Newspace parameters
Level: | \( N \) | \(=\) | \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 180.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(73.3281498110\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
91.1 | −15.9001 | − | 1.78503i | 0 | 249.627 | + | 56.7644i | −279.508 | 0 | 1266.61i | −3867.78 | − | 1348.15i | 0 | 4444.22 | + | 498.931i | ||||||||||
91.2 | −15.9001 | + | 1.78503i | 0 | 249.627 | − | 56.7644i | −279.508 | 0 | − | 1266.61i | −3867.78 | + | 1348.15i | 0 | 4444.22 | − | 498.931i | |||||||||
91.3 | −15.8926 | − | 1.85034i | 0 | 249.152 | + | 58.8137i | 279.508 | 0 | − | 4368.38i | −3850.87 | − | 1395.72i | 0 | −4442.13 | − | 517.186i | |||||||||
91.4 | −15.8926 | + | 1.85034i | 0 | 249.152 | − | 58.8137i | 279.508 | 0 | 4368.38i | −3850.87 | + | 1395.72i | 0 | −4442.13 | + | 517.186i | ||||||||||
91.5 | −14.6346 | − | 6.46742i | 0 | 172.345 | + | 189.297i | 279.508 | 0 | 1279.81i | −1297.94 | − | 3884.91i | 0 | −4090.50 | − | 1807.70i | ||||||||||
91.6 | −14.6346 | + | 6.46742i | 0 | 172.345 | − | 189.297i | 279.508 | 0 | − | 1279.81i | −1297.94 | + | 3884.91i | 0 | −4090.50 | + | 1807.70i | |||||||||
91.7 | −12.7138 | − | 9.71382i | 0 | 67.2836 | + | 247.000i | −279.508 | 0 | − | 3004.85i | 1543.88 | − | 3793.90i | 0 | 3553.63 | + | 2715.09i | |||||||||
91.8 | −12.7138 | + | 9.71382i | 0 | 67.2836 | − | 247.000i | −279.508 | 0 | 3004.85i | 1543.88 | + | 3793.90i | 0 | 3553.63 | − | 2715.09i | ||||||||||
91.9 | −9.51821 | − | 12.8609i | 0 | −74.8072 | + | 244.826i | 279.508 | 0 | − | 2236.25i | 3860.72 | − | 1368.22i | 0 | −2660.42 | − | 3594.74i | |||||||||
91.10 | −9.51821 | + | 12.8609i | 0 | −74.8072 | − | 244.826i | 279.508 | 0 | 2236.25i | 3860.72 | + | 1368.22i | 0 | −2660.42 | + | 3594.74i | ||||||||||
91.11 | −8.96713 | − | 13.2511i | 0 | −95.1813 | + | 237.648i | −279.508 | 0 | 3400.42i | 4002.59 | − | 869.766i | 0 | 2506.39 | + | 3703.78i | ||||||||||
91.12 | −8.96713 | + | 13.2511i | 0 | −95.1813 | − | 237.648i | −279.508 | 0 | − | 3400.42i | 4002.59 | + | 869.766i | 0 | 2506.39 | − | 3703.78i | |||||||||
91.13 | −6.78369 | − | 14.4907i | 0 | −163.963 | + | 196.601i | 279.508 | 0 | 782.759i | 3961.17 | + | 1042.27i | 0 | −1896.10 | − | 4050.29i | ||||||||||
91.14 | −6.78369 | + | 14.4907i | 0 | −163.963 | − | 196.601i | 279.508 | 0 | − | 782.759i | 3961.17 | − | 1042.27i | 0 | −1896.10 | + | 4050.29i | |||||||||
91.15 | −1.42186 | − | 15.9367i | 0 | −251.957 | + | 45.3194i | −279.508 | 0 | 581.971i | 1080.49 | + | 3950.92i | 0 | 397.421 | + | 4454.44i | ||||||||||
91.16 | −1.42186 | + | 15.9367i | 0 | −251.957 | − | 45.3194i | −279.508 | 0 | − | 581.971i | 1080.49 | − | 3950.92i | 0 | 397.421 | − | 4454.44i | |||||||||
91.17 | 1.42186 | − | 15.9367i | 0 | −251.957 | − | 45.3194i | 279.508 | 0 | − | 581.971i | −1080.49 | + | 3950.92i | 0 | 397.421 | − | 4454.44i | |||||||||
91.18 | 1.42186 | + | 15.9367i | 0 | −251.957 | + | 45.3194i | 279.508 | 0 | 581.971i | −1080.49 | − | 3950.92i | 0 | 397.421 | + | 4454.44i | ||||||||||
91.19 | 6.78369 | − | 14.4907i | 0 | −163.963 | − | 196.601i | −279.508 | 0 | − | 782.759i | −3961.17 | + | 1042.27i | 0 | −1896.10 | + | 4050.29i | |||||||||
91.20 | 6.78369 | + | 14.4907i | 0 | −163.963 | + | 196.601i | −279.508 | 0 | 782.759i | −3961.17 | − | 1042.27i | 0 | −1896.10 | − | 4050.29i | ||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
4.b | odd | 2 | 1 | inner |
12.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 180.9.c.b | ✓ | 32 |
3.b | odd | 2 | 1 | inner | 180.9.c.b | ✓ | 32 |
4.b | odd | 2 | 1 | inner | 180.9.c.b | ✓ | 32 |
12.b | even | 2 | 1 | inner | 180.9.c.b | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
180.9.c.b | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
180.9.c.b | ✓ | 32 | 3.b | odd | 2 | 1 | inner |
180.9.c.b | ✓ | 32 | 4.b | odd | 2 | 1 | inner |
180.9.c.b | ✓ | 32 | 12.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{16} + 48869152 T_{7}^{14} + 889031371271360 T_{7}^{12} + \cdots + 54\!\cdots\!00 \)
acting on \(S_{9}^{\mathrm{new}}(180, [\chi])\).