 0.986338i \(-0.552677\pi\)
−0.164735 + 0.986338i \(0.552677\pi\)
\(854\) −6.65833e11 4.92775e11i −1.25180 0.926439i
\(855\) 0 0
\(856\) 5.31540e10 1.49986e11i 0.0990014 0.279354i
\(857\) −4.27600e11 −0.792710 −0.396355 0.918097i \(-0.629725\pi\)
−0.396355 + 0.918097i \(0.629725\pi\)
\(858\) 0 0
\(859\) 4.34905e11i 0.798771i 0.916783 + 0.399385i \(0.130776\pi\)
−0.916783 + 0.399385i \(0.869224\pi\)
\(860\) −1.26104e11 + 3.85312e10i −0.230533 + 0.0704399i
\(861\) 0 0
\(862\) −1.96464e11 1.45400e11i −0.355838 0.263352i
\(863\) 9.81164e11i 1.76888i 0.466654 + 0.884440i \(0.345459\pi\)
−0.466654 + 0.884440i \(0.654541\pi\)
\(864\) 0 0
\(865\) −4.19850e11 −0.749946
\(866\) 1.42993e10 1.93211e10i 0.0254240 0.0343527i
\(867\) 0 0
\(868\) −2.50661e11 8.20352e11i −0.441578 1.44518i
\(869\) 6.14637e11 1.07780
\(870\) 0 0
\(871\) 6.00260e11i 1.04296i
\(872\) 3.40674e11 + 1.20733e11i 0.589214 + 0.208814i
\(873\) 0 0
\(874\) −4.85133e11 + 6.55508e11i −0.831410 + 1.12339i
\(875\) 4.88321e10i 0.0833055i
\(876\) 0 0
\(877\) 5.03195e10 0.0850625 0.0425313 0.999095i \(-0.486458\pi\)
0.0425313 + 0.999095i \(0.486458\pi\)
\(878\) 5.51612e11 + 4.08241e11i 0.928230 + 0.686972i
\(879\) 0 0
\(880\) −1.16038e11 1.72155e11i −0.193496 0.287071i
\(881\) −3.73120e10 −0.0619362 −0.0309681 0.999520i \(-0.509859\pi\)
−0.0309681 + 0.999520i \(0.509859\pi\)
\(882\) 0 0
\(883\) 8.62541e10i 0.141885i −0.997480 0.0709426i \(-0.977399\pi\)
0.997480 0.0709426i \(-0.0226007\pi\)
\(884\) −3.45193e11 1.12974e12i −0.565266 1.84998i
\(885\) 0 0
\(886\) 1.97924e11 + 1.46481e11i 0.321191 + 0.237710i
\(887\) 6.97464e11i 1.12675i −0.826201 0.563375i \(-0.809503\pi\)
0.826201 0.563375i \(-0.190497\pi\)
\(888\) 0 0
\(889\) −3.08243e11 −0.493499
\(890\) 1.22535e11 1.65568e11i 0.195299 0.263886i
\(891\) 0 0
\(892\) 2.14394e11 6.55086e10i 0.338652 0.103476i
\(893\) −5.47480e11 −0.860919
\(894\) 0 0
\(895\) 1.63932e10i 0.0255489i
\(896\) −1.49969e11 5.81254e11i −0.232685 0.901850i
\(897\) 0 0
\(898\) −2.59460e11 + 3.50580e11i −0.398992 + 0.539115i
\(899\) 1.70235e12i 2.60622i
\(900\) 0 0
\(901\) 2.63292e11 0.399520
\(902\) −2.12076e11 1.56955e11i −0.320381 0.237110i
\(903\) 0 0
\(904\) 1.69294e11 + 5.99968e10i 0.253494 + 0.0898368i
\(905\) 4.37019e11 0.651488
\(906\) 0 0
\(907\) 1.14603e12i 1.69343i −0.532045 0.846716i \(-0.678576\pi\)
0.532045 0.846716i \(-0.321424\pi\)
\(908\) −6.63584e11 + 2.02760e11i −0.976231 + 0.298289i
\(909\) 0 0
\(910\) −3.49058e11 2.58333e11i −0.509017 0.376717i
\(911\) 1.19150e12i 1.72989i −0.501863 0.864947i \(-0.667352\pi\)
0.501863 0.864947i \(-0.332648\pi\)
\(912\) 0 0
\(913\) −9.73977e11 −1.40173
\(914\) 5.94312e11 8.03029e11i 0.851588 1.15066i
\(915\) 0 0
\(916\) 1.20669e11 + 3.94919e11i 0.171401 + 0.560953i
\(917\) −9.77938e11 −1.38304
\(918\) 0 0
\(919\) 1.38895e11i 0.194726i −0.995249 0.0973629i \(-0.968959\pi\)
0.995249 0.0973629i \(-0.0310407\pi\)
\(920\) 1.15165e11 3.24964e11i 0.160757 0.453612i
\(921\) 0 0
\(922\) 7.48960e11 1.01199e12i 1.03642 1.40040i
\(923\) 1.40994e12i 1.94265i
\(924\) 0 0
\(925\) 2.34834e11 0.320770
\(926\) 7.08198e11 + 5.24129e11i 0.963188 + 0.712843i
\(927\) 0 0
\(928\) −5.24500e10 + 1.19016e12i −0.0707219 + 1.60478i
\(929\) −7.82376e10 −0.105040 −0.0525198 0.998620i \(-0.516725\pi\)
−0.0525198 + 0.998620i \(0.516725\pi\)
\(930\) 0 0
\(931\) 1.29305e11i 0.172114i
\(932\) −1.51391e11 4.95467e11i −0.200649 0.656676i
\(933\) 0 0
\(934\) 7.59680e11 + 5.62230e11i 0.998259 + 0.738799i
\(935\) 3.36651e11i 0.440487i
\(936\) 0 0
\(937\) −1.86421e11 −0.241845 −0.120923 0.992662i \(-0.538585\pi\)
−0.120923 + 0.992662i \(0.538585\pi\)
\(938\) 2.94243e11 3.97579e11i 0.380098 0.513585i
\(939\) 0 0
\(940\) 2.21354e11 6.76352e10i 0.283515 0.0866286i
\(941\) 9.61073e11 1.22574 0.612870 0.790184i \(-0.290015\pi\)
0.612870 + 0.790184i \(0.290015\pi\)
\(942\) 0 0
\(943\) 4.38143e11i 0.554076i
\(944\) −7.26724e11 1.07817e12i −0.915127 1.35769i
\(945\) 0 0
\(946\) −1.98795e11 + 2.68610e11i −0.248222 + 0.335396i
\(947\) 2.98039e11i 0.370573i −0.982685 0.185286i \(-0.940679\pi\)
0.982685 0.185286i \(-0.0593212\pi\)
\(948\) 0 0
\(949\) −1.24176e12 −1.53099
\(950\) −1.70058e11 1.25858e11i −0.208786 0.154520i
\(951\) 0 0
\(952\) −3.25151e11 + 9.17485e11i −0.395856 + 1.11699i
\(953\) 3.08302e11 0.373770 0.186885 0.982382i \(-0.440161\pi\)
0.186885 + 0.982382i \(0.440161\pi\)
\(954\) 0 0
\(955\) 1.90637e11i 0.229189i
\(956\) 6.73785e11 2.05877e11i 0.806659 0.246476i
\(957\) 0 0
\(958\) 7.27406e10 + 5.38344e10i 0.0863605 + 0.0639143i
\(959\) 6.27391e11i 0.741761i
\(960\) 0 0
\(961\) −1.39225e12 −1.63239
\(962\) −1.24233e12 + 1.67862e12i −1.45056 + 1.95998i
\(963\) 0 0
\(964\) 1.61917e10 + 5.29916e10i 0.0187493 + 0.0613620i
\(965\) 4.32036e11 0.498207
\(966\) 0 0
\(967\) 1.51625e12i 1.73407i 0.498249 + 0.867034i \(0.333977\pi\)
−0.498249 + 0.867034i \(0.666023\pi\)
\(968\) 3.31652e11 + 1.17535e11i 0.377730 + 0.133865i
\(969\) 0 0
\(970\) 8.44528e10 1.14112e11i 0.0953954 0.128897i
\(971\) 5.09948e11i 0.573653i −0.957983 0.286826i \(-0.907400\pi\)
0.957983 0.286826i \(-0.0926003\pi\)
\(972\) 0 0
\(973\) −1.30515e12 −1.45616
\(974\) 5.73621e11 + 4.24530e11i 0.637367 + 0.471707i
\(975\) 0 0
\(976\) −1.25812e12 + 8.48015e11i −1.38651 + 0.934554i
\(977\) 5.25454e11 0.576708 0.288354 0.957524i \(-0.406892\pi\)
0.288354 + 0.957524i \(0.406892\pi\)
\(978\) 0 0
\(979\) 5.22016e11i 0.568268i
\(980\) −1.59742e10 5.22798e10i −0.0173187 0.0566800i
\(981\) 0 0
\(982\) −1.08896e11 8.05926e10i −0.117103 0.0866661i
\(983\) 1.57970e12i 1.69184i −0.533306 0.845922i \(-0.679051\pi\)
0.533306 0.845922i \(-0.320949\pi\)
\(984\) 0 0
\(985\) −3.92651e9 −0.00417121
\(986\) 1.14919e12 1.55278e12i 1.21586 1.64286i
\(987\) 0 0
\(988\) 1.79929e12 5.49777e11i 1.88831 0.576978i
\(989\) −5.54940e11 −0.580044
\(990\) 0 0
\(991\) 1.31555e12i 1.36400i −0.731354 0.681999i \(-0.761111\pi\)
0.731354 0.681999i \(-0.238889\pi\)
\(992\) −1.56964e12 6.91735e10i −1.62089 0.0714321i
\(993\) 0 0
\(994\) −6.91143e11 + 9.33867e11i −0.707983 + 0.956620i
\(995\) 8.30352e10i 0.0847169i
\(996\) 0 0
\(997\) 1.29025e12 1.30585 0.652924 0.757424i \(-0.273542\pi\)
0.652924 + 0.757424i \(0.273542\pi\)
\(998\) 1.18613e12 + 8.77843e11i 1.19567 + 0.884901i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.9.c.b.91.10 yes 32
3.2 odd 2 inner 180.9.c.b.91.23 yes 32
4.3 odd 2 inner 180.9.c.b.91.9 32
12.11 even 2 inner 180.9.c.b.91.24 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.9.c.b.91.9 32 4.3 odd 2 inner
180.9.c.b.91.10 yes 32 1.1 even 1 trivial
180.9.c.b.91.23 yes 32 3.2 odd 2 inner
180.9.c.b.91.24 yes 32 12.11 even 2 inner